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Let P be the positive integers.

A composition of a non-negative integer N is a sequence

w = k1k2 . . . kr with all ki ∈ P and
∑

i ki = N.

Let cN be the number of compositions of N.
Ex. If N = 3 then c3 = 4 counting compositions

3, 21, 12, 111.

Theorem
cN =

{
2N−1 if N ≥ 1
1 if N = 0

.

So we have the rational generating function∑
N≥0

cNxN =
1− x

1− 2x
.

Questions:
1. Is this an isolated incident or part of a larger picture?
2. What does this have to do with patterns in permutations?

Moral:

It can be better to count by containment instead of avoidance.
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Let [n] = {1, 2, . . . , n} and let Sn be the symmetric group on
[n].

Call π ∈ Sn layered if it has the form

π = p, p − 1, . . . , 1, p + q, p + q − 1, . . . , p + 1, p + q + r , . . .

for certain p, q, r , . . . called the layer lengths. There is a
bijection between layered permutations and compositions by

π ←→ w = pqr . . .

Ex. π = 3 2 1 5 4 9 8 7 6←→ w = 3 2 4.
Any set A (the alphabet) has Kleene closure

A∗ = {w = k1k2 . . . kr | ki ∈ A for all i and r ≥ 0}.

Note
w is a composition iff w ∈ P∗.
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Letting π ≤ σ whenever π is a pattern in σ turns S = ]n≥0Sn

into a partially ordered set (poset).

This induces a partial order
on P∗ (Bergeron, Bousquet-Mélou, and Dulucq, 1995):
If u = k1 . . . kr and w = l1 . . . ls then u ≤ w iff there is a
subsequence li1 . . . lir of w with

kj ≤ lij for 1 ≤ j ≤ r .

The index set I = {i1, . . . , ir} is called an embedding of u into w .
Ex. If u = 4 1 3 and w = 4 1 4 3 2 4 2 then u ≤ w , for example,

1 2 3 4 5 6 7
w = 4 1 4 3 2 4 2≥ ≥ ≥

u = 4 1 3

and I = {3, 5, 6}.

Given u ≤ w there is a unique rightmost embedding, I, such
that I ≥ I′ componentwise for all embeddings I′. The
embedding above is rightmost.
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For any alphabet A, the formal power series in noncommuting
variables A with integral coefficients is

Z〈〈A〉〉 = {f =
∑

w∈A∗
c(w)w | c(w) ∈ Z ∀w}.

Let [n] = {1, . . . , n} have alphabet [n̄] = {1̄, . . . , n̄}. Given
u ∈ [n̄]∗, consider

Z (u) =
∑
w≥u

w ∈ Z〈〈[n̄]〉〉.

Ex. Z (1̄ 1̄) = 1̄ 1̄ + 1̄ 1̄ 1̄ + 1̄ 2̄ + 2̄ 1̄ + · · ·
Theorem (Björner & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.
Given f =

∑
w c(w)w ∈ Z〈〈A〉〉 with c(ε) = 0, let

f ∗ = ε + f + f 2 + f 3 + · · ·
= (ε− f )−1.

Convention: If S ⊆ A, then we also let S stand for
∑

s∈S s.
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Theorem (B & S)
For all u ∈ [n̄]∗, the series Z (u) is rational.

Proof We generate each w ≥ u by rightmost embedding as
follows. If k̄ ∈ [n̄] then let z(k̄) be the sum of all w which begin
with an element ≥ k̄ followed only by elements < k̄ . So

z(k̄) = [k̄ , n̄][ k − 1 ]∗

where [k , n] = {k , k + 1, . . . , n}.

Now if u = k̄1 . . . k̄r then

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ).

Ex. If n = 4 and k = 3 then

z(3̄) = (3̄ + 4̄)(1̄ + 2̄)∗

= 3̄ + 4̄ + 3̄ 1̄ + 3̄ 2̄ + 4̄ 1̄ + 4̄ 2̄ + · · ·
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The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,
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[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then
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x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)

=
xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗

=
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Recall:

Z (u) = [n̄]∗z(k̄1) · · · z(k̄r ) with z(k̄) = [k̄ , n̄][ k − 1 ]∗.

The norm of u = k̄1 . . . k̄r ∈ P∗ is |u| =
∑

i ki .

Let x be a variable and substitute k̄ ; xk .

u = k̄1 . . . k̄r ; xk1 · · · xkr = x |u|,

z(k̄) ; (xk + xk+1 + · · ·+ xn)(x + x2 + · · ·+ xk−1)∗

=
xk + xk+1 + · · ·+ xn

1− (x + x2 + · · ·+ xk−1)
=

xk − xn+1

1− 2x + xk ,

[n̄]∗ ; (x + x2 + . . . + xn)∗ =
1− x

1− 2x + xn+1 .

The type of u ∈ [n̄]∗ is t(u) = (t1, . . . , tn) where tk = # of k̄ ∈ u.

Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.



Corollary (B & S)
If u ∈ [n̄]∗ has t(u) = (k1, . . . , kn) then

∑
w≥u

x |w | =
1− x

1− 2x + xn+1

n∏
k=1

(
xk − xn+1

1− 2x + xk

)tk

.

Note: 1. Letting n→∞ in this corollary we get u ∈ P∗ and the
xn+1 terms in the product drop out. So∑

N≥0

cNxN =
∑
w≥ε

x |w | =
1− x

1− 2x
· 1 since t(ε) = (0, . . . , 0).

2. For P ⊆ S, let Sn(P) = {σ ∈ Sn : σ avoids all π ∈ P} and
S(P) = ]n≥0Sn(P). Now π is layered iff π ∈ S(231, 312).

Corollary (B & S)
If π and π′ are layered permutations with the same multiset of
layer lengths then for all n ≥ 0:

#Sn(231, 312, π) = #Sn(231, 312, π′).
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Commuting variables and a Wilf equivalence

Comments and open questions



1. Is there a bijective proof of the Wilf equivalence in the
previous corollary?

2. A lower order ideal , L, is a subset of a poset P such that

a ∈ L and b ≤ a implies b ∈ L.

A block of a permutation π ∈ Sn is an interval I such that π(I) is
an interval. The block is trivial if #I = 1 or n. A permutation is
simple if it has no nontrivial blocks.
The next result follows from the work of Albert and Atkinson on
simple permutations.

Theorem (Albert and Atkinson)
Every lower order ideal properly contained in S(231) has a
rational generating function.

In fact, they give a construction to compute the generating
function. Can this method be used to prove the Wilf
equivalence? See also the work of Mansour and Egge.
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3. For any set A, define subword order on A∗ by: If u = k1 . . . kr

and w = l1 . . . ls then u ≤ w iff there is li1 . . . lir with

kj = lij for 1 ≤ j ≤ r .

Ex. If A = {a, b}, u = a b b a and w = b a a b a b a a then
u ≤ w , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)
In subword order, Z (u) =

∑
w≥u w is rational.

For any poset P, define generalized subword order on P∗ by: If
u = k1 . . . kr and w = l1 . . . ls then u ≤P∗ w iff there is li1 . . . lir
with

kj ≤P lij for 1 ≤ j ≤ r .

P an antichain ⇒ P∗ is subword order,
P a chain ⇒ P∗ is composition order.

Theorem (B & S)
In generalized subword order, Z (u) =

∑
w≥u w is rational.

4. One can also consider the Möbius function of P∗ (Vatter and
Sagan) and various interesting subposets of P∗ (Goyt).
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ÞAKKA YKKUR KÆRLEGA FYRIR!
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