Enumeration Schemes for Permutations Avoiding Barred Patterns

Lara Pudwell
Rutgers University

June 17, 2008

Bar Notation

- Consider pairs of permutations q_{*}, q^{*} such that q_{*} is contained in q^{*}.
- Choose one instance of q_{*} in q^{*}.
- Write q by taking the letters of q^{*} and putting a bar over letters not in q_{*}.

Bar Notation

- Consider pairs of permutations q_{*}, q^{*} such that q_{*} is contained in q^{*}.
- Choose one instance of q_{*} in q^{*}.
- Write q by taking the letters of q^{*} and putting a bar over letters not in q_{*}.
For example, if $q_{*}=123$ and $q^{*}=15342$,

Bar Notation

- Consider pairs of permutations q_{*}, q^{*} such that q_{*} is contained in q^{*}.
- Choose one instance of q_{*} in q^{*}.
- Write q by taking the letters of q^{*} and putting a bar over letters not in q_{*}.
For example, if $q_{*}=123$ and $q^{*}=15342$,

Bar Notation

- Consider pairs of permutations q_{*}, q^{*} such that q_{*} is contained in q^{*}.
- Choose one instance of q_{*} in q^{*}.
- Write q by taking the letters of q^{*} and putting a bar over letters not in q_{*}.

For example, if $q_{*}=123$ and $q^{*}=15342$, then $q=1 \overline{5} 34 \overline{2}$.

Conversely, given q, q^{*} is obtained by writing all letters of q, and $q_{*}=$ reduction(unbarred letters of q).

Bar Notation

- Consider pairs of permutations q_{*}, q^{*} such that q_{*} is contained in q^{*}.
- Choose one instance of q_{*} in q^{*}.
- Write q by taking the letters of q^{*} and putting a bar over letters not in q_{*}.

For example, if $q_{*}=123$ and $q^{*}=15342$, then $q=1 \overline{5} 34 \overline{2}$.

Conversely, given q, q^{*} is obtained by writing all letters of q, and $q_{*}=$ reduction(unbarred letters of q).

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:

$$
S_{n}(\overline{132})=(n-1)!
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:

$$
S_{n}(\overline{1} 32)=(n-1)!
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:

$$
S_{n}(\overline{1} 32)=(n-1)!
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:

$$
S_{n}(\overline{1} 32)=(n-1)!
$$

$$
=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:

$$
\left.S_{n}(\overline{1} 32)=(n-1)!\quad S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers }\right)
$$

$$
=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

Definitions

Pattern Containment/Avoidance

p avoids q if every instance of q_{*} in p is part of an instance of q^{*} in p.

Some nice examples include:
$S_{n}(\overline{132})=(n-1)!$

$$
S_{n}(1 \overline{4} 23)=B_{n} \text { (Bell numbers) }
$$

$=\left|\left\{\pi \in S_{n} \mid \pi_{1}=1\right\}\right|$

Results with Particular Barred Patterns

- (West, 1990) A permutation is 2-stack sortable if and only if it avoids 2341 and $3 \overline{5} 241$.
- (Bousquet-Melou and Butler, 2006) A permutation is forest-like if and only if it avoids 1324 and $21 \overline{3} 54$.
- (Claesson, Dukes, and Kitaev, 2008) (2+2)-free posets are in bijection with permutations which avoid $3 \overline{152} \overline{4}$.

Enumeration Results

Enumeration results:

- Permutations avoiding the sets of patterns involved in applications to stack sorting, forest-like permutations, and posets have been enumerated.
- (Callan, 2005): Permutations which avoid 35241 are counted by OEIS Sequence A110447.
- (Callan, 2006): Permutations avoiding a pattern of length 4 with one bar give Catalan numbers, Bell numbers, OEIS Sequence A051295, or OEIS Sequence A137533.

Some Useful Observations

- You can have too many bars.

Lemma

If q is a pattern of length k with $k-1$ bars, then $S_{n}(q)=0$, $n \geq 1$.

Some Useful Observations

- You can have too many bars.

Lemma

If q is a pattern of length k with $k-1$ bars, then $S_{n}(q)=0$, $n \geq 1$.

- You can place bars in such a way to make $S_{n}(q)$ degenerate to regular pattern avoidance.

Lemma

If q contains a symmetry of $\bar{i}(i+1)$, then $S_{n}(q)$ is equivalent to counting permutations avoiding some non-barred pattern.

Observations

Patterns of length ≤ 5

Length	Bars	No. Sequences	Possible Sequences
2	0	1	1
3	1	2	$1,(n-1)!$
4	2	2	$1,(n-2)!$
5	3	2	$1,(n-3)!$
3	0	1	Catalan
4	1	4	Catalan, Bell, A051295, \& 1 more
5	2	17	A110447, A117106, $\& 15$ more
4	0	3	A005802, A061552, A022558
5	1	13	A006789, A047970, A098569, A122993, $\& 9$ more

Observations

Based on computation:

- Conjecture: If q is a barred pattern of length k with $k-2$ bars then either $S_{n}(q)=1$ or $S_{n}(q)=(n-(k-2))$!.
- Conjecture: $S_{n}(\overline{31542)}$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_{n}(14352)$ has generating function $\Pi_{n \geq 0} \frac{1}{\left(1-\frac{x}{\left.\left.(1-x)^{n}\right)^{1 / 2}\right)^{n+1}}\right.}$ (OEIS A122993).
- There are at least 24 new sequences obtained by counting $S_{n}(q)$, where q is a barred pattern of length 5 .

Goals

Main Goal

Automate a method to count $S_{n}(Q)$.

Goals

Main Goal

Automate a method to count $S_{n}(Q)$.

This method should:

- Reproduce the known results for pattern-avoiding permutations.
- Be independent of the set of patterns to be avoided.

Goals

Main Goal

Automate a method to count $S_{n}(Q)$.

This method should:

- Reproduce the known results for pattern-avoiding permutations.
- Be independent of the set of patterns to be avoided.

Enumeration Schemes are one such method that have been applied to regular pattern-avoiding permutations (Vatter, Zeilberger), and to pattern-avoiding words (P.).

Background

Divide

Notation

$$
\begin{aligned}
& S_{n}\left(Q ; p_{1} \cdots p_{l}\right):=\left\{\begin{array}{l|l}
\pi \in S_{n} & \begin{array}{l}
\pi \text { avoids } Q \\
\pi \text { has prefix } p_{1} \cdots p_{l}
\end{array}
\end{array}\right\} \\
& S_{n}\binom{Q_{;} p_{1} \cdots p_{l}}{i_{1} \cdots i_{l}}:=\left\{\begin{array}{l}
\pi \in S_{n} \text { avoids } Q \\
\begin{array}{l}
\pi \text { has prefix } p_{1} \cdots p_{l} \\
\pi=i_{1} \cdots i_{1} \pi_{l+1} \cdots \pi_{n}
\end{array}
\end{array}\right\}
\end{aligned}
$$

For example,

$$
\begin{aligned}
& S_{3}(\{132\} ; 12)=\{123,231\} \\
& S_{3}\left(\{123\} ; \frac{12}{23}\right)=\{231\}
\end{aligned}
$$

Background

Divide

Notation

$$
\begin{aligned}
& S_{n}\left(Q ; p_{1} \cdots p_{l}\right):=\left\{\begin{array}{l|l}
\pi \in S_{n} & \begin{array}{l}
\pi \text { avoids } Q \\
\pi \text { has prefix } p_{1} \cdots p_{l}
\end{array}
\end{array}\right\} \\
& S_{n}\left(\begin{array}{l|l}
Q_{;} & p_{1} \cdots p_{l} \\
i_{1} \cdots i_{l}
\end{array}\right):=\left\{\begin{array}{l}
\pi \in S_{n}
\end{array} \begin{array}{l}
\pi \text { avoids } Q \\
\pi \text { has prefix } p_{1} \cdots p_{l} \\
\pi=i_{1} \cdots i_{i} \pi l_{1+1} \cdots \pi_{n}
\end{array}\right\}
\end{aligned}
$$

For any pattern set Q, we have

$$
\begin{aligned}
& S_{n}(Q)=S_{n}(Q ; 1) \\
&= S_{n}(Q ; 12) \cup S_{n}(Q ; 21), \\
& \text { etc. }
\end{aligned}
$$

Background

Conquer

Objectives

(1) Given Q and p find r such that $\left|S_{n}\left(Q ; p_{1} \cdots p_{r} \cdots p_{l}\right)\right|=\left|S_{n-1}\left(Q ; p_{1} \cdots p_{r-1} p_{r+1} \cdots p_{l}\right)\right|$

Background

Conquer

Objectives

(1) Given Q and p find r such that

$$
\left|S_{n}\left(Q ; p_{1} \cdots p_{r} \cdots p_{l}\right)\right|=\left|S_{n-1}\left(Q ; p_{1} \cdots p_{r-1} p_{r+1} \cdots p_{l}\right)\right|
$$

(2) Given Q and p, find $i_{1}, \ldots, i_{\text {, such that }}$

$$
\left|S_{n}\left(Q_{;} \begin{array}{c}
p_{1} \cdots p_{r} \cdots \\
i_{1} \cdots p_{l} \\
i_{r} \cdots
\end{array}\right)\right|=0
$$

Background

Conquer

Objectives

(1) Given Q and p find r such that

$$
\left|S_{n}\left(Q ; p_{1} \cdots p_{r} \cdots p_{l}\right)\right|=\left|S_{n-1}\left(Q ; p_{1} \cdots p_{r-1} p_{r+1} \cdots p_{l}\right)\right|
$$

(2) Given Q and p, find $i_{1}, \ldots, i_{\text {, such that }}$

$$
\left|S_{n}\left(Q_{;} \begin{array}{c}
p_{1} \cdots p_{r} \cdots \\
i_{1} \cdots p_{l} \\
i_{r} \cdots
\end{array}\right)\right|=0
$$

Reversibly Deletable

Objective

Given Q and p find r such that

$$
\left|S_{n}\left(Q ; p_{1} \cdots p_{r} \cdots p_{l}\right)\right|=\left|S_{n-1}\left(Q ; p_{1} \cdots p_{r-1} p_{r+1} \cdots p_{l}\right)\right|
$$

To find such a recurrence we must check that:
(1) inserting p_{r} into a Q-avoiding permutation beginning with $p_{1} \cdots p_{r-1} p_{r+1} \cdots p_{l}$ always produces a Q-avoiding permutation.
(2) deleting p_{r} from a Q-avoiding permutation beginning with $p_{1} \cdots p_{l}$ always produces a Q avoiding permutation.

Reversibly Deletable

Reversibly Deletable: Insertion

As with non-barred patterns, check that every possible instance of a forbidden pattern involving p_{r} implies the existence of a forbidden pattern without p_{r}.
Example:
$Q=\{\overline{1} 423\}$, and $p=123$. Check p_{2}.

Reversibly Deletable: Insertion

Non-Example:
$Q=\{134 \overline{2}\}$, and $p=21$. Check p_{1}.
p_{1} can be involved in a 123 pattern in precisely one way ("2" $<a<b$).

Reversibly Deletable: Insertion

Non-Example:
$Q=\{134 \overline{2}\}$, and $p=21$. Check p_{1}.
p_{1} can be involved in a 123 pattern in precisely one way ("2" $<a<b$).

But what about π beginning with 21 abc? (e.g. 31452)
Observation: Must look at scenarios with extra letters, depending on how many bars are in forbidden patterns.

Reversibly Deletable: Deletion

No longer non-trivial, as with unbarred patterns.
Check that every possible instance of a forbidden pattern without p_{r} implies the existence of a forbidden pattern with p_{r}.

Requires similar case analysis to checking for insertion.

(Partial) Algorithm

Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_{n}(Q)$ in the following way.
(1) Let $N=\{\emptyset\}$, and let $E=\{[\emptyset, \emptyset]\}$.
(2) Let $N 2=\{$ children of $n \in N\}, E 2=\left\{\left[n_{i}, R_{i}\right]\right\}$, where for $n_{i} \in N 2, R_{i}$ is the corresponding set of reversibly deletable elements.
(3) If $R_{i} \neq \emptyset$ for all $n_{i} \in N 2$, then return $E \cup E 2$. Otherwise, let $E=E \cup E 2, N=\left\{n_{i} \in N 2 \mid R_{i}=\emptyset\right\}$, and return to step 2.

Gap Vectors

Spacing Vectors

Spacing Vectors

Given Q and p (of length l) let v be a vector in $\mathbb{N}^{/+1}$. Then, $S_{n}(Q ; p ; v)$ denotes the set of permutations of length n, avoiding Q, beginning with prefix p with exactly v_{1} letters smaller than " 1 ", v_{j} letters greater than " $\mathrm{j}-1$ " and smaller than " j ", and exactly v_{l+1} letters greater than "I".

For example,

$$
\begin{gathered}
S_{5}(\{132\} ; 12 ;\langle 2,0,1\rangle)= \\
\{34125,34215,34251,34512,34521\}
\end{gathered}
$$

but

$$
S_{5}(\{132\} ; 12 ;\langle 0,1,0\rangle)=\{ \} .
$$

Gap Vectors

A spacing vector v is a gap vector for $[Q, p]$ if there are no permutations avoiding Q with prefix p and spacing vector $\geq v$ (componentwise).

To check if v is a gap vector for $[Q, p]$,

- Let S consist of v_{1} fractional letters between 0 and $1, \ldots$, v_{l+1} fractional letters between $/$ and $I+1$.
- Let S^{*} be the set of all $\|v\|$! permutations of the elements of S.
- Consider all permutations formed by appending an element of S^{*} to p. If each of these permutations contains a forbidden pattern, then v is a gap vector.

Gap Vectors

A spacing vector v is a gap vector for $[Q, p]$ if there are no permutations avoiding Q with prefix p and spacing vector $\geq v$ (componentwise).

To check if v is a gap vector for $[Q, p]$,

- Let S consist of v_{1} fractional letters between 0 and $1, \ldots$, v_{l+1} fractional letters between $/$ and $I+1$.
- Let S^{*} be the set of all $\|v\|$! permutations of the elements of S.
- Consider all permutations formed by appending an element of S^{*} to p. If each of these permutations contains a forbidden pattern, then v is a gap vector.
This is almost true...

Gap Vector Considerations

The standard algorithm for finding gap vectors fails when $q=q_{1} \cdots q_{i} \overline{q_{i+1}} \cdots \overline{q_{k}}$.

Theorem

Let $q \in \bar{S}_{m}$ such that $q_{*}=q_{1} \cdots q_{m-1}$. Then there are no gap vectors for $[\{q\}, p]$ for any prefix p.

(Partial) Algorithm

Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_{n}(Q)$ in the following way.
(1) Let $N=\{\emptyset\}$, and let $E=\{[\emptyset, \emptyset, \emptyset]\}$.
(2) Let $N 2=\{$ children of $n \in N\}, E 2=\left\{\left[n_{i}, G_{i}, R_{i}\right]\right\}$, where for $n_{i} \in N 2, G_{i}$ is the corresponding set of gap vectors, and R_{i} is the corresponding set of reversibly deletable elements.
(3) If $R_{i} \neq \emptyset$ for all $n_{i} \in N 2$, then return $E \cup E 2$. Otherwise, let $E=E \cup E 2, N=\left\{n_{i} \in N 2 \mid R_{i}=\emptyset\right\}$, and return to step 2.

Stop Points

One more consideration

$$
\begin{aligned}
& S_{n}(\{123,321,23 \overline{1}\}) \quad \begin{array}{ll}
\emptyset \\
\downarrow
\end{array} \\
& \geq\langle 0,0,0,0\rangle \quad \geq\langle 0,0,0,0\rangle \\
& \begin{array}{l}
\geq\langle 1,0,0,0\rangle \\
\geq\langle 0,1,0,0\rangle \\
\geq\langle 0,0,1,0\rangle \\
\geq\langle 0,0,0,1\rangle
\end{array}
\end{aligned}
$$

gives the sequence $1,1,2,1,0, \ldots$, but we expect $1,1,1,1,0, \ldots$. What goes wrong?

Stop Points

With barred patterns, there may be no permutations of length n that avoid Q and begin with p, but there may be such permutations of longer length.

Given Q and p, we say $s \geq|p|$ is a stop point for $[Q, p]$ if there are no permutations of length $\leq s$ that avoid Q and begin with prefix p.

Observation: If p is an interior scheme prefix, the set of stop points for $[Q, p]$ is finite.

Algorithm

Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_{n}(Q)$ in the following way.
(1) Let $N=\{\emptyset\}$, and let $E=\{[\emptyset, \emptyset, \emptyset, \emptyset]\}$.
(2) Let $N 2=$ \{children of $n \in N\}, E 2=\left\{\left[n_{i}, G_{i}, R_{i}, S_{i}\right]\right\}$, where for $n_{i} \in N 2, G_{i}$ is the corresponding set of gap vectors, R_{i} is the corresponding set of reversibly deletable elements, and S_{i} is the corresponding set of stop points.
(3) If $R_{i} \neq \emptyset$ for all $n_{i} \in N 2$, then return $E \cup E 2$. Otherwise, let $E=E \cup E 2, N=\left\{n_{i} \in N 2 \mid R_{i}=\emptyset\right\}$, and return to step 2.

Summary of Extra Considerations

- More complicated to test for recurrences between subsets. (Deletion is no longer trivial, bars require more cases in analysis)
- May need to find recurrences that delete multiple letters at once.
- Gap vectors may be tricky to find depending on the structure of the forbidden patterns.
- More work to determine base cases of recurrence.

Success Rate

Pattern Lengths	Success Rate	Pattern Lengths	Success Rate
$[2,1]$	$1 / 1(100 \%)$	$[3,0],[3,0],[3,1]$	$43 / 45(95.6 \%)$
$[2,1],[2,0]$	$2 / 2(100 \%)$	$[3,0],[3,0],[3,2]$	$45 / 45(100 \%)$
$[2,1],[2,1]$	$2 / 2(100 \%)$	$[3,0],[3,1],[3,1]$	$135 / 138(97.8 \%)$
		$[3,0],[3,1],[3,2]$	$280 / 280(100 \%)$
$[3,1]$	$4 / 4(100 \%)$	$[3,0],[3,2],[3,2]$	$138 / 138(100 \%)$
$[3,2]$	$4 / 4(100 \%)$	$[3,1],[3,1],[3,1]$	$115 / 118(97.5 \%)$
$[3,0],[3,1]$	$18 / 20(90 \%)$	$[3,1],[3,1],[3,2]$	$378 / 378(100 \%)$
$[3,0],[3,2]$	$20 / 20(100 \%)$	$[3,1],[3,2],[3,2]$	$378 / 378(100 \%)$
$[3,1],[3,1]$	$27 / 28(96.4 \%)$	$[3,2],[3,2],[3,2]$	$118 / 118(100 \%)$
$[3,1],[3,2]$	$50 / 50(100 \%)$		
$[3,2],[3,2]$	$28 / 28(100 \%)$	$[4,1]$	$12 / 16(75 \%)$
		$[4,2]$	$25 / 26(96.2 \%)$
$[3,1],[4,0]$	$59 / 71(83.1 \%)$	$[4,3]$	$16 / 16(100 \%)$
$[3,1],[4,1]$	$229 / 240(95.4 \%)$		
$[3,1],[4,2]$	$355 / 364(97.5 \%)$	$[5,1]$	$15 / 89(16.9 \%)$
$[3,0],[4,1]$	$84 / 88(95.5 \%)$	$[5,2]$	(in progress)
$[3,0],[4,2]$	$133 / 136(97.8 \%)$		
$[4,0],[5,1]$	(in progress)		

Examples

New Results: Length 5 with 1 Bar

both give the sequence
1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \leq n \leq 15$.

Examples

New Results: Length 5 with 1 Bar

both also give the sequence
1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \leq n \leq 15$.

Examples

New Results: Length 5 with 2 Bars

gives the new sequence
1, 2, 5, 14, 43, 143, 511, 1950, 7903, 33848, 152529, 720466, 3555715, 18285538, 97752779
for $1 \leq n \leq 15$.

gives the new sequence 1, 2, 5, 14, 43, 146, 561, 2518, 13563, 88354, 686137, 6191526, 63330147, 720314930, 8985750097
for $1 \leq n \leq 15$.

Examples

New Results: Length 5 with 2 Bars

gives the new sequence 1, 1, 2, 5, 14, 43, 144, 522, 2030, 8398, 36714, 168793, 813112, 4091735, 21451972, 116891160 for $1 \leq n \leq 15$.

gives the new sequence
1, 1, 2, 5, 14, 43, 147, 575, 2648, 14617, 96696, 754585, 6794015, 69116493, 781266266, 9688636317
for $1 \leq n \leq 15$.

Summary

- The method of enumeration schemes confirms many known results for barred patterns and generates new results for $S_{n}(25 \overline{1} 43), S_{n}(25 \overline{1} 34), S_{n}(43521), S_{n}(43512)$, $S_{n}(5 \overline{1} \overline{2} 43), S_{n}(\overline{5} \overline{4} 231), S_{n}(31 \overline{5} \overline{4} 2), S_{n}(\overline{5} \overline{4} 132)$.
- It remains to find other ways to count permutations avoiding barred patterns.

Summary

Based on computation:

- Conjecture: If q is a barred pattern of length k with $k-2$ bars then either $S_{n}(q)=1$ or $S_{n}(q)=(n-(k-2))$!.
- Conjecture: $S_{n}(\overline{31542)}$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_{n}(\overline{1435} 2)$ has generating function $\Pi_{n \geq 0} \frac{1}{\left(1-\frac{x}{\left.\left.(1-x)^{n}\right)^{1 / 2}\right)^{n+1}}\right.}$ (OEIS A122993).
- There are at least 24 new sequences obtained by counting $S_{n}(q)$, where q is a barred pattern of length 5 .

Summary

Based on computation:

- Conjecture: If q is a barred pattern of length k with $k-2$ bars then either $S_{n}(q)=1$ or $S_{n}(q)=(n-(k-2))$!.
- Conjecture: $S_{n}(\overline{31542)}$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_{n}(\overline{1435} 2)$ has generating function $\Pi_{n \geq 0} \frac{1}{\left(1-\frac{x}{\left.\left.(1-x)^{n}\right)^{1 / 2}\right)^{n+1}}\right.}$ (OEIS A122993).
- There are at least 19 new sequences obtained by counting $S_{n}(q)$, where q is a barred pattern of length 5 .

