

BARIL \& DO

ECO-generation for compositions and their restrictions

Jean-Luc BARIL \& Phan-Thuan DO

Université de Bourgogne - France

Permutation Patterns 2008

Dunedin, 16-20 Juin

u: Introduction

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
A composition c of n can be written as $c=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ with $c_{1}+c_{2}+\ldots+c_{k}=n$ and $c_{i} \geq 1, \forall i \leq k$.
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary CAT

Introduction

A composition c of n can be written as $c=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ with $c_{1}+c_{2}+\ldots+c_{k}=n$ and $c_{i} \geq 1, \forall i \leq k$.
$\mathcal{C}(n) \quad$ is the set of compositions of an integer n
$\mathcal{C}_{p}(n)$
$\mathcal{C}_{\leq p}(n) \quad$ is the set of compositions of n with all parts of sizes $\leq p$
$\mathcal{C}_{1, p}^{-1}(n) \quad$ is the set of $(1, p)$-compositions of n
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
$\mathcal{C}_{*}(n, p, r)$
$\mathcal{C}(n, p, r)$ is the set of compositions of n without parts of size p is the set of compositions of n with at most p parts is the set of compositions of n with the last part of size $=r \bmod p$ is the set of compositions of n with all parts of size $=r \bmod p$

BARIL \& DO Introduction

Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary CAT

- Alladi and Hoggatt, Compositions with ones and twos, 1975.
- Carlitz, Restricted compositions, 1976.
- Chinn and Heubach, (1,k)-Compositions, 2003.
- Chinn and Heubach, Compositions of n with no occurrence of $k, 2003$.
- ...

Some bibliographies

BARIL \& DO

- Alladi and Hoggatt, Compositions with ones and twos, 1975.
- Carlitz, Restricted compositions, 1976.
- Chinn and Heubach, ($1, k$)-Compositions, 2003.
- Chinn and Heubach, Compositions of n with no occurrence of $k, 2003$.
- ...
- Klingsberg, A Gray code for compositions, 1982.
- Walsh, Loop-free sequencing of bounded integer compositions, 2000.
- Vajnovszki, A loopless generation of bitstrings without p consecutive ones, 2001.
- Baril and Moreira, More restrictive Gray code for (1,p)-compositions and relatives, 2008.

Some bibliographies

BARIL \& DO

- Alladi and Hoggatt, Compositions with ones and twos, 1975.
- Carlitz, Restricted compositions, 1976.
- Chinn and Heubach, (1,k)-Compositions, 2003.
- Chinn and Heubach, Compositions of n with no occurrence of $k, 2003$.
- ...
- Klingsberg, A Gray code for compositions, 1982.
- Walsh, Loop-free sequencing of bounded integer compositions, 2000.
- Vajnovszki, A loopless generation of bitstrings without p consecutive ones, 2001.
- Baril and Moreira, More restrictive Gray code for (1,p)-compositions and relatives, 2008.
- Barcucci et al., ECO : a methodology for the Enumeration of Combinatorial Objects, 1999.

Recalls

- ECO method - Generating tree
- Pattern avoiding permutations
- Active sites - Right justified sites
- Regular class - c-Regular class
- Succession functions - General generating algorithm

Enumerating Combinatorial Object Methods Barcucci, Del Lungo, Pergola, Pinzani 1999
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

- The ECO method is used for the enumeration and the recursive construction of combinatorial object classes.
- This is a recursive description of a combinatorial object class which explains how an object of size n can be reached from one and only one object of inferior size.

Enumerating Combinatorial Object Methods Barcucci, Del Lungo, Pergola, Pinzani 1999

- This is a recursive description of a combinatorial object class which explains how an object of size n can be reached from one and only one object of inferior size.
- It consists to give a system of succession rules for a combinatorial object class which induces a generating tree such that each node is labeled : the set of successions rules describes for each node the label of its successors.
- The ECO method is used for the enumeration and the recursive construction of combinatorial object classes.
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$

Pattern

- \mathfrak{S}_{n} - the set of permutations on $[n]=\{1,2, \ldots, n\}$.
- Let $a=a_{1} \ldots a_{k}$. The pattern of a is the permutation $\tau \in \mathfrak{S}_{k}$ obtained from a by substituting the minimum element by 1 , the second minimum element by $2, \ldots$, and the maximum element by k.

Example

The pattern of $a=914$ is $\tau=312$.

Pattern Avoiding Permutation

BARIL \& DO

A barred permutation pattern is a permutation pattern in which overbars are used to indicate that barred values cannot occur at the barred positions.

Example

$\pi=\underline{5} 7 \underline{1} 6 \underline{3} 4 \underline{2}$ fails to be 4132-avoiding but is $4 \overline{1} 32$-avoiding. subsequence $\pi\left(i_{1}\right) \pi\left(i_{1}\right) \ldots \pi\left(i_{k}\right)\left(i_{1}<i_{2}<\ldots<i_{k}\right)$ whose pattern is τ. We write $\mathfrak{S}_{n}(\tau)$ for the set of τ-avoiding permutations of $[n]$.

Example

- $\pi=512634$ avoids 321-pattern. But π contains 3412-pattern (512634).
-
- The sites of $\pi \in \mathfrak{S}_{n}(T)$ are the positions between two consecutive elements, before the first and after the last element.
- The sites are numbered, from right to left, from 1 to $n+1$.
- i is an active site of $\pi \in \mathfrak{S}_{n}(T)$ if the permutation obtained from π by inserting $n+1$ into its i th site is a permutation in $\mathfrak{S}_{n+1}(T)$.

Active Sites

- The sites of $\pi \in \mathfrak{S}_{n}(T)$ are the positions between two consecutive elements, before the first and after the last element.
- The sites are numbered, from right to left, from 1 to $n+1$.
- i is an active site of $\pi \in \mathfrak{S}_{n}(T)$ if the permutation obtained from π by inserting $n+1$ into its i th site is a permutation in $\mathfrak{S}_{n+1}(T)$.
- $\chi_{T}(i, \pi)$ - the number of active sites of the permutation obtained from π by inserting $n+1$ into its i th active site.

Active Sites

BARIL \& DO

- The sites of $\pi \in \mathfrak{S}_{n}(T)$ are the positions between two consecutive elements, before the first and after the last element.
- The sites are numbered, from right to left, from 1 to $n+1$.
- i is an active site of $\pi \in \mathfrak{S}_{n}(T)$ if the permutation obtained from π by inserting $n+1$ into its i th site is a permutation in $\mathfrak{S}_{n+1}(T)$.
- $\chi_{T}(i, \pi)$ - the number of active sites of the permutation obtained from π by inserting $n+1$ into its i th active site.
- The active sites of a permutation $\pi \in \mathfrak{S}_{n}(T)$ are right justified if the sites to the right of any active site are also active.

Example

$13452 \in \mathfrak{S}_{5}(312)$ has 3 first active sites right justified following 134_5_2_.

Regular pattern

BARIL \& DO

Introduction
Recalls
Bjection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

A set of patterns T is called regular if

- $1 \in \mathfrak{S}_{1}(T)$ has two sons,
- all active sites are right justified,
- for any $n \geq 1$ and $\pi \in \mathfrak{S}_{n}(T), \chi_{T}(i, \pi)$ does not depend on π but solely on i and on the number k of active sites of π. In this case we denote $\chi_{T}(i, \pi)$ by $\chi_{T}(i, k)$ and we call it succession function [Do, Vajnovszki 2007].

$$
\begin{gathered}
(k) \rightsquigarrow\left(\chi_{T}(1, k)\right)\left(\chi_{T}(2, k)\right) \ldots\left(\chi_{T}(k, k)\right) \\
\text { or }(k) \rightsquigarrow \cup_{i=1}^{k}\left(\chi_{T}(i, k)\right) \text {, for } k \geq 1,
\end{gathered}
$$

is the succession rule corresponding to the set of patterns T.

- succession function \rightarrow succession rule
- succession rule \rightarrow succession function

Example

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

The Catalan sets of permutations avoiding pattern $T=\{312\}$ and $T=\{321\}$ have the same succession rule $(k) \rightsquigarrow(2)(3) \ldots(k+1)$, but different succession functions:

$$
\text { - } T=\{312\}, \chi_{T}(i, k)=i+1
$$

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

- $T=\{321\}, \chi_{T}(i, k)= \begin{cases}k+1 & \text { if } i=1 \\ i & \text { otherwise }\end{cases}$

$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT
- color : each permutation associated with an integer c [Barcucci, Pinzani, ...].
- if $\pi \in \mathfrak{S}_{n}(T)$ with color c, the insertion of $n+1$ in its i-th active site produces a $\sigma \in \mathfrak{S}_{n+1}(T)$ with $\mu(i, \pi, c)$ active sites and color $\nu(i, \pi, c)$;
- we extend the previous χ function in order to transform a triple $(i, k, c) \in \mathbb{N}^{3}$ into a couple $(\mu(i, k, c), \nu(i, k, c)) \in \mathbb{N}^{2}$.

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

A set of patterns T is called c-regular if

- the length one $1 \in \mathfrak{S}_{1}(T)$ has two sons,
- all active sites are right justified,
- for any $n \geq 1$ and $\pi \in \mathfrak{S}_{n}(T), \chi_{T}(i, \pi, c)$ does not depend on π but only on i, on c and on the number k of active sites of π. In this case we denote $\chi_{T}(i, \pi, c)$ by
$\chi_{T}(i, k, c)=(\mu(i, k, c), \nu(i, k, c))$ and χ_{T} becomes a function $\chi_{T}: \mathbb{N}^{3} \rightarrow \mathbb{N}^{2} ;$ it generalizes the succession function $\chi(i, k)$.

$$
\left(k_{c}\right) \rightsquigarrow\left(\mu(1, k, c)_{\nu(1, k, c)}\right)\left(\mu(2, k, c)_{\nu(2, k, c)}\right) \ldots\left(\mu(k, k, c)_{\nu(k, k, c)}\right)
$$

$$
\text { or }\left(k_{c}\right) \rightsquigarrow \cup_{i=1}^{k}\left(\mu(i, k, c)_{\nu(i, k, c)}\right) \text {, for } k \geq 1 \text {, }
$$

is called colored succession rule corresponding to the set T

Example : Even index Fibonacci numbers

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

The succession function $\chi: \mathbb{N}^{3} \rightarrow \mathbb{N}^{2}$ of even index Fibonacci numbers corresponds to $T=\{312,2431\}$ [Do, Vajnovszki 2007] is identified by $\chi(i, k, c)=(\mu(i, k, c), \nu(i, k, c))$ with :

$$
\begin{gathered}
\mu(i, k, c)= \begin{cases}i+1 & \text { if } i=1 \text { or }(i=k \text { and } c \neq 1) \\
i & \text { otherwise }\end{cases} \\
\nu(i, k, c)= \begin{cases}0 & \text { if } i=1 \text { or }(i=k \text { and } c \neq 1) \\
1 & \text { otherwise }\end{cases}
\end{gathered}
$$

Corresponding succession rule :

$$
\left\{\begin{array}{l}
\left(k_{0}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{1}\right) \ldots(k-1)_{1}(k+1)_{0} \\
\left(k_{1}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{1}\right) \ldots\left(k_{1}\right)
\end{array}\right.
$$

General Generating Algorithm [Do, Vainovszki 2007]

 First call : Gen_Avoid(1,2,0)procedure Gen_Avoid(size, k, c)

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT
local i, u, v
if size $=n$ then
Print(π)
else

$$
\begin{aligned}
& \text { size }:=\text { size }+1 \\
& \pi:=[\pi, \text { size }] \\
& (\mu, \nu):=\chi(1, k, c) \\
& \text { gen_Avoid }(\text { size }, \mu, \nu) \\
& \text { for } i:=2 \text { to } k \text { do } \\
& \quad \pi:=\pi \cdot(\text { size }-i+2, \text { size }-i+1) \\
& \quad(u, v):=\chi(i, k, c) \\
& \quad \text { gen_Avoid }(\text { size }, \mu, \nu) \\
& \text { end for }
\end{aligned}
$$

for $i:=k$ downto 2 do

$$
\pi:=\pi \cdot(\text { size }-i+2, \text { size }-i+1)
$$

end for
end if
end procedure

Bijections

BARIL \& DO

Introduction
Recalls
Bijection
$C_{1, p}(n)$
$C_{\hat{p}}(n)$
$C_{\# p}(n)$
Summary
CAT
13
4
2
6

5
1
8

9
7

BARIL \& DO

Introduction Recalls

Bijection
$C_{1, p}(n)$
$\mathcal{C}_{p}(n)$
$\mathcal{C}_{\# p}(n)$
Summary CAT

Compositions of n
\leftrightarrow Binary strings of length $n-1$
$\leftrightarrow \mathfrak{S}_{n}\{321,312\}, \mathfrak{S}_{n}\{321,231\}$

Compositions of n with all parts of sizes $\leq p$

\leftrightarrow Binary strings of length $n-1$ without p consecutive $1 \mathrm{~s} \leftrightarrow$ $\mathfrak{S}_{n}\{321,312,234 \ldots(p+1) 1\}, \mathfrak{S}_{n}\{321,231,(p+1) p \ldots 321\}$ $\leftrightarrow p$-generalized Fibonacci numbers [Baril, Do 2006]

(1,p)-Compositions of n $\mathcal{C}_{1, p}(n)$

BARIL \& DO

Theorem

A system of succession rules for $\mathcal{C}_{1, p}(n)$:

$$
\left(\Omega_{p}\right)\left\{\begin{array}{l}
(2) \\
(2) \rightsquigarrow(2)\left(1_{0}\right) \\
\left(1_{i}\right) \rightsquigarrow\left(1_{i+1}\right), \quad \text { for } 0 \leq i<p-2 \\
\left(1_{p-2}\right) \rightsquigarrow(2) .
\end{array}\right.
$$

- The generating tree $\left(\Omega_{p}\right)$ is coded by the permutations in $\mathfrak{S}_{n}(231,312,321,21 \overline{34 \ldots(p+1)}(p+3)(p+2))$.
- This tree is also coded by the set $\mathcal{B}_{\geq p-1}(n)$ of binary strings of length n with at least $(p-1)$ zeros between two ones.

$\underline{\mathcal{C}_{1,3}(n)}$

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

The level n is coded by $\mathfrak{S}_{n}(231,312,321,21 \overline{3465})$ or by $\mathcal{B}_{\geq 2}(n-1)$

Compositions of n without parts of size p $\mathcal{C}_{\hat{p}}(n)$

Theorem

BARIL \& DO
A system of jumping succession rules $\left(\Phi_{p}\right)$ for $\mathcal{C}_{\hat{p}}(n)$:

$$
\left(\Phi_{p}\right)\left\{\begin{aligned}
&\left(2_{0}\right) \\
&\left(2_{i}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{i+1}\right), \quad \text { for } 0 \leq i \leq p-2 \\
&\left(2_{p-2}\right) \underset{\sim}{\rightsquigarrow}\left(2_{0}\right) \\
& \rightsquigarrow\left(2_{p-1}\right) \\
&\left(2_{p-1}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{p-1}\right) .
\end{aligned}\right.
$$

- The generating tree $\left(\Phi_{p}\right)$ is coded by the permutations in

$$
\mathfrak{S}_{n}\left(312,321, T_{p}\right) \text { with } T_{p}=\left\{\begin{array}{l}
\overline{2} 3 \ldots(p+1) 1 \\
2 \overline{3} \ldots(p+1) 1 \\
\ldots \overline{(p+1)} 1 \\
23 \ldots(
\end{array}\right.
$$

- This tree is also coded by the set $\mathcal{B}_{\hat{p}-1}(n)$ of binary strings of length n without runs of 1 s of length $(p-1)$.

$C^{1} C_{3}(n)$

BARIL \& DO

Introduction
Recalls
Bjection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

The level n is coded by $\mathcal{B}_{\hat{2}}(n-1)$ or by $\mathfrak{S}_{n}\left(312,321, T_{3}\right)$ with $T_{3}=\{\overline{2} 341,2 \overline{3} 41,23 \overline{4} 1\}$

Compositions of n with at most p parts $\mathcal{C}_{\# p}(n)$

BARIL \& DO

Introduction Recalls Bijection
$C_{1, p}(n)$
$C_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary CAT

Theorem

A system of succession rules $\left(\Theta_{p}\right)$ for $\mathcal{C}_{\# p}(n)$ is given by :

$$
\left(\Theta_{p}\right)\left\{\begin{array}{l}
\left(2_{0}\right) \\
\left(2_{i}\right) \rightsquigarrow\left(2_{i}\right)\left(2_{i+1}\right), \quad \text { for } 0 \leq i<p-2 \\
\left(2_{p-2}\right) \rightsquigarrow\left(2_{p-2}\right)(1) \\
(1) \rightsquigarrow(1) .
\end{array}\right.
$$

- The generating tree $\left(\Theta_{p}\right)$ is coded by the permutations in $\mathfrak{S}_{n}\left(312,321, H_{p}\right)$ with H_{p} is defined by :
- for $p=2, H_{2}=\{231,2143\}$,
- let $\tau=\tau(1) \tau(2) \ldots \tau(k)$ be a pattern in $H_{p-1}(k \leq 2(p-1))$. We identify : $H_{p}=\cup_{\tau \in H_{p-1}}\{\tau(1) \tau(2) \ldots \tau(k-1)(k+1) \tau(k)$, $\tau(1) \tau(2) \ldots \tau(k)(k+2)(k+1)\} . H_{p}$ contains 2^{p-1} patterns.
- This tree is also coded by the set $\overline{\mathcal{B}}_{\# p-1}(n)$ of binary strings of length n having at most ($p-1$) ones.

$\boldsymbol{u}^{18} \mathcal{C}_{\# p}(n)$

BARIL \& DO

Introduction

Recalls

Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT

The level n is coded by $\overline{\mathcal{B}}_{\# 2}(n)$ or by $\mathfrak{S}_{n}\left(312,321, H_{3}\right)$ with $H_{3}=\{2341,23154,21453,214365\}$

Summary

BARIL \& DO

Introduction

Recalls

Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$C_{\# p}(n)$
Summary
CAT

Classes	Succession rules	Avoidance patterns
$C(n)$	$\begin{aligned} & \hline \hline(2) \\ & (2) \rightsquigarrow(2)(2) \end{aligned}$	\{321,312\}
	$\begin{aligned} & (2) \\ & (k) \rightsquigarrow(k+1)(1)^{k-1} \\ & \hline \end{aligned}$	\{321, 231\}
$C_{\leq p}(n)$	$\left(2_{0}\right)$ $\left(2_{0}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{1}\right)$ $\left(2_{i}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{i+1}\right),\left(2_{p-2}\right) \rightsquigarrow\left(2_{0}\right)(1)$ (1) $\rightsquigarrow\left(2_{0}\right)$	$\{321,312,234 \ldots(p+1) 1\}$
	$\begin{aligned} & (2) \\ & (k) \rightsquigarrow(k+1)(1)^{k-1} \\ & (p) \rightsquigarrow(p)(1)^{k-1} \end{aligned}$	$\{312,231,(p+1) p \ldots 321\}$
$\begin{aligned} & C_{1, p}(n), \\ & C(n+1, p, 1) \end{aligned}$	$\begin{aligned} & \hline \hline(2) \\ & (2) \rightsquigarrow\left(1_{0}\right)(2) \\ & \left(1_{i}\right) \rightsquigarrow\left(1_{i+1}\right) \text {, for } 0 \leq i<p-1 \\ & \left(1_{p-1}\right) \rightsquigarrow(2) \\ & \hline \end{aligned}$	$\begin{aligned} & \{231,312,321, \\ & 2134 \ldots(p+1)(p+3)(p+2)\} \end{aligned}$
$C_{p}(n)$	$\begin{aligned} & \left(2_{0}\right) \\ & \left(2_{i}\right) \rightsquigarrow\left(2_{0}\right)\left(2_{i+1}\right) \text {, for } 0 \leq i<p-2 \\ & \left(2_{p-1}\right) \stackrel{1}{\rightsquigarrow}\left(2_{0}\right) \\ & \quad \stackrel{2}{\rightsquigarrow}(2) \\ & (2) \rightsquigarrow\left(2_{0}\right)(2) \end{aligned}$	$\begin{aligned} & \left\{312,321, T_{p}\right\}, \\ & \text { where } T_{p}=\left\{\begin{array}{l} \overline{2} 3 \ldots(p+1) 1 \\ 2 \overline{3} \ldots(p+1) 1 \\ \ldots \\ 23 \ldots \overline{(p+1)} 1 \end{array}\right. \end{aligned}$
$C_{\# p}(n)$	$\begin{aligned} & \left(2_{0}\right) \\ & \left(2_{i}\right) \rightsquigarrow\left(2_{i}\right)\left(2_{i+1}\right) \text {, for } 0 \leq i \leq p-2 \\ & \left(2_{p-2}\right) \rightsquigarrow\left(2_{p-2}\right)(1) \\ & (1) \rightsquigarrow(1) \end{aligned}$	$\left\{312,321, H_{p}\right\}$
$C_{*}(n, p, r)$	$\begin{aligned} & \left(2_{0}\right) \\ & \left.\left(2_{0}\right) \stackrel{1}{\rightsquigarrow}\right)(2) \\ & \quad \underset{\rightsquigarrow}{\rightsquigarrow}\left(2_{0}\right) \\ & (2) \rightsquigarrow(2)(2) \end{aligned}$	$\begin{aligned} & \text { for } C_{*}(n, 3, r): \\ & \{312,4321,2431,3241,3421, \\ & 3 \overline{21} 654, \overline{32} 1654, \overline{3} 2 \overline{1} 654\} \end{aligned}$

Algorithmic consideration

- An algorithm is Constant Amortized Time (CAT) if the number of computations after a small amount of preprocessing is proportional to the number of objects generated.
- Almost all classes of pattern avoiding permutations found here are regular.
- Establish the corresponding succession functions from these succession rules.
- Apply the general generating algorithms in order to efficiently generate the permutations corresponding to these studied compositions.

CAT requirements

BARIL \& DO

Introduction
Recalls
Bijection
$\mathcal{C}_{1, p}(n)$
$\mathcal{C}_{\hat{p}}(n)$
$\mathcal{C}_{\# p}(n)$
Summary
CAT
[Ruskey,Vajnovszki 2002]
If a recursive generating procedure satisfies the following properties:

- the amount of computation of a given call is proportional to its degree, disregarding the recursive calls,
- each call has the degree zero or at least two, and
- at the completion of each recursive call a new word is generated, then the generating procedure is CAT.

Almost all succession rules here induce generating trees whose nodes have at least two successors. This situation satisfies the requirements of a CAT algorithm.

