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Introduction

A composition c of n can be written as c = (c1, c2, . . . , ck) with
c1 + c2 + . . . + ck = n and ci ≥ 1, ∀i ≤ k.
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Introduction

A composition c of n can be written as c = (c1, c2, . . . , ck) with
c1 + c2 + . . . + ck = n and ci ≥ 1, ∀i ≤ k.

C(n) is the set of compositions of an integer n
C≤p(n) is the set of compositions of n with all parts of sizes ≤ p
C1,p(n) is the set of (1, p)-compositions of n
Cp̂(n) is the set of compositions of n without parts of size p
C#p(n) is the set of compositions of n with at most p parts
C∗(n, p, r) is the set of compositions of n with the last part of size = r mod p
C(n, p, r) is the set of compositions of n with all parts of size = r mod p
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Recalls

ECO method - Generating tree

Pattern avoiding permutations

Active sites - Right justified sites

Regular class - c-Regular class

Succession functions - General generating algorithm
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Enumerating Combinatorial Object Methods
Barcucci, Del Lungo, Pergola, Pinzani 1999

The ECO method is used for the enumeration and the
recursive construction of combinatorial object classes.

This is a recursive description of a combinatorial object
class which explains how an object of size n can be
reached from one and only one object of inferior size.
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Enumerating Combinatorial Object Methods
Barcucci, Del Lungo, Pergola, Pinzani 1999

The ECO method is used for the enumeration and the
recursive construction of combinatorial object classes.

This is a recursive description of a combinatorial object
class which explains how an object of size n can be
reached from one and only one object of inferior size.

It consists to give a system of succession rules for a
combinatorial object class which induces a generating
tree such that each node is labeled : the set of
successions rules describes for each node the label of
its successors.
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Pattern

Sn - the set of permutations on [n] = {1, 2, . . . , n}.

Let a = a1 . . . ak. The pattern of a is the permutation
τ ∈ Sk obtained from a by substituting the minimum
element by 1, the second minimum element by 2, . . .,
and the maximum element by k.

Example
The pattern of a = 914 is τ = 312.
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Pattern Avoiding Permutation

For a τ ∈ Sk and a π ∈ Sn, π is τ -avoiding iff there is no
subsequence π(i1)π(i1) . . . π(ik)(i1 < i2 < . . . < ik) whose
pattern is τ . We write Sn(τ) for the set of τ -avoiding
permutations of [n].

Example
π = 512634 avoids 321-pattern.
But π contains 3412-pattern (512634).

A barred permutation pattern is a permutation pattern in
which overbars are used to indicate that barred values
cannot occur at the barred positions.

Example

π = 5716342 fails to be 4132-avoiding but is 4132-avoiding.
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Active Sites

The sites of π ∈ Sn(T) are the positions between two
consecutive elements, before the first and after the last
element.
The sites are numbered, from right to left, from 1 to n+ 1.
i is an active site of π ∈ Sn(T) if the permutation
obtained from π by inserting n + 1 into its ith site is a
permutation in Sn+1(T).
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Active Sites

The sites of π ∈ Sn(T) are the positions between two
consecutive elements, before the first and after the last
element.
The sites are numbered, from right to left, from 1 to n+ 1.
i is an active site of π ∈ Sn(T) if the permutation
obtained from π by inserting n + 1 into its ith site is a
permutation in Sn+1(T).
χT(i, π) - the number of active sites of the permutation
obtained from π by inserting n + 1 into its ith active site.
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Active Sites

The sites of π ∈ Sn(T) are the positions between two
consecutive elements, before the first and after the last
element.
The sites are numbered, from right to left, from 1 to n+ 1.
i is an active site of π ∈ Sn(T) if the permutation
obtained from π by inserting n + 1 into its ith site is a
permutation in Sn+1(T).
χT(i, π) - the number of active sites of the permutation
obtained from π by inserting n + 1 into its ith active site.
The active sites of a permutation π ∈ Sn(T) are right
justified if the sites to the right of any active site are also
active.

Example
13452 ∈ S5(312) has 3 first active sites right justified
following 134_5_2_.
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Regular pattern

A set of patterns T is called regular if

1 ∈ S1(T) has two sons,

all active sites are right justified,

for any n ≥ 1 and π ∈ Sn(T), χT(i, π) does not depend on π

but solely on i and on the number k of active sites of π. In this
case we denote χT(i, π) by χT(i, k) and we call it succession
function [Do, Vajnovszki 2007].

(k) (χT(1, k))(χT(2, k)) . . . (χT(k, k))

or (k) ∪k
i=1(χT(i, k)), for k ≥ 1,

is the succession rule corresponding to the set of patterns T.

succession function → succession rule

succession rule 9 succession function
9 / 26
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Example

The Catalan sets of permutations avoiding pattern T = {312}
and T = {321} have the same succession rule
(k) (2)(3) . . . (k + 1), but different succession functions :

T = {312}, χT(i, k) = i + 11121231234 1243 1321324 1342 1432 212132134 2143 2312314 2341 2431 3213214 3241 3421 4321
10 / 26
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T = {321}, χT(i, k) =

{

k + 1 if i = 1
i otherwise1121231234 1243 1423 4123 1321324 1342 3123124 3142 3412 212132134 2143 2413 2312314 2341
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Colored regular pattern

color : each permutation associated with an integer c
[Barcucci, Pinzani, . . .].

if π ∈ Sn(T) with color c, the insertion of n + 1 in its i-th
active site produces a σ ∈ Sn+1(T) with µ(i, π, c) active
sites and color ν(i, π, c) ;

we extend the previous χ function in order to transform a
triple (i, k, c) ∈ N

3 into a couple (µ(i, k, c), ν(i, k, c)) ∈ N
2.
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Colored regular pattern

A set of patterns T is called c-regular if

the length one 1 ∈ S1(T) has two sons,

all active sites are right justified,

for any n ≥ 1 and π ∈ Sn(T), χT(i, π, c) does not depend on π

but only on i, on c and on the number k of active sites of π. In
this case we denote χT(i, π, c) by
χT(i, k, c) = (µ(i, k, c), ν(i, k, c)) and χT becomes a function
χT : N3 → N

2 ; it generalizes the succession function χ(i, k).

(kc) (µ(1, k, c)ν(1,k,c))(µ(2, k, c)ν(2,k,c)) . . . (µ(k, k, c)ν(k,k,c))

or (kc) ∪k
i=1(µ(i, k, c)ν(i,k,c)), for k ≥ 1,

is called colored succession rule corresponding to the set T
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Example : Even index Fibonacci numbers

The succession function χ : N3 → N
2 of even index

Fibonacci numbers corresponds to T = {312, 2431} [Do,
Vajnovszki 2007] is identified by χ(i, k, c) = (µ(i, k, c), ν(i, k, c))
with :

µ(i, k, c) =

{

i + 1 if i = 1 or (i = k and c 6= 1)
i otherwise

ν(i, k, c) =

{

0 if i = 1 or (i = k and c 6= 1)
1 otherwise

Corresponding succession rule :

{

(k0) (20)(21) . . . (k − 1)1(k + 1)0

(k1) (20)(21) . . . (k1)
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General Generating Algorithm [Do, Vajnovszki 2007]
First call : Gen_Avoid(1,2, 0)

procedure Gen_Avoid(size, k, c)
local i, u, v
if size = n then

Print(π)
else

size := size + 1
π := [π, size]
(µ, ν) := χ(1, k, c)
gen_Avoid(size, µ, ν)
for i := 2 to k do

π := π · (size − i + 2, size − i + 1)
(u, v) := χ(i, k, c)
gen_Avoid(size, µ, ν)

end for
for i := k downto 2 do

π := π · (size − i + 2, size − i + 1)
end for

end if
end procedure
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Bijections

1 0 1 0 1 10 1 0

1 + 3 + 2 + 3

1 3 4 2 6 5 8 9 7

Composition ↔ Pavage ↔ Binary string ↔ Permutation
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Compositions of n

↔ Binary strings of length n − 1
↔ Sn{321, 312}, Sn{321, 231}

Compositions of n with all parts of sizes ≤ p

↔ Binary strings of length n − 1 without p consecutive 1s ↔
Sn{321, 312, 234 . . . (p + 1)1}, Sn{321, 231, (p + 1)p . . . 321}
↔ p-generalized Fibonacci numbers [Baril, Do 2006]
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(1, p)-Compositions of n
C1,p(n)

Theorem
A system of succession rules for C1,p(n) :

(Ωp)















(2)
(2) (2)(10)
(1i) (1i+1), for 0 ≤ i < p − 2
(1p−2) (2).

The generating tree (Ωp) is coded by the permutations
in Sn(231, 312, 321, 2134 . . .(p + 1)(p + 3)(p + 2)).

This tree is also coded by the set B≥p−1(n) of binary
strings of length n with at least (p − 1) zeros between
two ones.
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C1,3(n) (2)�=1(10)1=21(11)10=213(2)100=2134(10)1001=21354 (2)1000=21345
(2)0=12(10)01=132(11)010=1324(2)0100=13245

(2)00=123(10)001=1243(11)0010=12435 (2)000=1234(10)0001=12354 (2)0000=12345
The level n is coded by Sn(231, 312, 321, 213465) or by B≥2(n − 1)
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Compositions of n without parts of size p
Cp̂(n)

Theorem
A system of jumping succession rules (Φp) for Cp̂(n) :

(Φp)



























(20)
(2i) (20)(2i+1), for 0 ≤ i ≤ p − 2

(2p−2)
1
 (20)
2
 (2p−1)

(2p−1) (20)(2p−1).

The generating tree (Φp) is coded by the permutations in

Sn(312, 321, Tp) with Tp =















2̄3 . . . (p + 1)1
23̄ . . . (p + 1)1
. . .

23 . . . (p + 1)1.

This tree is also coded by the set Bp̂−1(n) of binary strings of
length n without runs of 1s of length (p − 1).
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C3̂(n) (20)�=1(21)1=21(22)111=2341(20) (22)
(20)10=213(21)101=2143(22) (20)

(2)100=2134(21) (20)
(2)0=12(21)01=132(22) (20)010=1324(21) (20)

(20)00=123(21)001=1243(22) (20)
(20)000=1234(21) (20)

The level n is coded by B2̂(n − 1) or by Sn(312, 321, T3) with
T3 = {2̄341, 23̄41, 234̄1}21 / 26
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Compositions of n with at most p parts
C#p(n)

Theorem
A system of succession rules (Θp) for C#p(n) is given by :

(Θp)















(20)
(2i) (2i)(2i+1), for 0 ≤ i < p − 2
(2p−2) (2p−2)(1)
(1) (1).

The generating tree (Θp) is coded by the permutations in
Sn(312, 321, Hp) with Hp is defined by :

for p = 2, H2 = {231, 2143},
let τ = τ(1)τ(2) . . . τ(k) be a pattern in Hp−1 (k ≤ 2(p − 1)). We
identify : Hp = ∪τ∈Hp−1{τ(1)τ(2) . . . τ(k − 1)(k + 1)τ(k),

τ(1)τ(2) . . . τ(k)(k + 2)(k + 1)}. Hp contains 2p−1 patterns.

This tree is also coded by the set B̄#p−1(n) of binary strings of
length n having at most (p − 1) ones.
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C#p(n) (20)�=1(21)1=21(1)11=231(1)110=2314(1)
(21)10=213(1)101=2143(1) (21)100=2134(1) (21)

(20)0=12(21)01=132(1)011=1342(1) (21)010=1324(1) (21)
(20)00=123(21)001=1243(1) (21) (20)000=1234(21) (20)

The level n is coded by B̄#2(n) or by Sn(312, 321, H3) with
H3 = {2341, 23154, 21453, 214365}
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SummaryClasses Succession rules Avoidance patternsC(n) (2)(2) (2)(2) f321; 312g(2)(k) (k + 1)(1)k�1 f321; 231gC�p(n) (20)(20) (20)(21)(2i) (20)(2i+1); (2p�2) (20)(1)(1) (20) f321; 312; 234 : : : (p+ 1)1g(2)(k) (k + 1)(1)k�1(p) (p)(1)k�1 f312; 231; (p + 1)p : : : 321gC1;p(n);C(n+ 1; p; 1) (2)(2) (10)(2)(1i) (1i+1); for 0 � i < p � 1(1p�1) (2) f231; 312; 321;2134 : : : (p + 1)(p + 3)(p+ 2)gCp̂(n) (20)(2i) (20)(2i+1); for 0 � i < p� 2(2p�1) 1 (20)2 (2)(2) (20)(2) f312; 321; Tpg;where Tp = 8>><>>: �23 : : : (p + 1)12�3 : : : (p + 1)1: : :23 : : : (p + 1)1C#p(n) (20)(2i) (2i)(2i+1); for 0 � i � p � 2(2p�2) (2p�2)(1)(1) (1) f312; 321; HpgC�(n; p; r) (20)(20) 1 (2)p (20)(2) (2)(2) for C�(n; 3; r) :f312; 4321; 2431; 3241; 3421;321654; 321654; �32�1654g
24 / 26
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Algorithmic consideration

An algorithm is Constant Amortized Time (CAT) if the
number of computations after a small amount of
preprocessing is proportional to the number of objects
generated.

Almost all classes of pattern avoiding permutations
found here are regular.

Establish the corresponding succession functions from
these succession rules.

Apply the general generating algorithms in order to
efficiently generate the permutations corresponding to
these studied compositions.
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CAT requirements

[Ruskey,Vajnovszki 2002]

If a recursive generating procedure satisfies the following
properties :

the amount of computation of a given call is proportional
to its degree, disregarding the recursive calls,

each call has the degree zero or at least two, and

at the completion of each recursive call a new word is
generated,

then the generating procedure is CAT.

Almost all succession rules here induce generating trees
whose nodes have at least two successors. This situation
satisfies the requirements of a CAT algorithm.
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