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Motto

There are two ways of regarding
a permutation :

“passive” – as a linear order

“active” – as a bijection, group element

(Peter Cameron, Combinatorics)

Starting point of our tour:

University of Reykjavik

(results of the Icelandic school)

Destination:

See the melting ice

(i.e., transform the “passive” combinatorial
concept of pattern avoidance into
an “active” algebraic concept)
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Dashed Patterns

Definition. [ Babson-Steingrı́msson 2000 ]

A permutation π ∈ Sn contains the pattern

(1− 32) if π = [. . . , a, . . . , c, b, . . .] for some

a < b < c;

π avoids (1− 32) if no such a, b, c exist.

Let

Sn(1− 32) := {π ∈ Sn | π avoids (1− 32)}.

Example.

[4,5,2,1,3] ∈ Sn(1− 32)

[1,3,4,5,2] 6∈ Sn(1− 32).
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Two Theorems

Let

Des(π) := {i | π(i) > π(i + 1)}
and

des(π) := #Des(π).

Theorem [Claesson ’01]

∑

π∈Sn(1−32)

q1+des(π) =
∑

k≥0

S(n, k)qk,

where S(n, k) := Stirling numbers of 2nd kind.

4



Let

inv(π) := #{i < j | π(i) > π(j)}
and

rmaj (π) :=
∑

ı∈Des(σ)

(n− i).

Theorem [ ? , Regev-R ’04]

∑

π∈Sn(1−32)

qinv(π) =
∑

π∈Sn(1−32)

qrmaj (π−1).

1st $1,000 Question:

Who was the first to prove this result ?
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Signed Permutations

A signed permutation on n letters is a bijec-

tion

π : [−n, n] \ {0} 7→ [−n, n] \ {0},
such that for every i ∈ [−n, n] \ {0}

π(−i) = −π(i).

Example. By

π = [2̄,1, 3̄]

we mean π(1) = −2, π(2) = 1, π(3) = −3,

thus π(−1) = 2, π(−2) = −1, π(−3) = 3.

Bn – the group of signed permutations on n

letters
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Coxeter Groups

Sn – the symmetric group on n letters

is generated by the adjacent transpositions

s1, . . . , sn−1, where si := (i, i + 1),

with the defining relations

(sisj)
2 = 1 (|i− j| > 1);

(sisi+1)
3 = 1 (1 ≤ i < n− 2);

s2i = 1 (1 ≤ i ≤ n− 1).

Bn – the group of signed permutations on n

letters is generated by s0, s1, . . . , sn−1

with the above defining relations and

(s0sj)
2 = 1 (j > 1); (s0s1)

4 = 1;

s20 = 1.
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Statistics on Coxeter Groups

For π ∈ Sn let

`S(π) := the length of π w.r.t s1, . . . , sn−1.

Then

inv(π) := #{i > j | π(i) > π(j)} = `S(π),

and

DesS(π) := {i | π(i) > π(i + 1)} =

= {i | `S(πsi) ≤ `S(π)}.
Hence

des(π) = #{i | `S(πsi) ≤ `S(π)}.

Length and descent number on a general
Coxeter group are defined similarly.

Q1: How to define maj on a general Coxeter
group ?

Q12: How to define 1−32 avoidance on other
Coxeter groups ?
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Statistics on signed permutations

Definition. A permutation σ ∈ Bn contains

the pattern (2, |1|)
if σ = [. . . , b, a, . . .] or σ = [. . . , b, ā, . . .]

for some a < b;

σ ∈ Bn contains (|1|, 3̄− |2|) if

σ = [. . . , a, c̄, . . . , b, . . .] or [. . . , ā, c̄, . . . , b, . . .]

or [. . . , a, c̄, . . . , b̄, . . .] or [. . . , ā, c̄, . . . , b̄, . . .].

Definition. flag-major index [Adin-R ’99]

For π ∈ Bn let

fmaj (π) := 2 ·maj (π) + #{i |π(i) < 0}.

Example. maj [4, 3̄, 2̄, 1̄] = 1, since 4 > −3 <

−2 < −1. Thus fmaj [4, 3̄, 2̄, 1̄] = 2 · 1 + 3
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Two Theorems on Bn

Theorem [Regev-R ’05]
∑

π∈Bn(2|1|, |1|3̄−|2|, |2|3̄−|1|)
q1+des(π) =

∑

k≥0

SB(n, k)qk,

where SB(n, k) := type B Stirling numbers of

2nd kind.

Theorem [ ? , Regev-R ’06]
∑

π∈Bn(π∈Bn(2|1|, |1|3̄−|2|, |2|3̄−|1|)
q`B(π) =

∑

π∈Bn(π∈Bn(2|1|, |1|3̄−|2|, |2|3̄−|1|)
qfmaj (π−1),

where `B(π) := the length w.r.t. the Coxeter

generators.

2nd $1,000 Question:
Who was the first to prove this result ?
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The Alternating Group An

is nearly Coxeter

Let ai := s1si+1 = (1,2)(i, i + 1) ∈ An.

Theorem [Bourbaki, Mitsuhashi ’01]

The set

A := {ai | 1 ≤ i ≤ n− 2}
generates An with the defining relations

(aiaj)
2 = 1 (|i− j| > 1);

(aiai+1)
3 = 1 (1 ≤ i < n− 2);

a3
1 = 1 and a2

i = 1 (1 < i ≤ n−2).
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Equidistribution on An

Definitions. For π ∈ An let

`A(π) := the length of π w.r.t A ∪A−1.

DesA(π) := {i | `A(πai) ≤ `A(π)}

rmajA(π)
∑

i | i∈DesA(π)

(n− 1− i).

Theorem [ ? , Regev-R ’04]

∑

π∈An(1−2−43, 2−1−43)

q`A(π) =

∑

π∈An(1−2−43, 2−1−43)

qrmajA(π−1).

3rd $1,000 Question:

Who was the first to prove this result ?
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Björner-Wachs Theorem

Let

lr(π) := # left to right minima of π.

Theorem [BW ’91]

∑

π∈Sn

q
inv(π)
1 q

lr(π)
2 q

des(π)
3 =

∑

π∈Sn

q
rmaj (π−1)
1 q

lr(π)
2 q

des(π)
3 .

Bn

Theorem [Adin-Brenti-R ’04]

∑

π∈Bn

q`B(π)tdes(π) =

∑

π∈Bn

qfmaj (π−1)tdes(π).
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For π ∈ Bn let

nrl(π) :=

#{1 ≤ i ≤ n | ∀j > i |π(j)| > |π(i)|, π(i) < 0}.

Example. nrl [4̄, 5̄,2,3, 1̄] = 2, since 5,3,1 are

right to left maxima, but 3 is not negative.

Theorem [Regev-R ’05]

∑

π∈Bn

q`B(π)tnrl(π) =

∑

π∈Bn

qfmaj (π−1)tnrl(π).

Theorem [Foata-Han ’05]

∑

π∈Bn

q
`B(π)
1 q

nrl(π)
2 q

des(π)
3 =

∑

π∈Bn

q
fmaj (π−1)
1 q

nrl(π)
2 q

des(π)
3 .
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BW for An

A position i is an almost left to right minimum

of π ∈ Sn

if there is at most one j < i,

such that π(j) < π(i),

For π ∈ An let

alr(π) := # almost l.t.r. minima.

Example. alr [4,2,3,5,1] = 4.

Theorem [Regev-R ’04]

∑

π∈An

q
`A(π)
1 q

alr(π)
2 q

desA(π)
3 =

∑

π∈An

q
rmajA(π−1)
1 q

alr(π)
2 q

desA(π)
3 .
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Observations [Regev-R]

Sn(1− 32) =

{π ∈ Sn | 1 + des(π) = lr(π) }.

An(1− 2− 43, 2− 1− 43) =

{π ∈ An | 2 + desA(π) = alr(π) }.

Bn(2|1|, |1|3̄− |2|, |2|3̄− |1|) =

{π ∈ Bn | desA(π) = nrl(π) }

Answers to the $1,000 Questions

First, implicit in Björner-Wachs

Second, implicit in Foata-Han

Third, explicit in Regev-R
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Extending the Concepts - I

Given a flag

G1 < G2 < G3 < G4 < · · ·
Let Ri be the set of shortest coset represen-

tatives of Gi in Gi+1.

Let Rmax
i be the subset of longest elements

in Ri.

The delent number of π ∈ Gn is the number of

factors from Rmax
i needed to express π.

Theorem [Regev-R]

delent(π) =





lr(π)− 1, π ∈ Sn ;

nrl(π), π ∈ Bn ;

alr(π)− 2, π ∈ An .

Conclusion: lr , alr , nrl are different occur-

rences of a unified concept.
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Extending the Concepts - II
( the flag major index )

Similarly,

maj , fmaj , rmajA

are different occurrences
of a unified concept

Theorem [R-Shwartz ’06] Every finite Weyl
group W (E8...not yet)
with degrees d1, . . . , dt is a product of t cyclic
subgroups

W = C1 · · ·Ct,

where Ci
∼= Zdi

.

Thus every element w ∈ W has a unique pre-
sentation

w =
∏

v
ki
i

where 0 ≤ ki ≤ di − 1.

The sum of the exponents gives the various
major indices.
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Other Groups

Wreath Products – Adin-R, Regev-R,

Remmel-R

Dn – Biagioli-Caselli

Complex reflection groups – Bagno-Biagioli

Alternating subgroups of other Coxeter groups

– Brenti-Reiner-R
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Future

Other patterns

Other groups

Representation theory

... ???
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