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Pattern Containment

A permutation τ = t1t2 . . . tk is contained in the permutation
σ = s1s2 . . . sn if there exists a subsequence si1 , si2 , . . . , sik order
isomorphic to τ .
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Example
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Pattern Containment

A permutation τ = t1t2 . . . tk is contained in the permutation
σ = s1s2 . . . sn if there exists a subsequence si1 , si2 , . . . , sik order
isomorphic to τ .

Example

1 3 5 2 4 < 4 2 1 6 3 8 5 7
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Containment II

Containment forms a partial order on the set of all permutations.
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Containment II

Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation
classes.
i.e. π ∈ C and σ ≤ π implies σ ∈ C.

(University of Bristol) Antichains of Permutations PP08 4 / 28



Containment II

Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation
classes.
i.e. π ∈ C and σ ≤ π implies σ ∈ C.

A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.

(University of Bristol) Antichains of Permutations PP08 4 / 28



Containment II

Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation
classes.
i.e. π ∈ C and σ ≤ π implies σ ∈ C.

A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.

The minimal avoidance set is the basis. It is unique but need not
be finite.
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Containment II

Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation
classes.
i.e. π ∈ C and σ ≤ π implies σ ∈ C.

A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.

The minimal avoidance set is the basis. It is unique but need not
be finite.

Example
The class C = Av(12) consists of all the decreasing permutations:

{1, 21, 321, 4321, . . .}
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Antichains

Set of pairwise incomparable permutations.
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Antichains

Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)
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Antichains

Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Bottom copies of 4123 must match up (the anchor).
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Antichains

Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Each point is matched in turn.
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Example (Increasing Oscillating Antichain)

Each point is matched in turn.
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Antichains

Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Last pair cannot be embedded.
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Complete and Fundamental Antichains

Closure of a set A: Cl(A) = {π : π ≤ α for someα ∈ A}.
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Complete and Fundamental Antichains

Closure of a set A: Cl(A) = {π : π ≤ α for someα ∈ A}.

An infinite antichain A is fundamental if Cl(A) contains no infinite
antichains except for A and its subsets.
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Complete and Fundamental Antichains

Closure of a set A: Cl(A) = {π : π ≤ α for someα ∈ A}.

An infinite antichain A is fundamental if Cl(A) contains no infinite
antichains except for A and its subsets.

An infinite antichain is complete if no permutation can be added to
make a bigger antichain.
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Complete and Fundamental Antichains

An infinite antichain A is fundamental if Cl(A) contains no infinite
antichains except for A and its subsets.

An infinite antichain is complete if no permutation can be added to
make a bigger antichain.

Example
The increasing oscillating antichain is fundamental, but not complete.

Not complete: I ∪ {321} is an antichain.
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More on Fundamental Antichains

For any permutation π and antichain A, A||π = {α ∈ A : π||α}.
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More on Fundamental Antichains

For any permutation π and antichain A, A||π = {α ∈ A : π||α}.

Lemma
A is fundamental if and only if the proper closure Cl(A) \ A is pwo and
for every π ∈ Cl(A) \ A the set A||π is finite.
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More on Fundamental Antichains

For any permutation π and antichain A, A||π = {α ∈ A : π||α}.

Lemma
A is fundamental if and only if the proper closure Cl(A) \ A is pwo and
for every π ∈ Cl(A) \ A the set A||π is finite.

This condition means that terms of a fundamental antichain look
“similar”.
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Conjectures: Antichain Structure

Conjecture (Murphy)
If A is a fundamental antichain then there exist only finitely many
lengths n such that A has two or more permutations of length n.
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Conjectures: Antichain Structure

Conjecture (Murphy)
If A is a fundamental antichain then there exist only finitely many
lengths n such that A has two or more permutations of length n.

Conjecture
Every member of a fundamental antichain contains at most two proper
intervals.
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An Ordering on Antichains

Define an order on antichains:

B � A ⇔ for everyα ∈ A, there existsβ ∈ B with β ≤ α

Note that A ⊆ B implies B � A!

Interested in antichains that are minimal under �.
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An Ordering on Antichains

Define an order on antichains:

B � A ⇔ for everyα ∈ A, there existsβ ∈ B with β ≤ α

Note that A ⊆ B implies B � A!

Interested in antichains that are minimal under �.

Lemma
An antichain is minimal under � if and only if it is complete and
fundamental.
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Partial Well Order

A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.
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Partial Well Order

A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Question
Can we decide whether a permutation class given by a finite basis is
pwo?

To prove pwo — Higman’s theorem is useful.
To prove not pwo — find an antichain.
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Partial Well Order

A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Question
Can we decide whether a permutation class given by a finite basis is
pwo?

To prove pwo — Higman’s theorem is useful.
To prove not pwo — find an antichain.

Proposition (Nash-Williams, 1963)
Every non-pwo permutation class contains an antichain that is minimal
under �.

Corollary
Every non-pwo permutation class contains a fundamental antichain.

(University of Bristol) Antichains of Permutations PP08 10 / 28



More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)
For each natural number k, there is a finite set Λk of antichains minimal
under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.
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under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.

For hereditary properties of tournaments, Λ1 has been identified.
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More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)
For each natural number k, there is a finite set Λk of antichains minimal
under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.

For hereditary properties of tournaments, Λ1 has been identified.

Proposition (Cherlin and Latka)
The problem of deciding whether a hereditary property of tournaments
with two basis elements is pwo is decidable in polynomial time.
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More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)
For each natural number k, there is a finite set Λk of antichains minimal
under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.

For hereditary properties of tournaments, Λ1 has been identified.

Proposition (Cherlin and Latka)
The problem of deciding whether a hereditary property of tournaments
with two basis elements is pwo is decidable in polynomial time.

Caveat: algorithm is not known.
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More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)
For each natural number k, there is a finite set Λk of antichains minimal
under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.

For permutation classes, Λ1 consists of the minimal antichains
containing increasing oscillating, Widdershins and V .
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More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)
For each natural number k, there is a finite set Λk of antichains minimal
under � with the property that a class avoiding exactly k permutations
is pwo if and only if its intersection with each antichain in Λk is finite.

For permutation classes, Λ1 consists of the minimal antichains
containing increasing oscillating, Widdershins and V .

Proposition (Atkinson, Murphy and Ruškuc, 2002)
Av(β) is pwo if and only if β ∈ {1, 12, 21, 132, 213, 231, 312}
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Topology

A — set of all minimal antichains, viewed as a topological space.

Open sets: for B a finite set of permutations

AB = {A ∈ A : A ∩ Av(B) is infinite}.
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Topology

A — set of all minimal antichains, viewed as a topological space.

Open sets: for B a finite set of permutations

AB = {A ∈ A : A ∩ Av(B) is infinite}.

Equivalence relation:

A1ρA2 ⇔ {AB : A1 ∈ AB} = {AB : A1 ∈ AB}.

Easier: A1ρA2 iff Cl(A1) \ A = Cl(A2) \ A.

Quotient: A′ = A/ρ (is a T0 space).
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Topology

A — set of all minimal antichains, viewed as a topological space.

Open sets: for B a finite set of permutations

AB = {A ∈ A : A ∩ Av(B) is infinite}.

Equivalence relation:

A1ρA2 ⇔ {AB : A1 ∈ AB} = {AB : A1 ∈ AB}.

Easier: A1ρA2 iff Cl(A1) \ A = Cl(A2) \ A.

Quotient: A′ = A/ρ (is a T0 space).

A ∈ A is isolated in A′ if there is some finite basis B such all
infinite fundamental antichains in Av(B) are equivalent (in A′) to A.
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Conjectures

Cherlin and Latka asked these for tournaments, but why not ask
them for permutations?
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Conjectures

Cherlin and Latka asked these for tournaments, but why not ask
them for permutations?

Conjecture
Not all minimal antichains are isolated.

There are some minimal antichains that are never needed to
prove that a finitely based class is non-pwo.
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Conjectures

Cherlin and Latka asked these for tournaments, but why not ask
them for permutations?

Conjecture
Not all minimal antichains are isolated.

There are some minimal antichains that are never needed to
prove that a finitely based class is non-pwo.

Conjecture

For each isolated antichain A “in” A′, there is an algorithm to decide
whether an arbitrary permutation belongs to Cl(A) \ A.

Minimal isolated antichains have some kind of reliable structure.
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Grid Classes

Matrix M whose entries are permutation classes.

Grid(M) the grid class of M: all permutations which can be
“gridded” so each cell satisfies constraints of M.

Example

Let M =

(

Av(21) Av(231) ∅
Av(123) ∅ Av(12)

)

.

∈ Grid(M)
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Monotone Grid Classes

Special case: all cells of M are Av(21) or Av(12).

Rewrite M as a matrix with entries in {0, 1,−1}.

Example

M =





1 1 0
−1 0 1
0 1 −1
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Monotone Grid Classes

Special case: all cells of M are Av(21) or Av(12).

Rewrite M as a matrix with entries in {0, 1,−1}.

Example

M =





1 1 0
−1 0 1
0 1 −1
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The Graph of a Matrix

Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

Example
































1 0 0 −1

0 0 1 0

−1 −1 0 1

0 0 0 −1
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The Graph of a Matrix

Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

Example
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The Graph of a Matrix

Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

Example
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) New shorter proof in Waton’s Thesis (2007).

−1

1

1

−1

−1

(University of Bristol) Antichains of Permutations PP08 17 / 28



Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) Partial multiplication table.

1

1

−1

−1 1 −1

−1

1

1

−1

−1
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) ±1 correspond to directions.

−1

1

1

−1

−1

(University of Bristol) Antichains of Permutations PP08 17 / 28



Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) Form one order per arrow.

1 < 9 < 8 < 4.

5 < 10 < 6 < 7.

2 < 3.

1 < 2 < 3 < 4.

5 < 6.

10 < 9 < 8 < 7.
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) No cycles, so this gives a poset.

1

2

3

4

5

6

7

8

9

10

1 < 9 < 8 < 4.

5 < 10 < 6 < 7.

2 < 3.

1 < 2 < 3 < 4.

5 < 6.

10 < 9 < 8 < 7.
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

1

2

3

4

5

6

7

8

9

10
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

1

2

3

4

5

Encode by region: 3412532541.
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇐) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

1

2

3

4

5

Encode by region: 3412532541.

Higman’s Theorem: {1, 2, 3, 4, 5}∗

is pwo under the subword order.

Encoding is reversible, hence
Grid(M) is pwo.
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Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)
The monotone grid class Grid(M) is pwo if and only if G(M) is a
forest, i.e. G(M) contains no cycles.

Proof.

(⇒) Construct fundamental antichains that “walk” around a cycle.
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The Widdershins Antichain

“Spirals” out from the centre.

Constructed by means of a pin sequence.

In general: a pin sequence with first and last pins inflated forms a
fundamental antichain.

Pin Sequences
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Quasi-Square

Not constructible by a pin sequence.
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Quasi-Square

Not constructible by a pin sequence.

Flip each column...
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Quasi-Square

Not constructible by a pin sequence.

...Widdershins!
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.
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Bigger Grids

Carry out row flips and column reversals: r1 ◦ r2 ◦ r3 ◦ f3.

Resulting structure behaves a bit like a pin sequence.
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p1

p2
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p1

p2

p3
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p2

p3

p4
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p3

p4

p5
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p4

p5

p6
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p5

p6

p7
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p6

p7

p8
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p7

p8

p9
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Grid Pin Sequences

Local separation: pi+1 separates pi from pi+1.

Row-column agreement: pi+1 must be placed in the same row or
column as pi .

Local externality: pi+1 extends from Rect(pi−1, pi).

Non-interaction: pi+1 could not have been used in p1, . . . , pi .

Example

p8

p9

p10
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Optimism

Grid pin sequences on an m × n grid can be encoded in a regular
language on {c1, . . . , cm, r1, . . . , rn}.

Grid Pin Encoding
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Optimism

Grid pin sequences on an m × n grid can be encoded in a regular
language on {c1, . . . , cm, r1, . . . , rn}.

Monotone grid classes — we only need to check grid pin
sequences that go round in “circles”.
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Optimism

Grid pin sequences on an m × n grid can be encoded in a regular
language on {c1, . . . , cm, r1, . . . , rn}.

Monotone grid classes — we only need to check grid pin
sequences that go round in “circles”.

Conjecture
It is decidable whether a subclass of monotone grid class (“monotone
griddable”) given by a finite basis is partially well ordered.

(University of Bristol) Antichains of Permutations PP08 22 / 28



Optimism

Grid pin sequences on an m × n grid can be encoded in a regular
language on {c1, . . . , cm, r1, . . . , rn}.

Monotone grid classes — we only need to check grid pin
sequences that go round in “circles”.

Conjecture
It is decidable whether a subclass of monotone grid class (“monotone
griddable”) given by a finite basis is partially well ordered.

Theorem (Hucznyska and Vatter, 2006)
A permutation class is monotone griddable if and only if it does not
contain arbitrarily long sums of 21 or skew sums of 12.
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Other Antichains

Increasing Oscillating — pin sequence in a single cell.
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Other Antichains

Two cells: antichain V .
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Other Antichains

Two cells: antichain V .

LHS: skew sums of 12.
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Other Antichains

Two cells: antichain V .

RHS: direct sums of 21.
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Juxtaposition

The juxtaposition of two classes C and D is [C D] = Grid(C D).

Think of them as grid classes with 2 cells.

Question
When is the juxtaposition of two classes pwo?
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Juxtaposition II

If D contains arbitrarily long oscillations and C 6= Av(12, 21) then
[C D] is not pwo. (“Tied by One” antichain)
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Juxtaposition II

If C and D both contain arbitrarily long sums of 21 or skew sums of
12, then [C D] is not pwo.
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Juxtaposition II

If C and D do not contain arbitrarily long sums of 21 or skew sums
of 12, then they are monotone griddable.

Not pwo if C and D contain arbitrarily long vertical alternations.
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Thanks!
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Appendix: Proper Pin Sequences

Start with a point placed in relation to the origin.
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A proper pin must be external and cut the previous pin, but not the
rectangle.
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Appendix: Proper Pin Sequences

Start with a point placed in relation to the origin.

Extend up, down, left, or right – this is an up pin.

A proper pin must be external and cut the previous pin, but not the
rectangle.

Proper pins must travel by making 90◦ turns.

Return

(University of Bristol) Antichains of Permutations PP08 27 / 28



Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2

Example

r1

r2

r3

c1 c2 c3
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Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2c3r2c1

Example

r1

r2

r3

c1 c2 c3
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Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2c3r2c1r1

Example

r1

r2

r3

c1 c2 c3
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Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2c3r2c1r1c2

Example

r1

r2

r3

c1 c2 c3
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Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2c3r2c1r1c2r1

Example

r1

r2

r3

c1 c2 c3
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Letter ri : place a pin in row i .
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For example: r2c3r2c1r1c2r1c3

Example

r1

r2
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Encoding Grid Pin Sequences

Letter ri : place a pin in row i .

Letter cj : place a pin in column j .

This defines the placement of the pin uniquely.

For example: r2c3r2c1r1c2r1c3r2

Example

r1

r2

r3

c1 c2 c3

Return

(University of Bristol) Antichains of Permutations PP08 28 / 28


	Introduction
	Permutation Classes
	Antichains
	Partial Well Order

	Grid Classes
	Monotone Classes
	Antichains and Pin Sequences
	Juxtapositions

	Appendix

