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Three early landmarks

D.E. Knuth:
Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (First Edition), especially §2.2.1
Addison-Wesley, Reading, Mass. (1968).

R.E. Tarjan:
Sorting using networks of queues and stacks,
Journal of the ACM 19 (1972), 341–346.

V.R. Pratt:
Computing permutations with double-ended queues, parallel
stacks and parallel queues,
Proc. ACM Symp. Theory of Computing 5 (1973), 268–277.
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Data Structures

Figure: What permutations can a data structure generate (or sort)?
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Knuth

Enumeration of stack permutations and the 312-avoidance
criterion

Enumeration of restricted-input deque permutations, showed
they avoid {4213, 4231}
Considered stacks in series

Exercise 2.2.1.13: “ [M48] How many permutations of n
elements are obtainable with the use of a general deque?”
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Tarjan

Focused on minimal unsortable permutations for various networks
of data structures – nowadays called the basis problem.

Lemma 6: “There is an infinite set of permutations, none of
which contains another as a pattern, and such that each
permutation is unsortable using two parallel stacks”

Lemma 10: “Let Y be a series of 2 stacks. Then the shortest
unsortable sequence in Y is of length 7.”

(End of paper): “The author has constructed a sequence of
length 41 which is unsortable using three stacks in series;
beyond this . . . getting hard”.
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Pratt

Formalised the subpermutation relation: “. . . the subtask
relation on permutations is even more interesting than the
networks we were characterizing. This relation seems to be
the only partial order on permutations that arises in a simple
and natural way, yet it has received no attention to date.”

Proved {4213, 4231} is the basis of the restricted-input deque
permutations

Found the (infinite) bases of the class of general deque
permutations and the basis of the two parallel stacks class

Used formal languages in enumeration results
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Data Structures

Figure: Data Structures with unknown enumerations
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Growth rates

The growth rate of a sequence (cn) is

g = lim sup
n→∞

n
√

cn

(so cn behaves roughly like gn)

Question

What is the growth rate for deques, two stacks in parallel, two
stacks in series?

It is known that, in all three cases, the growth rate is between 4
and 16. Also the lim sup is a true limit.
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Upper bounds on growth rates – Stacks in series

I = InsertT = TransferD = Delete

Figure: Two stacks in series

IIITITDTDDTD produces 4231 from input 1234
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Upper bounds on growth rates – Stacks in parallel

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure: Two stacks in parallel

I1I1I2D1I2I1D2I1D2D2D1D1 produces 24351 from input 12345
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Upper bounds on growth rates – Deques

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure: Deque

I1I2I1D2I2I2I1D2D1D2D2D2D1 produces 256413
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Permutations as words

Represent permutations by words over a 3 or 4 letter alphabet
and count words. This is an overcount since

1 Not every word represents a permutation, and
2 Many words represent the same permutation

The first of these doesn’t seem to matter for growth rates.
E.g. For two stacks in series there are 27n words of length 3n
on {I ,D,T} but only

12.(3n)!

(n + 2)!(n + 1)!n!

of them represent permutations. This has growth rate 27.
The second is much more serious.
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Rewriting rules

Definition

If L,R are words then L→ R if any permutation which can be
generated by a word ULV is also generated by URV .

σλx

μ ρ

yσλ

μ ρ
x

y

Figure: TDIT → ITTD
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Systematic search for rewriting rules of length t

Suppose we know rewriting rules for lengths less than t

Construct FSA recognising all words not containing any LHS
of existing rules (a regular language)

Run through all words of length t that it accepts, compute
their effect on a “generic” state of the data structure, and
sort them by their effects

Create new rules from any duplicate effects

Check the rules are valid in “non-generic” settings.
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Word count

Having found all rewriting rules of length up to t construct
FSA accepting all words not containing any LHS of a rule

Use state equations to find generating functions and thereby
growth rate for the number of words

This will be an upper bound on the growth rate for the
number of permutations

Albert, Atkinson, Linton Stacks and Deques
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Results – Deque

Length Number of Rules Growth Bound

8 51 8.4925
9 85 8.459

10 175 8.428
11 321 8.410
12 756 8.392
13 1480 8.380
14 3806 8.368
15 7734 8.361
16 21029 8.352

Albert, Atkinson, Linton Stacks and Deques



History
Upper bounds
Lower bounds

Conclusions and questions

Results – Parallel Stacks

Length Number of Rules Growth Bound

8 33 8.4606
9 43 8.4474

10 109 8.4087
11 143 8.4031
13 615 8.376
14 2366 8.3597
15 3131 8.3578
16 13263 8.3461
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Results – Two Stacks in Series

Length Number of Rules Growth Bound

8 23 14.201
9 35 14.048

10 71 13.826
11 106 13.747
13 215 13.623
14 368 13.477
15 1270 13.433
16 2825 13.374
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Lower bounds – via bounded capacities

Consider k-bounded versions of the three structures where the
system is constrained to contain at most k elements at a time.

This corresponds to imposing extra forbidden patterns of the
form (k + 1)α where α is any permutation of {1 · · · k}.
The system can now be thought of as FSA with states that
correspond to the disposition of elements residing in the
stacks/deque.

It outputs rank-encoded permutations: e.g. 4163752 is
encoded as 4142321 – and the ranks will be at most k
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Bounded deque

12, 13, ...4, 1, 7, 5
11
8
2
3
6
10
9

Figure: Bounded deque: snapshot
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Bounded deque

12, 13, ...4, 1, 5, 3
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Figure: Bounded deque: encoded snapshot
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Bounded deque

12, 13, ...4, 1, 5, 3, 7 4
1
2
3
5
6

7

Figure: Bounded deque: encoded snapshot after D1
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Bounded deque

12, 13, ...4, 1, 5, 3, 5 4
1
2
3
5

6

5

Figure: Bounded deque: encoded snapshot after D2
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Bounded deque
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Figure: Bounded deque: encoded snapshot after I1
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Bounded deque

12, 13, ...4, 1, 5, 3
7
4
1
2
3
6
5
8

Figure: Bounded deque: encoded snapshot after I2
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Affairs of state

Compute the non-deterministic FSA for a k-bounded system

Determinise it and then minimise it

Read off generating functions from the state transition rules

Compute the growth rate of the k-bounded system which will
be a lower bound for the growth rate of the unrestricted
system

Albert, Atkinson, Linton Stacks and Deques
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Controlling the state explosion

The determinisation phase results in a state explosion which
the subsequent minimisation phase somewhat controls

For deques and parallel stacks some structure was observed in
the final automaton which allowed us to construct it directly

Deterministic states represented by sequences of words in
letters λ, ρ. Eg for two parallel stacks

λρ, λλ, λρλ

represents configurations where the two smallest symbols are
in different stacks, the next two smallest symbols are in the
same stack, and of the last three symbols the middle one is
not in the stack containing the first and third

Albert, Atkinson, Linton Stacks and Deques
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Example state transitions

λρ, λλ, λρλ

λρ, λλ, λρ

λρ, λλ, λλ

λρ, λλ, λρ, λ, λ

λλλλλ

7

6

9

1

Figure: Fragment of two parallel stack automaton
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Further state reduction

States fall into equivalence classes - just count numbers of λ’s
and ρ’s in each word - e.g.

λλ, λρ, λρλ ∼ λλ, λρ, λλρ

Pass to the quotient automaton

Prove it gives the same growth rate

This allows the computations for deques and for two parallel
stacks to be pushed further

Albert, Atkinson, Linton Stacks and Deques
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Results

k Growth bound

Serial stacks 8 7.5535
Parallel stacks 18 7.535
Deques 21 7.890
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Bottom line for growth rate γ

1 Early pattern class history

2 Upper bounds

3 Lower bounds

4 Conclusions and questions

Two stacks in series: 8 ≤ γ ≤ 13.374

Two stacks in parallel: 7.535 ≤ γ ≤ 8.3461

Deque: 7.890 ≤ γ ≤ 8.352
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Open questions

What are the true growth rates?

Do deques and two parallel stacks have the same growth rate?

Why is two stacks in series more difficult?

For deques and two parallel stacks we have efficient
recognition algorithms; is the recognition problem for two
stacks in series NP-complete?

Can we get the exact enumerations for two parallel stacks?
For deques?

Albert, Atkinson, Linton Stacks and Deques


	Early pattern class history
	Upper bounds
	Lower bounds
	Conclusions and questions

