Separable d-permutations and Guillotine Partitions

Andrei Asinowski ${ }^{1}$, Toufik Mansour ${ }^{2}$

[^0]
Overview

- Floorplane partitions and guillotine partitions

Overview

- Floorplane partitions and guillotine partitions
- Separable d-permutations

Overview

- Floorplane partitions and guillotine partitions
- Separable d-permutations
- Restricted guillotine partitions

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Floorplan partitions

A floorplan partition: A partition of a rectangle into smaller rectangles.

Pin wheel structure

Guillotine partitions

Either the empty partition...

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Guillotine partitions

...or splits into two guillotine partitions

Characterization of guillotine partitions

A floorplane is guillotine if and only if it does not contain a pin-wheel structure.

Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the $(n+1)$ th Baxter number.

Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the $(n+1)$ th Baxter number.
2. [The number of guillotine partitions with n cuts is the $(n+1)$ th Schröder number.]

Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the $(n+1)$ th Baxter number.
2. [The number of guillotine partitions with n cuts is the $(n+1)$ th Schröder number.]
3. The number of guillotine partitions of a d-dimensional box with n cuts is $\frac{1}{n} \sum_{k=0}^{n-1}\binom{n}{k}\binom{n}{k+1}(d-1)^{k} d^{n-k}$.

Enumeration

E. Ackerman, G. Barequet, R. Pinter, D. Romik:

1. The number of floorplans with n cuts is the $(n+1)$ th Baxter number.
2. [The number of guillotine partitions with n cuts is the $(n+1)$ th Schröder number.]
3. The number of guillotine partitions of a d-dimensional box with n cuts is $\frac{1}{n} \sum_{k=0}^{n-1}\binom{n}{k}\binom{n}{k+1}(d-1)^{k} d^{n-k}$.
G.f. satisfies $f=1+x f+(d-1) x f^{2}$.

FP2BP Algorithm

- Floorplans \longleftrightarrow Baxter permutations

FP2BP Algorithm

- Floorplans \longleftrightarrow Baxter permutations
- Guillotine partitions \longleftrightarrow Separable permutations

Separable permutations

A permutation p of $[n]$ is separable if

Separable permutations

A permutation p of $[n]$ is separable if

- Either $n=1$,

Separable permutations

A permutation p of $[n]$ is separable if

- Either $n=1$,
- Or $n>1$ and p is obtained by a concatenation of two separable permutations:

Separable permutations

A permutation p of $[n]$ is separable if

- Either $n=1$,
- Or $n>1$ and p is obtained by a concatenation of two separable permutations:

Separable permutations

A permutation p of $[n]$ is separable if

- Either $n=1$,
- Or $n>1$ and p is obtained by a concatenation of two separable permutations:

Separable permutations

A permutation p of $[n]$ is separable if

- Either $n=1$,
- Or $n>1$ and p is obtained by a concatenation of two separable permutations:

Separable permutations:

Enumeration and Characterization by forbidden patterns

Separable permutations:
 Enumeration and Characterization by forbidden patterns

- Counted by Schröder numbers.

Separable permutations:
 Enumeration and Characterization by forbidden patterns

- Counted by Schröder numbers.
- 2413 and 3142-avoiding.

A bijection between

Guillotine partitions with n cuts
and Separable permutations of $[n+1]$

Guillotine partition \longrightarrow Separable permutation

Guillotine partition \longrightarrow Separable permutation

Guillotine partition \longrightarrow Separable permutation

d-permutations

- A d-permutation of $[n]$ is a sequence $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ of permutations of $[n]$, with $p_{1}=123 \ldots n$.

d-permutations

- A d-permutation of $[n]$ is a sequence $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ of permutations of $[n]$, with $p_{1}=123 \ldots n$.
- May be described by a $d \times n$ matrix.

d-permutations

- A d-permutation of $[n]$ is a sequence $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ of permutations of $[n]$, with $p_{1}=123 \ldots n$.
- May be described by a $d \times n$ matrix.
- Usual permutations are 2-permutations (another approach exists).

d-permutations

- A d-permutation of $[n]$ is a sequence $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ of permutations of $[n]$, with $p_{1}=123 \ldots n$.
- May be described by a $d \times n$ matrix.
- Usual permutations are 2-permutations (another approach exists).
- Geometrically, a subset of $[n]^{d}$. For each $1 \leq i \leq d$, $1 \leq j \leq n$, the hyperplane $x_{i}=j$ contains exactly one point from the set.

Separable d-permutations

A d-permutation p of $[n]$ is separable if

Separable d-permutations

A d-permutation p of $[n]$ is separable if

- Either $n=1$,

Separable d-permutations

A d-permutation p of $[n]$ is separable if

- Either $n=1$,
- Or $n>1$ and p is obtained by a concatenation of two smaller separable d-permutations:

Separable d-permutations $(\mathrm{d}=3)$

Separable d-permutations $(d=3)$

Separable d-permutations $(\mathrm{d}=3)$

Separable d-permutations $(d=3)$

Separable d-permutations $(d=3)$

Generating function for the number of separable d-permutations: $f=1+2^{d-1} \times f \cdot\left(1+\frac{2^{d-1}-1}{2^{d-1}}(f-1)\right)$

Generating function for the number of separable d-permutations: $f=1+2^{d-1} x f \cdot\left(1+\frac{2^{d-1}-1}{2^{d-1}}(f-1)\right)=1+x f+\left(2^{d-1}-1\right) x f^{2}$

Generating function for the number of separable d-permutations: $f=1+2^{d-1} \times f \cdot\left(1+\frac{2^{d-1}-1}{2^{d-1}}(f-1)\right)=1+x f+\left(2^{d-1}-1\right) x f^{2}$ (For $d=2$, Schröder sequence, as expected.)

Generating function for the number of separable d-permutations: $f=1+2^{d-1} x f \cdot\left(1+\frac{2^{d-1}-1}{2^{d-1}}(f-1)\right)=1+x f+\left(2^{d-1}-1\right) x f^{2}$
(For $d=2$, Schröder sequence, as expected.)
With 2^{d-1} replaced by d, this is the generating function for the number of guillotine partitions of a d-box.

Generating function for the number of separable d-permutations: $f=1+2^{d-1} x f \cdot\left(1+\frac{2^{d-1}-1}{2^{d-1}}(f-1)\right)=1+x f+\left(2^{d-1}-1\right) x f^{2}$
(For $d=2$, Schröder sequence, as expected.)
This is the generating function for the number of guillotine partitions of a 2^{d-1}-box.

A bijection between
guillotine partitions of a 2^{d-1}-box with n cuts
and separable d-permutations of $[n+1]$

A bijection between

 guillotine partitions of a 2^{d-1}-box with n cuts and separable d-permutations of $[n+1]$Consider a correspondence between axes of $\mathbb{R}^{2^{d-1}}$ and pairs of opposite orthants in \mathbb{R}^{d}.

A bijection between

guillotine partitions of a 2^{d-1}-box with n cuts
and separable d-permutations of $[n+1]$

Given a guillotine partition of a 2^{d-1}-box,

A bijection between

guillotine partitions of a 2^{d-1}-box with n cuts
and separable d-permutations of $[n+1]$

Given a guillotine partition of a 2^{d-1}-box, Consider the "last" cut,

A bijection between

 guillotine partitions of a 2^{d-1}-box with n cuts and separable d-permutations of $[n+1]$Given a guillotine partition of a 2^{d-1}-box, Consider the "last" cut, Suppose it is orthogonal to the x_{j} axis,

A bijection between guillotine partitions of a 2^{d-1}-box with n cuts and separable d-permutations of $[n+1]$

Given a guillotine partition of a 2^{d-1}-box, Consider the "last" cut, Suppose it is orthogonal to the x_{j} axis,
Take d-permutations corresponding to the lower and the upper parts of the partition,

A bijection between guillotine partitions of a 2^{d-1}-box with n cuts and separable d-permutations of $[n+1]$

Given a guillotine partition of a 2^{d-1}-box, Consider the "last" cut, Suppose it is orthogonal to the x_{j} axis,
Take d-permutations corresponding to the lower and the upper parts of the partition,
and concatenate them using the pair of orthants which corresponds to x_{j}.

Characterization of separable d-permutations by forbidden patterns

Clearly, $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ and $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{array}\right)$ are forbidden.

Characterization of separable d-permutations by forbidden patterns

Clearly, $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ and $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{array}\right)$ are forbidden.
Who else?

Characterization of separable d-permutations by forbidden patterns

$$
\begin{aligned}
& \text { Clearly, }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \text { and }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right) \text { are forbidden. } \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & * & * \\
* & * & 2
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 2 & 3 \\
* & * & 2 \\
2 & * & *
\end{array}\right) \text { are also forbidden. }
\end{aligned}
$$

Characterization of separable d-permutations by forbidden patterns

$$
\begin{aligned}
& \text { Clearly, }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \text { and }\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right) \text { are forbidden. } \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & * & * \\
* & * & 2
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 2 & 3 \\
* & * & 2 \\
2 & * & *
\end{array}\right) \text { are also forbidden. }
\end{aligned}
$$

That's all!

Boundary guillotine partitions

Consider a guillotine partition of a d-dimensional cube. Each cut is a $(d-1)$-dimensional cube. It has $d-1$ pairs of $(d-2)$-dimensional faces.
If at least one member of each such pair is on the boundary of the cube,
the partition is a boundary partition.

Boundary guillotine partitions

Boundary guillotine partitions

Enumeration of boundary guillotine partitions

Generating function:

Enumeration of boundary guillotine partitions

Generating function:
For $d=2$:

$$
f=1+\frac{2 x(1-x)}{(1-x)^{2}}\left(1+\frac{x(1-x)}{(1-2 x)^{2}}\right)^{2} .
$$

Enumeration of boundary guillotine partitions

Generating function:
For $d=2$:

$$
f=1+\frac{2 x(1-x)}{(1-x)^{2}}\left(1+\frac{x(1-x)}{(1-2 x)^{2}}\right)^{2} .
$$

For $d=3$:

$$
f=1+\frac{3 x(1-x)}{(1-x)^{2}}\left(1+\frac{2 x(1-x)}{(1-2 x)^{2}}\left(1+\frac{x(1-x)}{(1-3 x)^{2}}\right)^{2}\right)^{2} .
$$

Enumeration of boundary guillotine partitions

Generating function:
For $d=2$:

$$
f=1+\frac{2 x(1-x)}{(1-x)^{2}}\left(1+\frac{x(1-x)}{(1-2 x)^{2}}\right)^{2} .
$$

For $d=3$:

$$
f=1+\frac{3 x(1-x)}{(1-x)^{2}}\left(1+\frac{2 x(1-x)}{(1-2 x)^{2}}\left(1+\frac{x(1-x)}{(1-3 x)^{2}}\right)^{2}\right)^{2} .
$$

For general d :

$$
f=1+\frac{d x(1-x)}{(1-x)^{2}}\left(1+\frac{(d-1) x(1-x)}{(1-2 x)^{2}}\left(\ldots\left(1+\frac{2 x(1-x)}{(1-(d-1) x)^{2}}\left(1+\frac{x(1-x)}{(1-d x)^{2}}\right)^{2}\right)^{2} \cdots\right)^{2}\right)^{2}
$$

Proof for $d=3$.

$f=1+\ldots$

Proof for $d=3$.

$f=1+3 x \ldots$

Proof for $d=3$.

$f=1+3 x f^{-} \ldots$

Proof for $d=3$.

$f=1+3 x f^{-} f^{+}$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x f^{-} f^{+} \\
& \quad f^{-}=\frac{1}{1-x} f^{+}
\end{aligned}
$$

Proof for $d=3$.

$$
f=1+3 x(1-x)\left(f^{-}\right)^{2}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}(1+\ldots)
\end{aligned}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}(1+2 x \ldots)
\end{aligned}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}\left(1+2 x f^{--} \ldots\right)
\end{aligned}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}\left(1+2 x f^{--} f^{-+}\right)
\end{aligned}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}\left(1+2 x f^{--} f^{-+}\right) \\
& f^{--}=\frac{1}{1-x} f^{-+}
\end{aligned}
$$

Proof for $d=3$.

$$
\begin{aligned}
& f=1+3 x(1-x)\left(f^{-}\right)^{2} \\
& f^{-}=\frac{1}{1-x}\left(1+2 x(1-x)\left(f^{--}\right)^{2}\right)
\end{aligned}
$$

Proof for $d=3$.

Planar boundary partitions in permutation patterns

Planar boundary partitions in permutation patterns

Permutations avoiding 2413, 3142, 1324, 4231 correspond to planar guillotine boundary partitions. The generating function of their enumerating sequence is

$$
f=1+\frac{2 x\left(1-3 x+3 x^{2}\right)^{2}}{(1-x)(1-2 x)^{4}}
$$

The first ten terms are $1,2,6,20,64,194,562,1570,4258$, 11266.

Planar boundary partitions in permutation patterns

Planar boundary partitions in permutation patterns

Permutations avoiding 2413, 3142, 2143, 3412 correspond to田-avoiding planar guillotine partitions. The generating function of their enumerating sequence is

$$
f=\frac{1-2 x}{1-4 x+2 x^{2}}
$$

The first ten terms 1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520. This sequence is OEIS A006012.

A connection to threshold graphs

 (a remark by M. Golumbic)The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.

A connection to threshold graphs (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

A connection to threshold graphs (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

1. π avoids 2413,3142 iff $G(\pi)$ is P_{4}-free.

A connection to threshold graphs (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

1. π avoids 2413,3142 iff $G(\pi)$ is P_{4}-free.
2. π avoids 2143 iff $G(\pi)$ is $2 P_{2}$-free.

A connection to threshold graphs (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

1. π avoids 2413,3142 iff $G(\pi)$ is P_{4}-free.
2. π avoids 2143 iff $G(\pi)$ is $2 P_{2}$-free.
3. π avoids 3412 iff $G(\pi)$ is C_{4}-free.

A connection to threshold graphs (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

1. π avoids 2413, 3142 iff $G(\pi)$ is P_{4}-free.
2. π avoids 2143 iff $G(\pi)$ is $2 P_{2}$-free.
3. π avoids 3412 iff $G(\pi)$ is C_{4}-free.
$\left(P_{4}, 2 P_{2}, C_{4}\right)$-free graphs are threshold graphs.

A connection to threshold graphs
 (a remark by M. Golumbic)

The generating function counting permutations avoiding 2413, $3142,2143,3412$ is $f=\frac{1-2 x}{1-4 x+2 x^{2}}$.
The permutation graph of $\pi \in S_{n}$ is the graph with $V=[n]$ and $(a, b) \in E$ when $a<b, \pi=(\ldots b \ldots a \ldots)$.

1. π avoids 2413, 3142 iff $G(\pi)$ is P_{4}-free.
2. π avoids 2143 iff $G(\pi)$ is $2 P_{2}$-free.
3. π avoids 3412 iff $G(\pi)$ is C_{4}-free.
$\left(P_{4}, 2 P_{2}, C_{4}\right)$-free graphs are threshold graphs.
Therefore: This sequence counts those permutation graphs which happen to be threshold graphs.

Questions for future research

Questions for future research

- What kind of multi-permutations are in bijection with all partitions of a d-cube? (May help to enumerate them.)

Questions for future research

- What kind of multi-permutations are in bijection with all partitions of a d-cube? (May help to enumerate them.)
- Avoidance problems for multi-permutations.

[^0]: ${ }^{1}$ Caesarea Rothschild Institute (CRI), University of Haifa, Israel
 ${ }^{2}$ Department of Mathematics, University of Haifa, Israel

