Stacks and Deques

Michael Albert1 Mike Atkinson1 Steve Linton2

1Department of Computer Science, University of Otago
2School of Computer Science, University of St Andrews

PP2008, Otago, June 2008
Outline of talk

1. Early pattern class history
2. Upper bounds
3. Lower bounds
4. Conclusions and questions
1 Early pattern class history

2 Upper bounds

3 Lower bounds

4 Conclusions and questions
Three early landmarks

- **D.E. Knuth:**
 Fundamental Algorithms, The Art of Computer Programming Vol. 1 (First Edition), especially §2.2.1

- **R.E. Tarjan:**
 Sorting using networks of queues and stacks,

- **V.R. Pratt:**
 Computing permutations with double-ended queues, parallel stacks and parallel queues,
Figure: What permutations can a data structure generate (or sort)?
Generating a permutation
Generating a permutation

1

2 3 4 5
Generating a permutation

1 2 3 4 5

1 2

3 4 5
Generating a permutation

1 2 3 4 5
Generating a permutation

Albert, Atkinson, Linton

Stacks and Deques
Generating a permutation
Generating a permutation

Albert, Atkinson, Linton
Stacks and Deques
Generating a permutation

Albert, Atkinson, Linton

Stacks and Deques
Generating a permutation
Generating a permutation

1

2 4 5 3
Generating a permutation
Knuth

- Enumeration of stack permutations and the 312-avoidance criterion
Knuth

- Enumeration of stack permutations and the 312-avoidance criterion
- Enumeration of restricted-input deque permutations, showed they avoid \(\{4213, 4231\}\)
Enumeration of stack permutations and the 312-avoidance criterion

Enumeration of restricted-input deque permutations, showed they avoid \(\{4213, 4231\} \)

Considered stacks in series
Enumeration of stack permutations and the 312-avoidance criterion

Enumeration of restricted-input deque permutations, showed they avoid \{4213, 4231\}

Considered stacks in series

Exercise 2.2.1.13: “[M48] How many permutations of \(n \) elements are obtainable with the use of a general deque?”
Focused on minimal unsortable permutations for various networks of data structures – nowadays called the basis problem.

- Lemma 6: "There is an infinite set of permutations, none of which contains another as a pattern, and such that each permutation is unsortable using two parallel stacks"
Focused on minimal unsortable permutations for various networks of data structures – nowadays called the basis problem.

- **Lemma 6:** “There is an infinite set of permutations, none of which contains another as a pattern, and such that each permutation is unsortable using two parallel stacks”

- **Lemma 10:** “Let Y be a series of 2 stacks. Then the shortest unsortable sequence in Y is of length 7.”
Focused on minimal unsortable permutations for various networks of data structures – nowadays called the basis problem.

- Lemma 6: “There is an infinite set of permutations, none of which contains another as a pattern, and such that each permutation is unsortable using two parallel stacks”
- Lemma 10: “Let Y be a series of 2 stacks. Then the shortest unsortable sequence in Y is of length 7.”
- (End of paper): “The author has constructed a sequence of length 41 which is unsortable using three stacks in series; beyond this . . . getting hard”.

Albert, Atkinson, Linton
Formalised the subpermutation relation: “... the subtask relation on permutations is even more interesting than the networks we were characterizing. This relation seems to be the only partial order on permutations that arises in a simple and natural way, yet it has received no attention to date.”
Formalised the subpermutation relation: “... the subtask relation on permutations is even more interesting than the networks we were characterizing. This relation seems to be the only partial order on permutations that arises in a simple and natural way, yet it has received no attention to date.”

Proved \{4213, 4231\} is the basis of the restricted-input deque permutations
Formalised the subpermutation relation: “...the subtask relation on permutations is even more interesting than the networks we were characterizing. This relation seems to be the only partial order on permutations that arises in a simple and natural way, yet it has received no attention to date.”

Proved \(\{4213, 4231\}\) is the basis of the restricted-input deque permutations

Found the (infinite) bases of the class of general deque permutations and the basis of the two parallel stacks class
Formalised the subpermutation relation: “... the subtask relation on permutations is even more interesting than the networks we were characterizing. This relation seems to be the only partial order on permutations that arises in a simple and natural way, yet it has received no attention to date.”

Proved \{4213, 4231\} is the basis of the restricted-input deque permutations

Found the (infinite) bases of the class of general deque permutations and the basis of the two parallel stacks class

Used formal languages in enumeration results
Figure: Data Structures with unknown enumerations
The growth rate of a sequence \((c_n)\) is

\[
g = \limsup_{n \to \infty} n^{\sqrt{c_n}}
\]

(so \(c_n\) behaves roughly like \(g^n\))

Question

What is the growth rate for deques, two stacks in parallel, two stacks in series?

It is known that, in all three cases, the growth rate is between 4 and 16. Also the \(\limsup\) is a true limit.
1 Early pattern class history

2 Upper bounds

3 Lower bounds

4 Conclusions and questions
Upper bounds on growth rates – Stacks in series

Figure: Two stacks in series

$IIITITDTDDTD$ produces 4231 from input 1234

Albert, Atkinson, Linton
Stacks and Deques
Upper bounds on growth rates – Stacks in parallel

Figure: Two stacks in parallel

- \(I_1 I_1 I_2 D_1 I_2 I_1 D_2 I_1 D_2 D_2 D_1 D_1 \) produces 24351 from input 12345
Upper bounds on growth rates – Deques

Figure: Deque

- $I_1 I_2 l_1 D_2 l_2 l_1 D_2 D_1 D_2 D_2 D_2 D_1$ produces 256413
Represent permutations by words over a 3 or 4 letter alphabet and count words. This is an overcount since

1. Not every word represents a permutation, and
2. Many words represent the same permutation

The first of these doesn’t seem to matter for growth rates. E.g. For two stacks in series there are 27^n words of length $3n$ on $\{I, D, T\}$ but only

$$\frac{12.(3n)!}{(n + 2)!(n + 1)!n!}$$

of them represent permutations. This has growth rate 27. The second is much more serious.
Rewriting rules

Definition
If \(L, R \) are words then \(L \rightarrow R \) if any permutation which can be generated by a word \(ULV \) is also generated by \(URV \).

Figure: \(TDIT \rightarrow ITTD \)
Suppose we know rewriting rules for lengths less than \(t \)

Construct FSA recognising all words not containing any LHS of existing rules (a regular language)

Run through all words of length \(t \) that it accepts, compute their effect on a “generic” state of the data structure, and sort them by their effects

Create new rules from any duplicate effects

Check the rules are valid in “non-generic” settings.
Having found all rewriting rules of length up to t construct FSA accepting all words not containing any LHS of a rule.

Use state equations to find generating functions and thereby growth rate for the number of words.

This will be an upper bound on the growth rate for the number of permutations.
Results – Deque

<table>
<thead>
<tr>
<th>Length</th>
<th>Number of Rules</th>
<th>Growth Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>51</td>
<td>8.4925</td>
</tr>
<tr>
<td>9</td>
<td>85</td>
<td>8.459</td>
</tr>
<tr>
<td>10</td>
<td>175</td>
<td>8.428</td>
</tr>
<tr>
<td>11</td>
<td>321</td>
<td>8.410</td>
</tr>
<tr>
<td>12</td>
<td>756</td>
<td>8.392</td>
</tr>
<tr>
<td>13</td>
<td>1480</td>
<td>8.380</td>
</tr>
<tr>
<td>14</td>
<td>3806</td>
<td>8.368</td>
</tr>
<tr>
<td>15</td>
<td>7734</td>
<td>8.361</td>
</tr>
<tr>
<td>16</td>
<td>21029</td>
<td>8.352</td>
</tr>
</tbody>
</table>
Results – Parallel Stacks

<table>
<thead>
<tr>
<th>Length</th>
<th>Number of Rules</th>
<th>Growth Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>33</td>
<td>8.4606</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>8.4474</td>
</tr>
<tr>
<td>10</td>
<td>109</td>
<td>8.4087</td>
</tr>
<tr>
<td>11</td>
<td>143</td>
<td>8.4031</td>
</tr>
<tr>
<td>13</td>
<td>615</td>
<td>8.376</td>
</tr>
<tr>
<td>14</td>
<td>2366</td>
<td>8.3597</td>
</tr>
<tr>
<td>15</td>
<td>3131</td>
<td>8.3578</td>
</tr>
<tr>
<td>16</td>
<td>13263</td>
<td>8.3461</td>
</tr>
</tbody>
</table>
Results – Two Stacks in Series

<table>
<thead>
<tr>
<th>Length</th>
<th>Number of Rules</th>
<th>Growth Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23</td>
<td>14.201</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>14.048</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>13.826</td>
</tr>
<tr>
<td>11</td>
<td>106</td>
<td>13.747</td>
</tr>
<tr>
<td>13</td>
<td>215</td>
<td>13.623</td>
</tr>
<tr>
<td>14</td>
<td>368</td>
<td>13.477</td>
</tr>
<tr>
<td>15</td>
<td>1270</td>
<td>13.433</td>
</tr>
<tr>
<td>16</td>
<td>2825</td>
<td>13.374</td>
</tr>
</tbody>
</table>
1 Early pattern class history

2 Upper bounds

3 Lower bounds

4 Conclusions and questions
Consider k-bounded versions of the three structures where the system is constrained to contain at most k elements at a time.
Consider k-bounded versions of the three structures where the system is constrained to contain at most k elements at a time. This corresponds to imposing extra forbidden patterns of the form $(k + 1)\alpha$ where α is any permutation of $\{1 \cdots k\}$.
Consider k-bounded versions of the three structures where the system is constrained to contain at most k elements at a time.

This corresponds to imposing extra forbidden patterns of the form $(k + 1)\alpha$ where α is any permutation of $\{1 \cdots k\}$.

The system can now be thought of as FSA with states that correspond to the disposition of elements residing in the stacks/deque.
Consider k-bounded versions of the three structures where the system is constrained to contain at most k elements at a time.

This corresponds to imposing extra forbidden patterns of the form $(k + 1)\alpha$ where α is any permutation of $\{1 \cdots k\}$.

The system can now be thought of as FSA with states that correspond to the disposition of elements residing in the stacks/deque.

It outputs rank-encoded permutations: e.g. 4163752 is encoded as 4142321 – and the ranks will be at most k.
Bounded deque

Figure: Bounded deque: snapshot
Bounded deque

Figure: Bounded deque: encoded snapshot
Bounded deque

Figure: Bounded deque: encoded snapshot after D_1
Bounded deque

Figure: Bounded deque: encoded snapshot
Figure: Bounded deque: encoded snapshot after D_2
Bounded deque

Figure: Bounded deque: encoded snapshot
Figure: Bounded deque: encoded snapshot after I_1
Bounded deque

Figure: Bounded deque: encoded snapshot
Bounded deque

![Bounded deque: encoded snapshot after \(I_2 \)](image)

Figure: Bounded deque: encoded snapshot after \(I_2 \)
Affairs of state

- Compute the non-deterministic FSA for a k-bounded system
- Determinise it and then minimise it
- Read off generating functions from the state transition rules
- Compute the growth rate of the k-bounded system which will be a lower bound for the growth rate of the unrestricted system
Controlling the state explosion

- The determinisation phase results in a state explosion which the subsequent minimisation phase somewhat controls.
- For deques and parallel stacks, some structure was observed in the final automaton which allowed us to construct it directly.
- Deterministic states represented by sequences of words in letters λ, ρ. Eg for two parallel stacks:

$$\lambda\rho, \lambda\lambda, \lambda\rho\lambda$$

represents configurations where the two smallest symbols are in different stacks, the next two smallest symbols are in the same stack, and of the last three symbols the middle one is not in the stack containing the first and third.
Example state transitions

Figure: Fragment of two parallel stack automaton

$\lambda\rho, \lambda\lambda, \lambda\rho$

$\lambda\rho, \lambda\lambda, \lambda\rho, \lambda, \lambda$

$\lambda\rho, \lambda\lambda, \lambda\rho\lambda$

$\lambda\rho, \lambda\lambda, \lambda\rho\lambda$

$\lambda\rho, \lambda\lambda, \lambda\lambda$

$\lambda\rho, \lambda\lambda, \lambda\lambda$
Further state reduction

- States fall into equivalence classes - just count numbers of λ’s and ρ’s in each word - e.g.
 \[\lambda\lambda, \lambda\rho, \lambda\rho\lambda \sim \lambda\lambda, \lambda\rho, \lambda\lambda\rho \]

- Pass to the quotient automaton
- Prove it gives the same growth rate
- This allows the computations for deques and for two parallel stacks to be pushed further
Results

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>Growth bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial stacks</td>
<td>8</td>
<td>7.5535</td>
</tr>
<tr>
<td>Parallel stacks</td>
<td>18</td>
<td>7.535</td>
</tr>
<tr>
<td>Deques</td>
<td>21</td>
<td>7.890</td>
</tr>
</tbody>
</table>
Bottom line for growth rate γ

1. Early pattern class history
2. Upper bounds
3. Lower bounds
4. Conclusions and questions

- Two stacks in series: $8 \leq \gamma \leq 13.374$
- Two stacks in parallel: $7.535 \leq \gamma \leq 8.3461$
- Deque: $7.890 \leq \gamma \leq 8.352$
Open questions

- What are the true growth rates?
- Do deques and two parallel stacks have the same growth rate?
- Why is two stacks in series more difficult?
- For deques and two parallel stacks we have efficient recognition algorithms; is the recognition problem for two stacks in series NP-complete?
- Can we get the exact enumerations for two parallel stacks? For deques?