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...or splits into two guillotine partitions



Characterization of guillotine partitions

A floorplane is guillotine if and only if it does not contain a
pin-wheel structure.



Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:



Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the (n + 1)th Baxter
number.



Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the (n + 1)th Baxter
number.

2. [The number of guillotine partitions with n cuts is the
(n + 1)th Schröder number.]
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E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the (n + 1)th Baxter
number.

2. [The number of guillotine partitions with n cuts is the
(n + 1)th Schröder number.]

3. The number of guillotine partitions of a d-dimensional box

with n cuts is
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(d − 1)kdn−k .

G.f. satisfies f = 1 + xf + (d − 1)xf 2.
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Separable permutations:

Enumeration and Characterization by forbidden patterns

◮ Counted by Schröder numbers.

◮ 2413 and 3142-avoiding.
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Guillotine partition −→ Separable permutation

57694132
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d -permutations

◮ A d-permutation of [n] is a sequence (p1, p2, . . . , pd ) of
permutations of [n], with p1 = 123 . . . n.

◮ May be described by a d × n matrix.

◮ Usual permutations are 2-permutations (another approach
exists).

◮ Geometrically, a subset of [n]d . For each 1 ≤ i ≤ d ,
1 ≤ j ≤ n, the hyperplane xi = j contains exactly one point
from the set.
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Separable d -permutations

A d-permutation p of [n] is separable if

◮ Either n = 1,

◮ Or n > 1 and p is obtained by a concatenation of two smaller
separable d-permutations:
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f = 1 + 2d−1xf ·
(

1 + 2d−1
−1

2d−1 (f − 1)
)

= 1 + xf + (2d−1 − 1)xf 2

(For d = 2, Schröder sequence, as expected.)
This is the generating function for the number of guillotine partitions
of a 2d−1-box.
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Consider a correspondence between axes of R
2d−1

and pairs of
opposite orthants in R

d .
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A bijection between

guillotine partitions of a 2d−1-box with n cuts
and separable d -permutations of [n + 1]

Given a guillotine partition of a 2d−1-box,
Consider the “last” cut,
Suppose it is orthogonal to the xj axis,
Take d-permutations corresponding to the lower and the upper
parts of the partition,
and concatenate them using the pair of orthants which corresponds
to xj .
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Characterization of separable d -permutations by forbidden

patterns

Clearly,

(

1 2 3 4
2 4 1 3

)

and

(

1 2 3 4
3 1 4 2

)

are forbidden.




1 2 3
2 ∗ ∗

∗ ∗ 2



 and





1 2 3
∗ ∗ 2
2 ∗ ∗



 are also forbidden.

That’s all!



Boundary guillotine partitions

Consider a guillotine partition of a d-dimensional cube.
Each cut is a (d − 1)-dimensional cube.
It has d − 1 pairs of (d − 2)-dimensional faces.
If at least one member of each such pair is on the boundary of the
cube,
the partition is a boundary partition.
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For general d :

f = 1 +
dx(1 − x)

(1 − x)2



1 +
(d − 1)x(1 − x)

(1 − 2x)2





. . .

(

1 +
2x(1 − x)

(1 − (d − 1)x)2

(

1 +
x(1 − x)

(1 − dx)2
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. . .





2



2

.
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Planar boundary partitions in permutation patterns

Permutations avoiding 2413, 3142, 1324, 4231 correspond to
planar guillotine boundary partitions. The generating function of
their enumerating sequence is

f = 1 +
2x(1− 3x + 3x2)2

(1− x)(1− 2x)4
.

The first ten terms are 1, 2, 6, 20, 64, 194, 562, 1570, 4258,
11266.
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Planar boundary partitions in permutation patterns

Permutations avoiding 2413, 3142, 2143, 3412 correspond to
-avoiding planar guillotine partitions. The generating function

of their enumerating sequence is

f =
1− 2x

1− 4x + 2x2
.

The first ten terms 1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520.
This sequence is OEIS A006012.
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A connection to threshold graphs

(a remark by M. Golumbic)

The generating function counting permutations avoiding 2413,
3142, 2143, 3412 is f = 1−2x

1−4x+2x2 .
The permutation graph of π ∈ Sn is the graph with V = [n] and
(a, b) ∈ E when a < b, π = (. . . b . . . a . . . ).

1. π avoids 2413, 3142 iff G (π) is P4-free.

2. π avoids 2143 iff G (π) is 2P2-free.

3. π avoids 3412 iff G (π) is C4-free.

(P4, 2P2,C4)-free graphs are threshold graphs.
Therefore: This sequence counts those permutation graphs which
happen to be threshold graphs.
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◮ What kind of multi-permutations are in bijection with all
partitions of a d-cube? (May help to enumerate them.)

◮ Avoidance problems for multi-permutations.
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