Slides for a lecture in
Permutation Patterns 4t* annual conference
(Reykjavik, June 12-16, 2006)



Dashed Pattern Avoidance
on Other Groups

Yuval Roichman

Bar-Ilan University

yuvalr@math.biu.ac.il

Joint with

Amitai Regev
Weizmann Institute

and others



Motto

There are two ways of regarding
a permutation :

“passive’” — as a linear order
“active” — as a bijection, group element

(Peter Cameron, Combinatorics)

Starting point of our tour:

University of Reykjavik

(results of the Icelandic school)
Destination:

See the melting ice

(i.e., transform the “passive” combinatorial

concept of pattern avoidance into
an ‘“active” algebraic concept)



Dashed Patterns

Definition. [ Babson-Steingrimsson 2000 ]
A permutation © € S,, contains the pattern
(1-32)ifr=1I[...,a,...,¢c,b,...] fOr some
a<b<c

m avoids (1 — 32) if no such a,b, ¢ exist.

Let

Spn(l —32) :={r €Sy | m avoids (1 — 32)}.

Example.

[4,5,2,1,3] € Sp(1 —32)

[1,3,4,5,2] € Sp(1 — 32).



Two Theorems

Let

Des(m) :={i | w(¢) >n(i+ 1)}
and
des(m) := #Des(x).

Theorem [Claesson ’01]
S A = 5 §(n, k),
where S(n, k) := Stirling numbers of 27¢ kind.



Let

inv(m) = #{i<j | (@) >n(j)}
and

rmaj(m) == > (n—1).

i€ Des(o)

Theorem [ ? , Regev-R ’04]

Z qz'm}(w) — Z qrmaj(ﬂ_l).
7€Sn(1—32) 7€Sn(1—32)

15t $1,000 Question:
Who was the first to prove this result 7



Signed Permutations

A signed permutation on n letters is a bijec-
tion

. [_n7 TL] \ {O} = [_n7 TL] \ {0}7
such that for every i € [-n,n] \ {0}

w(—i) = —7(7).
Example. By
T=[2,1,3]
we mean n(1l) = -2, n(2) =1, n(3) = -3,

thus n(—-1) =2, n(-2) = -1, n(-3) = 3.

B, — the group of signed permutations on n
letters



Coxeter Groups
Sn — the symmetric group on n letters
IS generated by the adjacent transpositions
$1,...,8,-1, Where s; := (4,14 1),

with the defining relations
(8:8)° =1 (l¢ =gl > 1),
(8i841)° =1 (1<i<n-—2);

s?=1 (1<i<n-—1).

B,, — the group of signed permutations on n

letters is generated by sg,s1,...,8,—-1
with the above defining relations and
(s0s;)? =1 (j > 1), (s0s1)* = 1;

s%zl.



Statistics on Coxeter Groups

Lg(m) := the length of # w.r.t s1,...,8,-1.
Then

mmv(m) = #{i>j | 7(@) > 7(j)} = Llg(m),
and

Desg(m) = {i | 7(s) > x(i+ 1)} =

= {i | Ls(ms;) < Lg(m)}.
Hence

des(m) = #{i | £s(ms;) < £s(m)}.

Length and descent number on a general
Coxeter group are defined similarly.

Q1: How to define maj on a general Coxeter
group 7

Q12: How to define 1—-32 avoidance on other
Coxeter groups 7



Statistics on signed permutations

Definition. A permutation ¢ € B, contains
the pattern (2,|1])
ifo=[...,ba,..]J]0roc=][...,ba,...]

for some a < b;

o € By contains (|1],3 — |2]) if

Definition. flag-major index [Adin-R ’99]

fmaj(w) ;=2 - maj(w) + #{i |7 (z) < 0}.

since 4 > —3 <

Example. maj[4,3,2,1] = 1,
]=2-1+3

1
—2 < —1. Thus fmaj[4,3,2,1



Two Theorems on B,

Theorem [Regev-R ’05]

Z q1+des(7r) —
T€Bn(2/1], [113—[2], [2[3—[1])
k
> Spn,k)q",
k>0

where Sg(n, k) := type B Stirling numbers of
2nd kind.

Theorem [ 7?7 , Regev-R ’06]

Z C/B(w) —
reBn(reBn(2]1], 11|13=12|, 12|13=]1|)

3 quaj(w—l),
7€ Bn(reBa(2[1], [113—2], [213—1])

where ¢g(mw) := the length w.r.t. the Coxeter
generators.

ond $1,000 Question:
Who was the first to prove this result 7

10



The Alternating Group A,
IS nearly Coxeter

Let a; 1= $18i4+1 — (1,2)(s,i+ 1) € Ay,

Theorem [Bourbaki, Mitsuhashi ’01]
The set
A={a; |1 <i<n—-2}
generates A,, with the defining relations
(ajaj)? =1 (|t =gl > 1);
(a,&-ai_|_1)3= 1 (1<i<n-—2);

a3 =1 and a? =1 (1 <i<n=2).

11



Equidistribution on A4,

Definitions. For = € A,, let

0 4(7) := the length of 7 w.r.t AuA—L
Desp(m) :={i | £a(ma;) < ()}

rmaj 4 (7) > (n—1-—1).

i | i€Des 4 ()

Theorem [ 7?7 , Regev-R ’04]

Z qﬁA(W) —
reAn(1—2—43, 2—1—43)

Z qrmajA(ﬂ_l).
€A (1—2-43, 2—1-43)

374 $1,000 Question:
Who was the first to prove this result 7

12



Bjorner-wachs Theorem

Let

Ir(m) := # left to right minima of «.

Theorem [BW ’91]

Z qzim} () qé?“(w) qges(w) _

Z q{maj (W_l)qlzr(w)qges(w) .

Bn

T heorem [Adin-Brenti-R °’04]

Z qﬁB(ﬂ')tdes(w) —
w€Bn

Z quaj (W_l)tdBS(ﬂ') .
TEBy

13



nri(mw) 1=

#{1<i<n |Vj>i|n(g)|>|r@)|, ©(i) < O}.

Example. nri[4,5,2,3,1] = 2, since 5,3,1 are
right to left maxima, but 3 is not negative.

Theorem [Regev-R ’05]
Z qﬁB(ﬁ)tn’rl(w) —

meBy,

Z quaj (W_l)tm“l(w) .
weBy,

T heorem [Foata-Han ’05]

S B i) des(r) _
weBn

i(n—1 70 T
S el () o) des(m).
weBy

14



BW for A,

A position ¢ is an almost left to right minimum
of m € Sy

if there is at most one j < 1,
such that «(y) < 7 (7),

For m € Ay let
alr(m) := # almost I.t.r. minima.

Example. alr[4,2,3,5,1] = 4.

Theorem [Regev-R ’04]
> in(ﬂ qgh(w) qgemw —

S qimajA(ﬂ_1)qgl"“(7f)q§i68A(7T).

15



Observations [Regev-R]

Sn(l —32) =

{m e Sp | 1+ des(w) = Ir(w) }.

Ap(1—2—-43, 2—-1—-43) =

{mr € Ap | 2+ desyp () = alr(xw) }.

Bn(21], 113 —12|, [2[3—[1]) =

{m € By, | desp(m) = nri(w) }

Answers to the $1,000 Questions
First, implicit in Bjorner-wWachs
Second, implicit in Foata-Han

Third, explicit in Regev-R

16



Extending the Concepts - 1

Given a flag

G1 <Go<Gz3<Gyg<---

Let R; be the set of shortest coset represen-
tatives of G; in G;41.

Let RI'* be the subset of longest elements
in Ri-

The delent number Of m € GGy, IS the number of
factors from R;”aw needed to express .

Theorem [Regev-R]
Ir(m) — 1, ™ e Sp |
delent(mw) = ¢ nri(m), m™ € Bp
alr(w) —2, mwe A, .

Conclusion: [r, alr,nrl are different occur-
rences of a unified concept.

17



Extending the Concepts - 11
( the flag major index )

Similarly,
maj, fmaj,rmaj 4

are different occurrences
of a unified concept

Theorem [R-Shwartz ’06] Every finite Weyl
group W (FEg...not yet)

with degrees dq,...,ds is a product of t cyclic
subgroups

W =Cq---C%,
where C; = Zdz"

Thus every element w € W has a unique pre-
sentation

w =[] v

where 0 < k; <d; — 1.

The sum of the exponents gives the various
major indices.
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Other Groups

Wreath Products — Adin-R, Regev-R,
Remmel-R

D,, — Biagioli-Caselli

Complex reflection groups — Bagno-Biagioli

Alternating subgroups of other Coxeter groups
— Brenti-Reiner-R
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Future

Other patterns

Other groups

Representation theory

e
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