# Layered permutations and rational generating functions

Anders Björner Department of Mathematics Kungliga Tekniska Högskolan S-100 44 Stockholm, SWEDEN

and

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 www.math.msu.edu/~sagan

June 17, 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Compositions and layered permutations

Rational generating functions

Commuting variables and a Wilf equivalence

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Comments and open questions



Compositions and layered permutations

Rational generating functions

Commuting variables and a Wilf equivalence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Comments and open questions

A *composition* of a non-negative integer *N* is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A *composition* of a non-negative integer *N* is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Let  $c_N$  be the number of compositions of N.

A *composition* of a non-negative integer *N* is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A *composition* of a non-negative integer *N* is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \mbox{if } N \geq 1 \\ 1 & \mbox{if } N = 0 \end{array} \right. .$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A composition of a non-negative integer N is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \mbox{if } N \geq 1 \\ 1 & \mbox{if } N = 0 \end{array} \right. .$$

So we have the rational generating function

$$\sum_{N\geq 0} c_N x^N = \frac{1-x}{1-2x}.$$

(日) (日) (日) (日) (日) (日) (日)

A composition of a non-negative integer N is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \mbox{if } N \geq 1 \\ 1 & \mbox{if } N = 0 \end{array} \right. .$$

So we have the rational generating function

$$\sum_{N\geq 0}c_Nx^N=\frac{1-x}{1-2x}.$$

### **Questions:**

1. Is this an isolated incident or part of a larger picture?

A *composition* of a non-negative integer *N* is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \mbox{if } N \geq 1 \\ 1 & \mbox{if } N = 0 \end{array} \right. .$$

So we have the rational generating function

$$\sum_{N\geq 0} c_N x^N = \frac{1-x}{1-2x}.$$

### **Questions:**

- 1. Is this an isolated incident or part of a larger picture?
- 2. What does this have to do with patterns in permutations?

A *composition* of a non-negative integer N is a sequence

 $w = k_1 k_2 \dots k_r$  with all  $k_i \in \mathbb{P}$  and  $\sum_i k_i = N$ .

Let  $c_N$  be the number of compositions of *N*. Ex. If N = 3 then  $c_3 = 4$  counting compositions

3, 21, 12, 111.

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \mbox{if } N \geq 1 \\ 1 & \mbox{if } N = 0 \end{array} \right. .$$

So we have the rational generating function

$$\sum_{N\geq 0}c_Nx^N=\frac{1-x}{1-2x}.$$

## **Questions:**

1. Is this an isolated incident or part of a larger picture?

2. What does this have to do with patterns in permutations? **Moral:** 

It can be better to count by containment instead of avoidance.

Let  $[n] = \{1, 2, ..., n\}$  and let  $\mathfrak{S}_n$  be the symmetric group on [n].

(ロ) (型) (E) (E) (E) (O)()

 $\pi = p, p - 1, \dots, 1, p + q, p + q - 1, \dots, p + 1, p + q + r, \dots$ 

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for certain  $p, q, r, \ldots$  called the *layer lengths*.

 $\pi = p, p - 1, \dots, 1, p + q, p + q - 1, \dots, p + 1, p + q + r, \dots$ 

for certain p, q, r, ... called the *layer lengths*. There is a bijection between layered permutations and compositions by

 $\pi \longleftrightarrow W = pqr \dots$ 

A D F A 同 F A E F A E F A Q A

 $\pi = p, p - 1, \dots, 1, p + q, p + q - 1, \dots, p + 1, p + q + r, \dots$ 

for certain p, q, r, ... called the *layer lengths*. There is a bijection between layered permutations and compositions by

 $\pi \longleftrightarrow w = pqr \dots$ 

A D F A 同 F A E F A E F A Q A

**Ex.**  $\pi = 321549876 \leftrightarrow w = 324$ .

 $\pi = p, p - 1, \dots, 1, p + q, p + q - 1, \dots, p + 1, p + q + r, \dots$ 

for certain p, q, r, ... called the *layer lengths*. There is a bijection between layered permutations and compositions by

 $\pi \longleftrightarrow w = pqr \dots$ 

**Ex.**  $\pi = 321549876 \leftrightarrow w = 324$ . Any set *A* (the alphabet) has Kleene closure

 $A^* = \{w = k_1 k_2 \dots k_r \mid k_i \in A \text{ for all } i \text{ and } r \ge 0\}.$ 

 $\pi = p, p - 1, \dots, 1, p + q, p + q - 1, \dots, p + 1, p + q + r, \dots$ 

for certain p, q, r, ... called the *layer lengths*. There is a bijection between layered permutations and compositions by

 $\pi \longleftrightarrow w = pqr \dots$ 

**Ex.**  $\pi = 321549876 \leftrightarrow w = 324$ . Any set *A* (the alphabet) has Kleene closure

 $A^* = \{ w = k_1 k_2 \dots k_r \mid k_i \in A \text{ for all } i \text{ and } r \ge 0 \}.$ 

Note

*w* is a composition iff  $w \in \mathbb{P}^*$ .

Letting  $\pi \leq \sigma$  whenever  $\pi$  is a pattern in  $\sigma$  turns  $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$  into a partially ordered set (poset).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Letting  $\pi \leq \sigma$  whenever  $\pi$  is a pattern in  $\sigma$  turns  $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$  into a partially ordered set (poset). This induces a partial order on  $\mathbb{P}^*$  (Bergeron, Bousquet-Mélou, and Dulucq, 1995):

(ロ) (同) (三) (三) (三) (○) (○)

 $k_j \leq l_{i_j}$  for  $1 \leq j \leq r$ .

(ロ) (同) (三) (三) (三) (○) (○)

 $k_j \leq l_{i_j}$  for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*.

$$k_j \leq l_{i_j}$$
 for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*. **Ex.** If  $u = 4 \ 1 \ 3$  and  $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$  then  $u \le w$ ,

$$k_j \leq l_{i_j}$$
 for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*. **Ex.** If  $u = 4 \ 1 \ 3$  and  $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$  then  $u \le w$ , for example,

$$k_j \leq l_{i_j}$$
 for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*. **Ex.** If  $u = 4 \ 1 \ 3$  and  $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$  then  $u \le w$ , for example,

$$k_j \leq l_{i_j}$$
 for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*. **Ex.** If  $u = 4 \ 1 \ 3$  and  $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$  then  $u \le w$ , for example,

$$k_j \leq l_{i_j}$$
 for  $1 \leq j \leq r$ .

The index set  $I = \{i_1, \dots, i_r\}$  is called an *embedding* of *u* into *w*. **Ex.** If  $u = 4 \ 1 \ 3$  and  $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$  then  $u \le w$ , for example,

Given  $u \le w$  there is a unique *rightmost embedding, I*, such that  $l \ge l'$  componentwise for all embeddings l'. The embedding above is rightmost.

$$\mathbb{P}^* =$$

 $\epsilon$ 

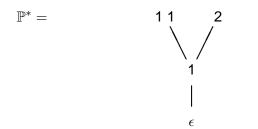
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

$$\mathbb{P}^* =$$

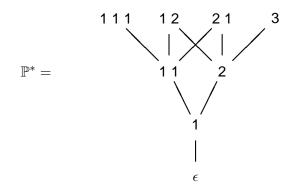
 $\epsilon$ 

1

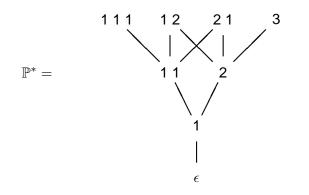
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶



◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ● ● ● ●



÷

(日)



Compositions and layered permutations

Rational generating functions

Commuting variables and a Wilf equivalence

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Comments and open questions

For any alphabet *A*, the formal power series in noncommuting variables *A* with integral coefficients is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

For any alphabet *A*, the formal power series in noncommuting variables *A* with integral coefficients is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$ .

For any alphabet *A*, the formal power series in noncommuting variables *A* with integral coefficients is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

$$Z(u) = \sum_{w \ge u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

$$Z(u) = \sum_{w \ge u} w \in \mathbb{Z} \langle \langle [\bar{n}] \rangle \rangle.$$
  
Ex.  $Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$ 

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

(日) (日) (日) (日) (日) (日) (日)

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

 $Z(u) = \sum_{w \ge u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.$ **Ex.**  $Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$ Theorem (Björner & S) For all  $u \in [\bar{n}]^*$ , the series Z(u) is rational.

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

$$Z(u)=\sum_{w\geq u}w\in\mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

**Ex.**  $Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$ 

Theorem (Björner & S) For all  $u \in [\bar{n}]^*$ , the series Z(u) is rational. Given  $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$  with  $c(\epsilon) = 0$ , let  $f^* = \epsilon + f + f^2 + f^3 + \cdots$ 

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

$$Z(u)=\sum_{w\geq u}w\in\mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

**Ex.**  $Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$ 

Theorem (Björner & S) For all  $u \in [\bar{n}]^*$ , the series Z(u) is rational. Given  $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$  with  $c(\epsilon) = 0$ , let  $f^* = \epsilon + f + f^2 + f^3 + \cdots$  $= (\epsilon - f)^{-1}$ .

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let  $[n] = \{1, ..., n\}$  have alphabet  $[\overline{n}] = \{\overline{1}, ..., \overline{n}\}$ . Given  $u \in [\overline{n}]^*$ , consider

$$Z(u)=\sum_{w\geq u}w\in\mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

**Ex.**  $Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$ 

Theorem (Björner & S) For all  $u \in [\overline{n}]^*$ , the series Z(u) is rational. Given  $f = \sum_w c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$  with  $c(\epsilon) = 0$ , let  $f^* = \epsilon + f + f^2 + f^3 + \cdots$  $= (\epsilon - f)^{-1}$ .

**Convention:** If  $S \subseteq A$ , then we also let S stand for  $\sum_{s \in S} s$ .

# Theorem (B & S) For all $u \in [\overline{n}]^*$ , the series Z(u) is rational.

For all  $u \in [\bar{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows.

## For all $u \in [\bar{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows. If  $\bar{k} \in [\bar{n}]$  then let  $z(\bar{k})$  be the sum of all *w* which begin with an element  $\ge \bar{k}$  followed only by elements  $< \bar{k}$ .

(ロ) (同) (三) (三) (三) (○) (○)

# For all $u \in [\bar{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows. If  $\bar{k} \in [\bar{n}]$  then let  $z(\bar{k})$  be the sum of all *w* which begin with an element  $\ge \bar{k}$  followed only by elements  $< \bar{k}$ . So

 $z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*$ 

(日) (日) (日) (日) (日) (日) (日)

where  $[k, n] = \{k, k + 1, ..., n\}.$ 

#### For all $u \in [\overline{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows. If  $\bar{k} \in [\bar{n}]$  then let  $z(\bar{k})$  be the sum of all *w* which begin with an element  $\ge \bar{k}$  followed only by elements  $< \bar{k}$ . So

 $z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*$ 

where  $[k, n] = \{k, k + 1, ..., n\}.$ 

**Ex.** If n = 4 and k = 3 then  $z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^*$ 

#### For all $u \in [\overline{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows. If  $\bar{k} \in [\bar{n}]$  then let  $z(\bar{k})$  be the sum of all *w* which begin with an element  $\ge \bar{k}$  followed only by elements  $< \bar{k}$ . So

 $z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*$ 

where  $[k, n] = \{k, k + 1, ..., n\}.$ 

**Ex.** If n = 4 and k = 3 then  $z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^*$   $= \bar{3} + \bar{4} + \bar{3}\bar{1} + \bar{3}\bar{2} + \bar{4}\bar{1} + \bar{4}\bar{2} + \cdots$ 

<ロ> <@> < => < => < => < => < =</p>

## For all $u \in [\bar{n}]^*$ , the series Z(u) is rational.

**Proof** We generate each  $w \ge u$  by rightmost embedding as follows. If  $\bar{k} \in [\bar{n}]$  then let  $z(\bar{k})$  be the sum of all *w* which begin with an element  $\ge \bar{k}$  followed only by elements  $< \bar{k}$ . So

 $z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*$ 

where  $[k, n] = \{k, k + 1, ..., n\}$ . Now if  $u = \bar{k}_1 ... \bar{k}_r$  then

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r). \quad \blacksquare$$

**Ex.** If n = 4 and k = 3 then

$$\begin{aligned} z(\bar{3}) &= (\bar{3}+\bar{4})(\bar{1}+\bar{2})^* \\ &= \bar{3}+\bar{4}+\bar{3}\,\bar{1}+\bar{3}\,\bar{2}+\bar{4}\,\bar{1}+\bar{4}\,\bar{2}+\cdots \end{aligned}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・



Compositions and layered permutations

Rational generating functions

Commuting variables and a Wilf equivalence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Comments and open questions

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$$

(ロ) (型) (主) (主) (三) のへで

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i$ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$u = \bar{k}_1 \dots \bar{k}_r \quad \rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|},$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i$ .

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$u = \bar{k}_1 \dots \bar{k}_r \quad \rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|},$$
  
$$z(\bar{k}) \quad \rightsquigarrow \quad (x^k + x^{k+1} + \dots + x^n)(x + x^2 + \dots + x^{k-1})^*$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{aligned} u &= \bar{k}_1 \dots \bar{k}_r \quad &\rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|}, \\ z(\bar{k}) \quad &\rightsquigarrow \quad (x^k + x^{k+1} + \dots + x^n)(x + x^2 + \dots + x^{k-1})^* \\ &= \quad \frac{x^k + x^{k+1} + \dots + x^n}{1 - (x + x^2 + \dots + x^{k-1})} \end{aligned}$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{aligned} u &= \bar{k}_1 \dots \bar{k}_r \quad &\rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|}, \\ z(\bar{k}) \quad &\rightsquigarrow \quad (x^k + x^{k+1} + \dots + x^n)(x + x^2 + \dots + x^{k-1})^* \\ &= \quad \frac{x^k + x^{k+1} + \dots + x^n}{1 - (x + x^2 + \dots + x^{k-1})} \quad = \quad \frac{x^k - x^{n+1}}{1 - 2x + x^k}, \end{aligned}$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{split} u &= \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|}, \\ z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*} \\ &= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} = \quad \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}}, \\ [\bar{n}]^{*} \quad \rightsquigarrow \quad (x + x^{2} + \dots + x^{n})^{*} \end{split}$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{split} u &= \bar{k}_1 \dots \bar{k}_r \quad \rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|}, \\ z(\bar{k}) \quad \rightsquigarrow \quad (x^k + x^{k+1} + \dots + x^n)(x + x^2 + \dots + x^{k-1})^* \\ &= \quad \frac{x^k + x^{k+1} + \dots + x^n}{1 - (x + x^2 + \dots + x^{k-1})} \quad = \quad \frac{x^k - x^{n+1}}{1 - 2x + x^k}, \\ [\bar{n}]^* \quad \rightsquigarrow \quad (x + x^2 + \dots + x^n)^* \quad = \quad \frac{1 - x}{1 - 2x + x^{n+1}}. \end{split}$$

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{split} u &= \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|}, \\ z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*} \\ &= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} = \quad \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}}, \\ [\bar{n}]^{*} \quad \rightsquigarrow \quad (x + x^{2} + \dots + x^{n})^{*} = \quad \frac{1 - x}{1 - 2x + x^{n+1}}. \\ \text{The type of } u \in [\bar{n}]^{*} \text{ is } t(u) = (t_{1}, \dots, t_{n}) \text{ where } t_{k} = \# \text{ of } \bar{k} \in u. \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

 $Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\ \overline{k-1}\ ]^*.$ The *norm* of  $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$  is  $|u| = \sum_i k_i.$ 

Let *x* be a variable and substitute  $\bar{k} \rightarrow x^k$ .

$$\begin{array}{lll} u = \bar{k}_{1} \dots \bar{k}_{r} & \rightsquigarrow & x^{k_{1}} \dots x^{k_{r}} = x^{|u|}, \\ z(\bar{k}) & \rightsquigarrow & (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*} \\ & = & \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} & = & \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}}, \\ [\bar{n}]^{*} & \rightsquigarrow & (x + x^{2} + \dots + x^{n})^{*} & = & \frac{1 - x}{1 - 2x + x^{n+1}}. \\ \text{The type of } u \in [\bar{n}]^{*} \text{ is } t(u) = (t_{1}, \dots, t_{n}) \text{ where } t_{k} = \# \text{ of } \bar{k} \in u. \\ \text{Corollary (B \& S)} \\ If u \in [\bar{n}]^{*} \text{ has } t(u) = (k_{1}, \dots, k_{n}) \text{ then} \end{array}$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left( \frac{x^k - x^{n+1}}{1-2x+x^k} \right)^{t_k}.$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^n \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note: 1.** Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out.

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note: 1.** Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note: 1.** Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N = \sum_{w\geq \epsilon} x^{|w|}$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^n \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note: 1.** Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N = \sum_{w\geq \epsilon} x^{|w|} = rac{1-x}{1-2x} \cdot 1 \quad ext{since } t(\epsilon) = (0,\ldots,0).$$

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^n \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note: 1.** Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N \ge 0} c_N x^N = \sum_{w \ge \epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0, \dots, 0).$$
  
**2.** For  $P \subseteq \mathfrak{S}$ , let  $\mathfrak{S}_n(P) = \{\sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P\}$  and  $\mathfrak{S}(P) = \bigoplus_{n \ge 0} \mathfrak{S}_n(P).$ 

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note:** 1. Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N = \sum_{w\geq \epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,\ldots,0).$$

**2.** For  $P \subseteq \mathfrak{S}$ , let  $\mathfrak{S}_n(P) = \{\sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P\}$  and  $\mathfrak{S}(P) = \bigoplus_{n \ge 0} \mathfrak{S}_n(P)$ . Now  $\pi$  is layered iff  $\pi \in \mathfrak{S}(231, 312)$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1-2x+x^k}\right)^{t_k}.$$

**Note:** 1. Letting  $n \to \infty$  in this corollary we get  $u \in \mathbb{P}^*$  and the  $x^{n+1}$  terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N = \sum_{w\geq \epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,\ldots,0).$$

**2.** For  $P \subseteq \mathfrak{S}$ , let  $\mathfrak{S}_n(P) = \{\sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P\}$  and  $\mathfrak{S}(P) = \bigcup_{n \ge 0} \mathfrak{S}_n(P)$ . Now  $\pi$  is layered iff  $\pi \in \mathfrak{S}(231, 312)$ . Corollary (B & S) If  $\pi$  and  $\pi'$  are layered permutations with the same multiset of layer lengths then for all n > 0:

 $\#\mathfrak{S}_n(231,312,\pi) = \#\mathfrak{S}_n(231,312,\pi').$ 

(日) (日) (日) (日) (日) (日) (日)



Compositions and layered permutations

Rational generating functions

Commuting variables and a Wilf equivalence

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Comments and open questions

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

2. A lower order ideal, L, is a subset of a poset P such that

 $a \in L$  and  $b \leq a$  implies  $b \in L$ .



1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

2. A lower order ideal, L, is a subset of a poset P such that

 $a \in L$  and  $b \leq a$  implies  $b \in L$ .

A *block* of a permutation  $\pi \in \mathfrak{S}_n$  is an interval *I* such that  $\pi(I)$  is an interval. The block is *trivial* if #I = 1 or *n*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

2. A lower order ideal, L, is a subset of a poset P such that

 $a \in L$  and  $b \leq a$  implies  $b \in L$ .

A *block* of a permutation  $\pi \in \mathfrak{S}_n$  is an interval *I* such that  $\pi(I)$  is an interval. The block is *trivial* if #I = 1 or *n*. A permutation is *simple* if it has no nontrivial blocks.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

2. A lower order ideal, L, is a subset of a poset P such that

 $a \in L$  and  $b \leq a$  implies  $b \in L$ .

A *block* of a permutation  $\pi \in \mathfrak{S}_n$  is an interval *I* such that  $\pi(I)$  is an interval. The block is *trivial* if #I = 1 or *n*. A permutation is *simple* if it has no nontrivial blocks.

The next result follows from the work of Albert and Atkinson on simple permutations.

Theorem (Albert and Atkinson)

Every lower order ideal properly contained in  $\mathfrak{S}(231)$  has a rational generating function.

(ロ) (同) (三) (三) (三) (三) (○) (○)

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

2. A lower order ideal, L, is a subset of a poset P such that

 $a \in L$  and  $b \leq a$  implies  $b \in L$ .

A *block* of a permutation  $\pi \in \mathfrak{S}_n$  is an interval *I* such that  $\pi(I)$  is an interval. The block is *trivial* if #I = 1 or *n*. A permutation is *simple* if it has no nontrivial blocks.

The next result follows from the work of Albert and Atkinson on simple permutations.

## Theorem (Albert and Atkinson)

Every lower order ideal properly contained in  $\mathfrak{S}(231)$  has a rational generating function.

In fact, they give a construction to compute the generating function. Can this method be used to prove the Wilf equivalence? See also the work of Mansour and Egge.

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .



$$k_j = l_{i_j}$$
 for  $1 \le j \le r$ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order,  $Z(u) = \sum_{w \ge u} w$  is rational.

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order,  $Z(u) = \sum_{w>u} w$  is rational.

For any poset *P*, define *generalized subword order* on *P*<sup>\*</sup> by: If  $u = k_1 \dots k_r$  and  $w = l_1 \dots l_s$  then  $u \leq_{P^*} w$  iff there is  $l_{i_1} \dots l_{i_r}$  with

 $k_j \leq_P l_{i_j}$  for  $1 \leq j \leq r$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer) In subword order,  $Z(u) = \sum_{w \ge u} w$  is rational. For any poset P, define generalized subword order on  $P^*$  by: If  $u = k_1 \dots k_r$  and  $w = l_1 \dots l_s$  then  $u \le_{P^*} w$  iff there is  $l_{i_1} \dots l_{i_r}$ with

 $k_j \leq_P l_{i_j}$  for  $1 \leq j \leq r$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

P an antichain  $\Rightarrow$   $P^*$  is subword order,

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer) In subword order,  $Z(u) = \sum_{w \ge u} w$  is rational. For any poset P, define generalized subword order on  $P^*$  by: If  $u = k_1 \dots k_r$  and  $w = l_1 \dots l_s$  then  $u \le_{P^*} w$  iff there is  $l_{i_1} \dots l_{i_r}$ with

 $k_j \leq_P l_{i_j}$  for  $1 \leq j \leq r$ .

(日) (日) (日) (日) (日) (日) (日)

P an antichain  $\Rightarrow$   $P^*$  is subword order, P a chain  $\Rightarrow$   $P^*$  is composition order.

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer) In subword order,  $Z(u) = \sum_{w \ge u} w$  is rational. For any poset P, define generalized subword order on  $P^*$  by: If  $u = k_1 \dots k_r$  and  $w = l_1 \dots l_s$  then  $u \le_{P^*} w$  iff there is  $l_{i_1} \dots l_{i_r}$ with

 $k_j \leq_P l_{i_j}$  for  $1 \leq j \leq r$ .

P an antichain  $\Rightarrow$   $P^*$  is subword order, P a chain  $\Rightarrow$   $P^*$  is composition order.

Theorem (B & S)

In generalized subword order,  $Z(u) = \sum_{w \ge u} w$  is rational.

 $k_j = l_{i_j}$  for  $1 \le j \le r$ .

**Ex.** If  $A = \{a, b\}$ , u = a b b a and w = b a a b a b a a then  $u \le w$ , for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer) In subword order,  $Z(u) = \sum_{w \ge u} w$  is rational. For any poset *P*, define generalized subword order on *P*<sup>\*</sup> by: If  $u = k_1 \dots k_r$  and  $w = l_1 \dots l_s$  then  $u \le_{P^*} w$  iff there is  $l_{i_1} \dots l_{i_r}$ with

 $k_j \leq_P l_{i_j}$  for  $1 \leq j \leq r$ .

P an antichain  $\Rightarrow$   $P^*$  is subword order, P a chain  $\Rightarrow$   $P^*$  is composition order.

Theorem (B & S)

In generalized subword order,  $Z(u) = \sum_{w>u} w$  is rational.

4. One can also consider the Möbius function of  $P^*$  (Vatter and Sagan) and various interesting subposets of  $P^*$  (Goyt).

## ÞAKKA YKKUR KÆRLEGA FYRIR!