Reduced Decompositions with Few Repetitions and Permutation Patterns

Dan Daly
University of Denver, Denver, CO, USA

June 16-20, 2008
Permutation Patterns 2008
University of Otago, Dunedin, New Zealand

Outline

- Definitions
- Motivation
- Reduced Decompositions with One Repetition
- Reduced Decompositions with Two Repetitions
- Current Questions

Definition ((Strong) Bruhat Order)

Define a partial order \leq_{B} on the symmetric group S_{n} as follows: given $\pi, \sigma \in S_{n}$, we say $\pi \leq_{B} \sigma$ if and only if there exists a sequence of moves each interchanging the two elements of an inversion that transforms σ into π. This order is called the (Strong) Bruhat Order.

Example $213465 \leq_{B} 312564$ in S_{6}

Example $213465 \leq_{B} 312564$ in S_{6}

315264

Example $213465 \leq_{B} 312564$ in S_{6}

315264

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564 \rightarrow 312465$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564 \rightarrow 312465$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564 \rightarrow 312465$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564 \rightarrow 312465 \rightarrow 213465$

Example

$213465 \leq_{B} 312564$ in S_{6}
$315264 \rightarrow 312564 \rightarrow 312465 \rightarrow 213465$

Definitions
Motivation RDs with One Repetition RDs with Two Repetitions Current Questions

Bruhat Order of S_{4}

Dan Daly University of Denver, Denver, CO, USA

It is well-known that any permutation in S_{n} can be written in terms of transpositions of the form $(i, i+1)$ for $i \in\{1, \ldots, n-1\}$.

It is well-known that any permutation in S_{n} can be written in terms of transpositions of the form $(i, i+1)$ for $i \in\{1, \ldots, n-1\}$.

Definition

A reduced decomposition of $\pi \in S_{n}$ is a sequence of transpositions $t_{1} t_{2} \ldots t_{k}$ each of the form $(i, i+1)$ for some i, such that $\pi=t_{1} \ldots t_{k}$ and k is minimal with respect to this property.

It is well-known that any permutation in S_{n} can be written in terms of transpositions of the form $(i, i+1)$ for $i \in\{1, \ldots, n-1\}$.

Definition

A reduced decomposition of $\pi \in S_{n}$ is a sequence of transpositions $t_{1} t_{2} \ldots t_{k}$ each of the form $(i, i+1)$ for some i, such that $\pi=t_{1} \ldots t_{k}$ and k is minimal with respect to this property.

Example

$(23)(12)(23)$ is a reduced decomposition for 321 , but $(23)(12)(23)(23)(23)$ is not.

Remark: Reduced decompositions are not unique! (12)(23)(12) and (23)(12)(23) are both reduced decompositions for 321.

Remark: Reduced decompositions are not unique! (12)(23)(12) and (23)(12)(23) are both reduced decompositions for 321.

Definition

The number of elements in a reduced decomposition of $\pi \in S_{n}$ is called the length of π and written $I(\pi)$.

Remark: Reduced decompositions are not unique! (12)(23)(12) and (23)(12)(23) are both reduced decompositions for 321.

Definition

The number of elements in a reduced decomposition of $\pi \in S_{n}$ is called the length of π and written $I(\pi)$.

> Example
> $321=(12)(23)(12)$ and $I(321)=3$

Definitions

Notation: For purposes of this talk, rewrite reduced decompositions using only the first element of each transposition and I will put brackets around these expressions to distinguish them from permutations.

Notation: For purposes of this talk, rewrite reduced decompositions using only the first element of each transposition and I will put brackets around these expressions to distinguish them from permutations.

Example

$(12)(23)(12)=[121]$

Notation: For purposes of this talk, rewrite reduced decompositions using only the first element of each transposition and I will put brackets around these expressions to distinguish them from permutations.

Example

$(12)(23)(12)=[121]$

Example

$[23612]=(23)(34)(67)(12)(23)$

Given any reduced decomposition [$t_{1} \ldots t_{l}$] for π, one can obtain a new reduced decomposition for π using braid moves.

Braid Moves:

- $[i j]=[j i]$ if $|i-j|>1$
- $[i(i+1) i]=[(i+1) i(i+1)] \forall i$

Given any reduced decomposition [$t_{1} \ldots t_{l}$] for π, one can obtain a new reduced decomposition for π using braid moves.

Braid Moves:

- $[i j]=[j i]$ if $|i-j|>1$
- $[i(i+1) i]=[(i+1) i(i+1)] \forall i$

Theorem

Let $\left[j_{1} \ldots j_{l}\right]$ and $\left[k_{1} \ldots k_{l}\right]$ be reduced decompositions for π. Then [$j_{1} \ldots j_{l}$] can be transformed into $\left[k_{1} \ldots k_{l}\right]$ using braid moves.

Definition

Let $\left[t_{1} \ldots t_{l}\right]$ be a reduced decomposition for π and let $1 \leq i_{1}<i_{2}<\ldots i_{k} \leq I$, then $t_{i_{1}} \ldots t_{i_{k}}$ is called a subword of [$t_{1} \ldots t_{l}$].

Definition

Let $\left[t_{1} \ldots t_{l^{\prime}}\right]$ be a reduced decomposition for π and let $1 \leq i_{1}<i_{2}<\ldots i_{k} \leq I$, then $t_{i_{1}} \ldots t_{i_{k}}$ is called a subword of [$t_{1} \ldots t_{l}$].

Definition

A factor in a reduced decomposition is a subword whose elements are consecutive.

Definition

Let $\left[t_{1} \ldots t_{l^{\prime}}\right.$] be a reduced decomposition for π and let $1 \leq i_{1}<i_{2}<\ldots i_{k} \leq I$, then $t_{i_{1}} \ldots t_{i_{k}}$ is called a subword of [$t_{1} \ldots t_{l}$].

Definition

A factor in a reduced decomposition is a subword whose elements are consecutive.

Example

Consider the reduced decomposition [12345]. [135] and [123] are subwords, but only [123] is a factor.

Theorem (Subword Property)

Let $\pi, \sigma \in S_{n}$ and let $\left[t_{1} \ldots t_{k}\right]$ be a reduced decomposition for σ. Then $\pi \leq_{B} \sigma$ if and only if there exists subword $\left[t_{i_{1}} t_{i_{2}} \ldots t_{i_{l}}\right]$ of [$t_{1} \ldots t_{k}$] that is a reduced decomposition for π.

Theorem (Subword Property)

Let $\pi, \sigma \in S_{n}$ and let $\left[t_{1} \ldots t_{k}\right]$ be a reduced decomposition for σ. Then $\pi \leq_{B} \sigma$ if and only if there exists subword $\left[t_{i 1} t_{i} \ldots t_{i}\right]$ of [$t_{1} \ldots t_{k}$] that is a reduced decomposition for π.

Example

$$
213465 \leq 315264 \text { since: }
$$

Theorem (Subword Property)

Let $\pi, \sigma \in S_{n}$ and let $\left[t_{1} \ldots t_{k}\right]$ be a reduced decomposition for σ. Then $\pi \leq_{B} \sigma$ if and only if there exists subword $\left[t_{i_{1}} t_{i_{2}} \ldots t_{i_{l}}\right]$ of [$t_{1} \ldots t_{k}$] that is a reduced decomposition for π.

Example

$213465 \leq 315264$ since:
$315264=[21435]$

Theorem (Subword Property)

Let $\pi, \sigma \in S_{n}$ and let $\left[t_{1} \ldots t_{k}\right]$ be a reduced decomposition for σ. Then $\pi \leq_{B} \sigma$ if and only if there exists subword $\left[t_{i_{1}} t_{i_{2}} \ldots t_{i_{l}}\right]$ of [$t_{1} \ldots t_{k}$] that is a reduced decomposition for π.

Example

$213465 \leq 315264$ since:
$315264=[21435]$
$213465=[15]$

Can pattern avoidance help describe the structure of the Bruhat Order on the Symmetric Group?

Can pattern avoidance help describe the structure of the Bruhat Order on the Symmetric Group? Yes!

Theorem (Tenner 2007)

Let $\pi \in S_{n}$. The downset of π in the Bruhat order is a Boolean Algebra if and only if π avoids 3412 and 321.

Why is this theorem true?

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412
- $\mathcal{R}(321)=\{[121],[212]\}$

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412
- $\mathcal{R}(321)=\{[121],[212]\}$
- $\mathcal{R}(3412)=\{[2132],[2312]\}$

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412
- $\mathcal{R}(321)=\{[121],[212]\}$
- $\mathcal{R}(3412)=\{[2132],[2312]\}$
- Now consider the reduced decomposition of a permutation avoiding 321 and 3412 .

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412
- $\mathcal{R}(321)=\{[121],[212]\}$
- $\mathcal{R}(3412)=\{[2132],[2312]\}$
- Now consider the reduced decomposition of a permutation avoiding 321 and 3412.
- Consider $\mathcal{R}(24153)=\{[1324],[3124],[3142],[1342],[3412]\}$.

Why is this theorem true?

- Consider the reduced decompositions of 321 and 3412
- $\mathcal{R}(321)=\{[121],[212]\}$
- $\mathcal{R}(3412)=\{[2132],[2312]\}$
- Now consider the reduced decomposition of a permutation avoiding 321 and 3412.
- Consider $\mathcal{R}(24153)=\{[1324]$, [3124], [3142], [1342], [3412] $\}$.
- There is one repeated element in the reduced decompositions of 321 and 3412 and there are no repeated elements in the permutation that avoids 321 and 3412

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Remark: This means every reduced decomposition of π has no repeated elements.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Remark: This means every reduced decomposition of π has no repeated elements.
If a reduced decomposition of π has no repeated elements, then every subword will be a reduced decomposition and no two subwords will produce the same permutation.

Example

Subwords of [123] : \{[13], [12], [23], [1], [2], [3], Ø\}.
Subwords of [121] : \{[12], [21], 11, [1], [2], Ø\}

Definitions

Question: What can we say about permutations with a reduced decomposition with exactly one repetition?

Definitions

Question: What can we say about permutations with a reduced decomposition with exactly one repetition?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern.

Question: What can we say about permutations with a reduced decomposition with exactly one repetition?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern. More specifically,

- π contains exactly one 321 pattern and avoids 3412 if and only if π has a reduced decomposition with $[i(i+1) i]$ as a factor for some $i \in\{1, \ldots n-2\}$ and no other repetitions.

Question: What can we say about permutations with a reduced decomposition with exactly one repetition?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern. More specifically,

- π contains exactly one 321 pattern and avoids 3412 if and only if π has a reduced decomposition with $[i(i+1) i]$ as a factor for some $i \in\{1, \ldots n-2\}$ and no other repetitions.
- π contains exactly one 3412 pattern and avoids 321 if and only if π has a reduced decomposition with $[i(i-1)(i+1) i]$ as a factor for some $i \in\{2, \ldots n-2\}$ and no other repetitions.

Examples

- 25314 has r.d. [41232]
([232] is of the form $[i(i+1) i]$, so there must be a 321 .)

Examples

- 25314 has r.d. [41232]
([232] is of the form $[i(i+1) i]$, so there must be a 321.$)$

Examples

- 25314 has r.d. [41232]
([232] is of the form $[i(i+1) i]$, so there must be a 321.$)$
- 34152 has r.d. [21324]
([2132] is of the form $[i(i-1)(i+1) i]$, so there must be a 3412.)

Examples

- 25314 has r.d. [41232]
([232] is of the form $[i(i+1) i]$, so there must be a 321 .)
- 34152 has r.d. [21324]
([2132] is of the form $[i(i-1)(i+1) i]$, so there must be a 3412.)

Examples

- 25314 has r.d. [41232]
([232] is of the form $[i(i+1) i]$, so there must be a 321.$)$
- 34152 has r.d. [21324]
([2132] is of the form $[i(i-1)(i+1) i]$, so there must be a 3412.)
- 214365 has r.d.s $\{[135],[153],[315],[351],[513],[531]\}$

Definitions
Motivation

Can we count the number of permutations whose reduced decompositions have exactly one repetition?

Can we count the number of permutations whose reduced decompositions have exactly one repetition? By computer experiment we have:
$n \quad \#$ of $\pi \in S_{n}$ that avoid $3412 \quad \#$ of $\pi \in S_{n}$ that avoid 321 and contain exactly one 321 and contain exactly one 3412

3	1	0
4	6	1
5	25	6
6	90	25
7	300	90
8	954	300

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
215463

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
215463

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow$ [14345]

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow$ [14345]

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow[14345] \mapsto[143546]$

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow[14345] \mapsto[143546]$

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow[14345] \mapsto[143546] \rightarrow 2156374$

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 pattern is equal to the number of permutations in S_{n+1} that avoid 321 and contain exactly one 3412.

Example:
$215463 \rightarrow[14345] \mapsto[143546] \rightarrow 2156374$

How many permutations are there that have a reduced decomposition with exactly one factor of the form [$\mathrm{i}(\mathrm{i}+1) \mathrm{i}]$? Equivalently, how many permutations in S_{n} avoid 3412 and contain exactly one 321 ?

How many permutations are there that have a reduced decomposition with exactly one factor of the form [$\mathrm{i}(\mathrm{i}+1) \mathrm{i}]$? Equivalently, how many permutations in S_{n} avoid 3412 and contain exactly one 321 ?
The first few such permutations in S_{n} have the following reduced decompositions (up to equivalence):

n	\mathcal{R}
3	$[121]$
4	$[121],[3121],[1213],[232],[1232],[2321]$
5	$[121],[3121],[1213],[4121],[43121],[31214],[12134],[41213]$,
	$[232],[1232],[2321],[4232],[2324],[41232],[12324],[42321],[23214]$,
	$[343],[1343],[2343],[3432],[12343],[23431],[13432],[34321]$

Partial Sketch of Count:

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.
- For $i=1$, the only such reduced decomposition is [121].

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.
- For $i=1$, the only such reduced decomposition is [121].
- For $i=2$,

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.
- For $i=1$, the only such reduced decomposition is [121].
- For $i=2$,
(1) for each r.d. built from $i=1$ add one to each element. This gives $\{[232]\}$.

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.
- For $i=1$, the only such reduced decomposition is [121].
- For $i=2$,
(1) for each r.d. built from $i=1$ add one to each element. This gives $\{[232]\}$.
(2) for each r.d. already built from step 1 create two new r.d.'s by putting a 1 at the beginning and a 1 at the end. This gives \{[1232], [2321] $\}$.

Partial Sketch of Count:

- For each $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ separately and add them up.
- For a given $i \in\{1, \ldots, n-2\}$, count all reduced decompositions with factor $[i(i+1) i]$ and other elements $<i$.
- For $i=1$, the only such reduced decomposition is [121].
- For $i=2$,
(1) for each r.d. built from $i=1$ add one to each element. This gives $\{[232]\}$.
(2) for each r.d. already built from step 1 create two new r.d.'s by putting a 1 at the beginning and a 1 at the end. This gives \{[1232], [2321]\}.
(3) Therefore, the reduced decompositions for $i=2$ are: \{[232], [1232], [2321] $\}$.

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives $\{[343]$, [2343], [3432]\}.

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives $\{[343]$, [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives $\{[343]$, [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.
(3) for each r.d. already built from step 1 and having a 2 in it, create two new r.d.s by putting a 1 at the beginning and a 1 at the end. This gives $\{[12343]$, [23431], [13432], [34321]\}.

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives \{[343], [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.
(3) for each r.d. already built from step 1 and having a 2 in it, create two new r.d.s by putting a 1 at the beginning and a 1 at the end. This gives \{[12343], [23431], [13432], [34321]\}.
- If $a(i)$ is the number of such reduced decompositions for a given i, then $a(i)=$

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives $\{[343]$, [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.
(3) for each r.d. already built from step 1 and having a 2 in it, create two new r.d.s by putting a 1 at the beginning and a 1 at the end. This gives \{[12343], [23431], [13432], [34321]\}.
- If $a(i)$ is the number of such reduced decompositions for a given i, then $a(i)=a(i-1)$

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives \{[343], [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.
(3) for each r.d. already built from step 1 and having a 2 in it, create two new r.d.s by putting a 1 at the beginning and a 1 at the end. This gives \{[12343], [23431], [13432], [34321]\}.
- If $a(i)$ is the number of such reduced decompositions for a given i, then $a(i)=a(i-1)+a(i-2)$

Partial Sketch of Count:

- For $i=1$, r.d.s: $\{[121]\}$.
- For $i=2$, r.d.s: $\{[232],[1232],[2321]\}$.
- For $i=3$,
(1) for each r.d. built from $i=2$, add one to each element. This gives \{[343], [2343], [3432]\}.
(2) for each r.d. already built from step 1 and having no 2 in it, put a 1 on the left. This gives $\{[1343]\}$.
(3) for each r.d. already built from step 1 and having a 2 in it, create two new r.d.s by putting a 1 at the beginning and a 1 at the end. This gives $\{[12343]$, [23431], [13432], [34321]\}.
- If $a(i)$ is the number of such reduced decompositions for a given i, then $a(i)=a(i-1)+a(i-2)+2(a(i-1)-a(i-2))$.

Partial Sketch of Count:

- The recurrence simplifies to $a(i)=3 a(i-1)-a(i-2)$ where $a(0)=0, a(1)=1$.

Definitions

Partial Sketch of Count:

- The recurrence simplifies to $a(i)=3 a(i-1)-a(i-2)$ where $a(0)=0, a(1)=1$. These are the even Fibonacci numbers! $a(i)=F_{2 i}$.

Partial Sketch of Count:

- The recurrence simplifies to $a(i)=3 a(i-1)-a(i-2)$ where $a(0)=0, a(1)=1$. These are the even Fibonacci numbers! $a(i)=F_{2 i}$.
- For a given $i \in\{1, \ldots, n-2\}$, use the previous construction to count all reduced decompositions with factor $[i(i+1) i]$ that have at least one element $>i+1$.

Partial Sketch of Count:

- The recurrence simplifies to $a(i)=3 a(i-1)-a(i-2)$ where $a(0)=0, a(1)=1$. These are the even Fibonacci numbers! $a(i)=F_{2 i}$.
- For a given $i \in\{1, \ldots, n-2\}$, use the previous construction to count all reduced decompositions with factor $[i(i+1) i]$ that have at least one element $>i+1$.
- For a fixed i, the number of reduced decompositions with factor $[i(i+1) i]$ is $F_{2 i} F_{2(n-i-1)}$.

Partial Sketch of Count:

- The recurrence simplifies to $a(i)=3 a(i-1)-a(i-2)$ where $a(0)=0, a(1)=1$. These are the even Fibonacci numbers! $a(i)=F_{2 i}$.
- For a given $i \in\{1, \ldots, n-2\}$, use the previous construction to count all reduced decompositions with factor $[i(i+1) i]$ that have at least one element $>i+1$.
- For a fixed i, the number of reduced decompositions with factor $[i(i+1) i]$ is $F_{2 i} F_{2(n-i-1)}$.

Definitions

Theorem (D.)

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.

Closed Form:

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}=\frac{2(2 n-5) F_{2 n-6}+(7 n-16) F_{2 n-5}}{5}
$$

Closed Form:

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}=\frac{2(2 n-5) F_{2 n-6}+(7 n-16) F_{2 n-5}}{5}
$$

Generating Function:

$$
\frac{x^{3}}{\left(1-3 x+x^{2}\right)^{2}}
$$

We can use reduced decompositions to count permutations that avoid 3412 and contain exactly one 321 . Can we use them to count involutions of the same form?

Theorem (Egge 2003)

The number of involutions in S_{n} which avoid 3412 and contain exactly one copy of 321 is

$$
\frac{2(n-1) F_{n}-n F_{n-1}}{5}
$$

We can use reduced decompositions to count permutations that avoid 3412 and contain exactly one 321 . Can we use them to count involutions of the same form?

Theorem (Egge 2003)

The number of involutions in S_{n} which avoid 3412 and contain exactly one copy of 321 is

$$
\frac{2(n-1) F_{n}-n F_{n-1}}{5}
$$

Remark: This theorem was proven using Chebyshev Polynomials

Theorem (D.)

Let $\pi \in S_{n}$. π is an involution avoiding 3412 and containing exactly one 321 if and only if π has a reduced decomposition [$t_{1} \ldots t_{k}$] that has a factor of the form $[i(i+1) i]$ for some $i \in\{1, \ldots, n-2\}$ and no other repetitions and if t_{j} is an element of the reduced decomposition other than i or $i+1$, then $\left|t_{j}-t\right|>1$ for all t in the reduced decomposition.

Theorem (D.)

Let $\pi \in S_{n}$. π is an involution avoiding 3412 and containing exactly one 321 if and only if π has a reduced decomposition [$t_{1} \ldots t_{k}$] that has a factor of the form $[i(i+1) i]$ for some $i \in\{1, \ldots, n-2\}$ and no other repetitions and if t_{j} is an element of the reduced decomposition other than i or $i+1$, then $\left|t_{j}-t\right|>1$ for all t in the reduced decomposition.

Example

[34317], [74542], [121468]

Definitions

Counting the number of such reduced decompositions gives:

Theorem

The number of involutions in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{i} F_{(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.

Definitions

Summary of Counting Results

Theorem

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}
$$

The number of such involutions is

$$
\sum_{i=1}^{n-2} F_{i} F_{(n-i-1)}
$$

What about reduced decompositions with exactly two repetitions?

What about reduced decompositions with exactly two repetitions?

If a permutation has a reduced decomposition with exactly one repetition, we can use braid moves to minimize the length of the factor in between the repeated elements to either $[i(i+1) i]$ or $[i(i+1)(i-1) i]$ for some i.

What about reduced decompositions with exactly two repetitions?

If a permutation has a reduced decomposition with exactly one repetition, we can use braid moves to minimize the length of the factor in between the repeated elements to either $[i(i+1) i]$ or $[i(i+1)(i-1) i]$ for some i.

What are the possible "minimal" factors for permutations with two repetitions?

What about reduced decompositions with exactly two repetitions?

If a permutation has a reduced decomposition with exactly one repetition, we can use braid moves to minimize the length of the factor in between the repeated elements to either $[i(i+1) i]$ or $[i(i+1)(i-1) i]$ for some i.

What are the possible "minimal" factors for permutations with two repetitions?

Definition

A factor of a reduced decomposition with exactly two repetitions is twisted if it cannot be transformed into a factor of the form [$i--i--j--j$] using braid moves.

Twisted Factors of Length 5

- $[i(i-1)(i+1) i(i+1)] \quad[21323]=3421$
- $[(i+1) i(i+1)(i-1) i] \quad[32312]=4312$
- $[(i+1) i(i-1) i(i+1)] \quad[32123]=4231$

Twisted Factors of Length >5
Length 6

$$
\begin{array}{ll}
-[i(i-1)(i+1) i(i+2)(i+1)] & {[213243]=34512} \\
-[(i+1)(i+2) i(i+1)(i-1) i] & {[342312]=45123} \\
-[i(i-1)(i+1)(i+2)(i+1) i] & {[213432]=35142} \\
-[(i+1)(i+2) i(i-1) i(i+1)] & {[342123]=42513}
\end{array}
$$

Length 7

- $[i(i-1)(i+2)(i+1)(i+3)(i+2) i] \quad[2143542]=351624$

Theorem (D.)

A factor of a reduced decomposition with exactly two repeated elements has a subfactor that is equivalent to one of the previous twisted factors or has a subfactor that is of the form $[i--i--j--j]$. In particular, any twisted factor is equivalent to one that has been previously listed.

Theorem (D.)

π has a reduced decomposition with a factor of the form
(1) $[i(i-1)(i+1) i(i+1)]$
(2) $[(i+1) i(i+1)(i-1) i]$
(3) $[(i+1) i(i-1) i(i+1)]$
if and only if π has exactly two 321 patterns of the corresponding form
(1) 3421
(2) 4312
(3) 4231
and avoids 3412.
This classifies all twisted factors of length 5 .

Theorem (D.)

The following quantities are equal:

- $\mid\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 3421\}|
- $\mid\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 4312\}|
- $\mid\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 4231\}|
- $\sum_{i=1}^{n-3} F_{2 i} F_{2(n-i-1)}$ where F_{m} is the $m^{\text {th }}$ Fibonacci number

Corollary

The number of permutations in $S_{n}(3412)$ that contain exactly two 321 patterns sharing two of the three elements is

$$
3 \sum_{i=1}^{n-3} F_{2 i} F_{2(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.

Current Questions

- What are the characterizations for the other twisted factors? Can we characterize all of the permutations in S_{n} that
- avoid 3412 and contain exactly two 321 patterns
- contain exactly one 3412 and exactly one 321
- avoid 321 and contain exactly two 3412 patterns

Current Questions

- What are the characterizations for the other twisted factors? Can we characterize all of the permutations in S_{n} that
- avoid 3412 and contain exactly two 321 patterns
- contain exactly one 3412 and exactly one 321
- avoid 321 and contain exactly two 3412 patterns
- Can we use reduced decompositions to count permutations in S_{n} avoiding 3412 and containing exactly one (two) 321 pattern(s) of other orders?

Current Questions

- What are the characterizations for the other twisted factors? Can we characterize all of the permutations in S_{n} that
- avoid 3412 and contain exactly two 321 patterns
- contain exactly one 3412 and exactly one 321
- avoid 321 and contain exactly two 3412 patterns
- Can we use reduced decompositions to count permutations in S_{n} avoiding 3412 and containing exactly one (two) 321 pattern(s) of other orders?
- Can we use the reduced decompositions to count permutations in S_{n} that avoid 3412 and contain exactly one $k(k-1)(k-2) \ldots 321$ pattern for arbitrary k (similar to Egge's result for involutions)?

Current Questions

- What are the characterizations for the other twisted factors? Can we characterize all of the permutations in S_{n} that
- avoid 3412 and contain exactly two 321 patterns
- contain exactly one 3412 and exactly one 321
- avoid 321 and contain exactly two 3412 patterns
- Can we use reduced decompositions to count permutations in S_{n} avoiding 3412 and containing exactly one (two) 321 pattern(s) of other orders?
- Can we use the reduced decompositions to count permutations in S_{n} that avoid 3412 and contain exactly one $k(k-1)(k-2) \ldots 321$ pattern for arbitrary k (similar to Egge's result for involutions)?
- Do these characterizations of reduced decompositions aid in characterizing Bruhat intervals?

Thank You!

References

E Anders Bjorner and Francesco Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer, 2005.

Eric S. Egge, Restricted 3412-Avoiding Involutions, Continued Fractions and Chebyshev Polynomials Advances in Applied Mathematics, 33 (451-475), 2004.

圊 Bridget E. Tenner, Pattern Avoidance and the Bruhat Order, Journal of Combinatorial Theory, Series A 114 (888-905), 2007.

R Bridget E. Tenner, Reduced Decompositions and Permutation Patterns, Journal of Algebraic Combinatorics 24 (263-284), 2006.

