Barred Patterns	Enumeration Schemes	Results	Summary

Enumeration Schemes for Permutations Avoiding Barred Patterns

Lara Pudwell Rutgers University

June 17, 2008

Barred Patterns ●oooooo	Enumeration Schemes	Results 00000	Summary
Definitions			
Bar Notation			

- Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.
- Choose one instance of q_* in q^* .
- Write *q* by taking the letters of *q*^{*} and putting a bar over letters *not* in *q*_{*}.

Barred Patterns ●oooooo	Enumeration Schemes	Results ooooo	Summary
Definitions			
Bar Notation			

- Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.
- Choose one instance of q_* in q^* .
- Write *q* by taking the letters of *q*^{*} and putting a bar over letters *not* in *q*_{*}.

For example, if $q_* = 123$ and $q^* = 15342$,

Barred Patterns ●oooooo	Enumeration Schemes	Results ooooo	Summary
Definitions			
Bar Notation			

- Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.
- Choose one instance of q_* in q^* .
- Write *q* by taking the letters of *q*^{*} and putting a bar over letters *not* in *q*_{*}.

For example, if $q_* = 123$ and $q^* = 15342$,

Barred Patterns ●○○○○○○	Enumeration Schemes	Results 00000	Summary
Definitions			
Bar Notation			

- Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.
- Choose one instance of q_* in q^* .
- Write *q* by taking the letters of *q*^{*} and putting a bar over letters *not* in *q*_{*}.

For example, if $q_* = 123$ and $q^* = 15342$, then $q = 1\overline{5}34\overline{2}$.

Conversely, given q, q^* is obtained by writing all letters of q, and $q_* = reduction$ (unbarred letters of q).

Barred Patterns ●○○○○○○	Enumeration Schemes	Results 00000	Summary
Definitions			
Bar Notation			

- Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.
- Choose one instance of q_* in q^* .
- Write *q* by taking the letters of *q*^{*} and putting a bar over letters *not* in *q*_{*}.

For example, if $q_* = 123$ and $q^* = 15342$, then $q = 1\overline{5}34\overline{2}$.

Conversely, given q, q^* is obtained by writing all letters of q, and $q_* = reduction$ (unbarred letters of q).

Barred Patterns o●ooooo	Enumeration Schemes	Results	Summary
Definitions			
Pattern Contain	nment/Avoidance		

Barred Patterns o●ooooo	Enumeration Schemes	Results	Summary
Definitions			
Pattern Contai	nment/Avoidance		
., .	r		

Some nice examples include:

 $S_n(\overline{1}32) = (n-1)!$

Barred Patterns			Enumeration		sults	Summary	
Definitions							
Pattern (Cont	ainme	ent/Avoida	ance			
					.		

```
S_n(\overline{1}32) = (n-1)!
```

Barred Patterns			Enumeration		sults	Summary	
Definitions							
Pattern (Cont	ainme	ent/Avoida	ance			
					.		

Some nice examples include:

 $S_n(\overline{1}32) = (n-1)!$

Barred Patterns o●ooooo	Enumeration Schemes	Results	Summary			
Definitions						
Pattern Contai	Pattern Containment/Avoidance					
., .	, . , <i>,</i>					

Some nice examples include:

 $S_n(\overline{1}32) = (n-1)!$

$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results	Summary	
Definitions				
Pattern Containment/Avoidance				
n avaida a if	every instance of a in pi	a part of an insta	aaa of	

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results	Summary
Definitions			
Pattern Contair	nment/Avoidance		
·			

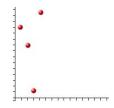
$$S_n(\overline{1}32) = (n-1)!$$
 $S_n(1\overline{4}23) = B_n$ (Bell numbers)

$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns		Enumeration Schem		Results		Summary
Definitions						
Pattern Co	ntainme	nt/Avoidance	9			
					_	

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

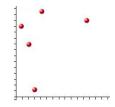


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns		Enumeration Schem		Results		Summary
Definitions						
Pattern Co	ntainme	nt/Avoidance	9			
					_	

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

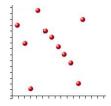


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Definitions			
Pattern Contair	nment/Avoidance		
			_

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

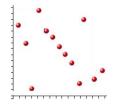


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Definitions			
Pattern Contair	nment/Avoidance		
			_

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

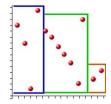


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns		Enumeration Sch		Results	Sun	nmary
Definitions						
Pattern C	ontainn	nent/Avoidan	се			

$$S_n(\overline{1}32) = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)



$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results	Summary
00000			

Results

Results with Particular Barred Patterns

- (West, 1990) A permutation is 2-stack sortable if and only if it avoids 2341 and 35241.
- (Bousquet-Melou and Butler, 2006) A permutation is forest-like if and only if it avoids 1324 and 21354.
- (Claesson, Dukes, and Kitaev, 2008) (2 + 2)-free posets are in bijection with permutations which avoid 31524.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Results			
Enumeration Res	ults		

Enumeration results:

- Permutations avoiding the sets of patterns involved in applications to stack sorting, forest-like permutations, and posets have been enumerated.
- (Callan, 2005): Permutations which avoid 35241 are counted by OEIS Sequence A110447.
- (Callan, 2006): Permutations avoiding a pattern of length 4 with one bar give Catalan numbers, Bell numbers, OEIS Sequence A051295, or OEIS Sequence A137533.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Observations			
Some Useful Ob	oservations		

• You can have too many bars.

Lemma

If q is a pattern of length k with k - 1 bars, then $S_n(q) = 0$, $n \ge 1$.

Barred Patterns	Enumeration Schemes	Results 00000	Summary		
Observations					
Some Useful Observations					

• You can have too many bars.

Lemma

If q is a pattern of length k with k - 1 bars, then $S_n(q) = 0$, $n \ge 1$.

• You can place bars in such a way to make $S_n(q)$ degenerate to regular pattern avoidance.

Lemma

If *q* contains a symmetry of $\overline{i}(i+1)$, then $S_n(q)$ is equivalent to counting permutations avoiding some non-barred pattern.

Barred Patterns	Enumeration Schemes	Results	Summary
0000000			

Observations

Patterns of length ≤ 5

Length	Bars	No. Sequences	Possible Sequences
2	0	1	1
3	1	2	1, (n-1)!
4	2	2	1, (n-2)!
5	3	2	1, (n-3)!
3	0	1	Catalan
4	- 1	4	Catalan, Bell,
4	1	4	A051295, & 1 more
5	2	17	A110447, A117106,
5	2	17	& 15 more
4	0	3	A005802, A061552,
4	0	5	A022558
			A006789, A047970,
5	1	13	A098569, A122993,
			& 9 more

Barred Patterns ○○○○○○●	Enumeration Schemes	Results 00000	Summary
Observations			
Observations			

Based on computation:

- Conjecture: If *q* is a barred pattern of length *k* with k 2 bars then either $S_n(q) = 1$ or $S_n(q) = (n (k 2))!$.
- Conjecture: $S_n(\overline{31}542)$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_n(\overline{1}43\overline{5}2)$ has generating function $\prod_{n\geq 0} \frac{1}{(1-\frac{x}{(1-x)^n})^{(1/2)^{n+1}}}$ (OEIS A122993).
- There are at least 24 new sequences obtained by counting $S_n(q)$, where q is a barred pattern of length 5.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			
Goals			

Main Goal

Automate a method to count $S_n(Q)$.

Barred Patterns	Enumeration Schemes	Results ooooo	Summary
Background			
Goals			

Main Goal

Automate a method to count $S_n(Q)$.

This method should:

- Reproduce the known results for pattern-avoiding permutations.
- Be independent of the set of patterns to be avoided.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			
Goals			

Main Goal

Automate a method to count $S_n(Q)$.

This method should:

- Reproduce the known results for pattern-avoiding permutations.
- Be independent of the set of patterns to be avoided.

Enumeration Schemes are one such method that have been applied to regular pattern-avoiding permutations (Vatter, Zeilberger), and to pattern-avoiding words (P.).

Barred Patterns	Enumeration Schemes o●oooooooooooooooooooo	Results 00000	Summary
Background			
Divide			

Notation

$$egin{aligned} S_n\left(Q;p_1\cdots p_l
ight)&:=\left\{\pi\in S_n\ \Big|\ egin{aligned} \pi ext{ avoids }Q\ \pi ext{ has prefix }p_1\cdots p_l\ \end{array}
ight\}\ S_n\left(Q;egin{aligned} p_1\cdots p_l\ i_1\cdots i_l\ \end{array}
ight)&:=\left\{\pi\in S_n\ \Big|\ egin{aligned} \pi ext{ avoids }Q\ \pi ext{ has prefix }p_1\cdots p_l\ \pi ext{ = }i_1\cdots i_l\pi_{l+1}\cdots\pi_n\ \end{array}
ight\} \end{aligned}$$

For example,

$$S_3(\{132\};12) = \{123,231\}$$

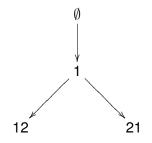
 $S_3\left(\{123\};\frac{12}{23}\right) = \{231\}$

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			
Divide			

Notation

$$egin{aligned} S_n\left(Q; oldsymbol{p}_1 \cdots oldsymbol{p}_l
ight) &:= \left\{ \pi \in S_n \ \left| egin{aligned} \pi ext{ avoids } Q \ \pi ext{ has prefix } oldsymbol{p}_1 \cdots oldsymbol{p}_l \ \pi ext{ (Q; } oldsymbol{p}_1 \cdots oldsymbol{p}_l \ eta_1 \cdots oldsymbol{i}_l
ight) &:= \left\{ \pi \in S_n \ \left| egin{aligned} \pi ext{ avoids } Q \ \pi ext{ has prefix } oldsymbol{p}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{i}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{i}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{i}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{p}_l \ \pi ext{ = } oldsymbol{i}_1 \cdots oldsymbol{i}_l \ \pi ext{ = } oldsy$$

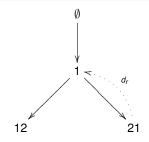
For any pattern set Q, we have $S_n(Q) = S_n(Q; 1)$ $= S_n(Q; 12) \cup S_n(Q; 21)$, etc.



Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			
Conquer			

Objectives

Given Q and p find r such that $|S_n(Q;p_1\cdots p_r\cdots p_l)| = |S_{n-1}(Q;p_1\cdots p_{r-1}p_{r+1}\cdots p_l)|$



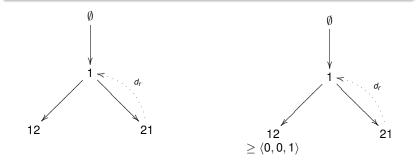
Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			

Conquer

Objectives

- Given Q and p find r such that $|S_n(Q; p_1 \cdots p_r \cdots p_l)| = |S_{n-1}(Q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|$
- 2 Given *Q* and *p*, find i_1, \ldots, i_l such that

$$\left|S_n\left(Q;\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0$$



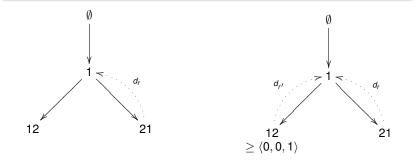
Barred Patterns	Enumeration Schemes	Results 00000	Summary
Background			

Conquer

Objectives

- Given Q and p find r such that $|S_n(Q; p_1 \cdots p_r \cdots p_l)| = |S_{n-1}(Q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|$
- 2 Given *Q* and *p*, find i_1, \ldots, i_l such that

$$\left|S_n\left(Q; \frac{p_1 \cdots p_r \cdots p_l}{i_1 \cdots i_r \cdots i_l}\right)\right| = 0$$



Barred Patterns	Enumeration Schemes	Results 00000	Summary
Reversibly Deletable			
Reversibly Dele	table		

Objective

Given *Q* and *p* find *r* such that

$$|S_n(Q;p_1\cdots p_r\cdots p_l)|=|S_{n-1}(Q;p_1\cdots p_{r-1}p_{r+1}\cdots p_l)|$$

To find such a recurrence we must check that:

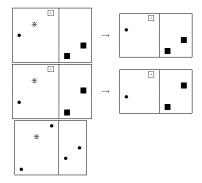
- *inserting* p_r into a Q-avoiding permutation beginning with $p_1 \cdots p_{r-1} p_{r+1} \cdots p_l$ always produces a Q-avoiding permutation.
- 2 *deleting* p_r from a *Q*-avoiding permutation beginning with $p_1 \cdots p_l$ always produces a *Q* avoiding permutation.

Reversibly Deletable	etable: Insertion		
0000000 Reversibly Deletable	0000 0000 00000000000000000000000000000		
Barred Patterns	Enumeration Schemes	Results	Summary

As with non-barred patterns, check that *every* possible instance of a forbidden pattern involving p_r implies the existence of a forbidden pattern without p_r .

Example:

 $Q = \{\overline{1}423\}$, and p = 123. Check p_2 .



Barred Patterns	Enumeration Schemes	Results 00000	Summary
Reversibly Deletable			
Reversibly Dele	etable: Insertion		

Non-Example: $Q = \{134\overline{2}\}$, and p = 21. Check p_1 .

 p_1 can be involved in a 123 pattern in precisely one way ("2" < a < b).

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Reversibly Deletable			

Reversibly Deletable: Insertion

Non-Example: $Q = \{134\overline{2}\}$, and p = 21. Check p_1 .

 p_1 can be involved in a 123 pattern in precisely one way ("2" < a < b).

But what about π beginning with 21*abc*? (e.g. 31452)

Observation: Must look at scenarios with extra letters, depending on how many bars are in forbidden patterns.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Reversibly Deletable			

Reversibly Deletable: Deletion

No longer non-trivial, as with unbarred patterns.

Check that *every* possible instance of a forbidden pattern without p_r implies the existence of a forbidden pattern with p_r .

Requires similar case analysis to checking for insertion.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Reversibly Deletable			
(Partial) Algorithm			

Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_n(Q)$ in the following way.

• Let
$$N = \{\emptyset\}$$
, and let $E = \{[\emptyset, \emptyset]\}$.

- 2 Let N2 = {children of n ∈ N}, E2 = {[n_i, R_i]}, where for n_i ∈ N2, R_i is the corresponding set of reversibly deletable elements.
- ③ If $R_i \neq \emptyset$ for all $n_i \in N2$, then return $E \cup E2$. Otherwise, let $E = E \cup E2$, $N = \{n_i \in N2 | R_i = \emptyset\}$, and return to step 2.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Gap Vectors			

Spacing Vectors

Spacing Vectors

Given *Q* and *p* (of length *l*) let *v* be a vector in \mathbb{N}^{l+1} . Then, $S_n(Q; p; v)$ denotes the set of permutations of length *n*, avoiding *Q*, beginning with prefix *p* with exactly v_1 letters smaller than "1", v_j letters greater than "j-1" and smaller than "j", and exactly v_{l+1} letters greater than "l".

For example,

 $S_5(\{132\}; 12; \langle 2, 0, 1 \rangle) =$

 $\{34125, 34215, 34251, 34512, 34521\}$

but

$$\mathcal{S}_{5}(\{132\};12;\langle0,1,0\rangle)=\{\}\,.$$

Barred Patterns	Enumeration Schemes	Results	Summary
	000000000000000000000000000000000000000		

Gap Vectors

Gap Vectors

A spacing vector v is a *gap vector* for [Q, p] if there are no permutations avoiding Q with prefix p and spacing vector $\geq v$ (componentwise).

To check if v is a gap vector for [Q, p],

- Let *S* consist of v_1 fractional letters between 0 and 1, ..., v_{l+1} fractional letters between *l* and *l* + 1.
- Let S* be the set of all ||v||! permutations of the elements of S.
- Consider all permutations formed by appending an element of S* to p. If each of these permutations contains a forbidden pattern, then v is a gap vector.

Barred Patterns	Enumeration Schemes	Results	Summary
	000000000000000000000000000000000000000		

Gap Vectors

Gap Vectors

A spacing vector v is a *gap vector* for [Q, p] if there are no permutations avoiding Q with prefix p and spacing vector $\geq v$ (componentwise).

To check if v is a gap vector for [Q, p],

- Let *S* consist of v_1 fractional letters between 0 and 1, ..., v_{l+1} fractional letters between *l* and *l* + 1.
- Let S* be the set of all ||v||! permutations of the elements of S.
- Consider all permutations formed by appending an element of S* to p. If each of these permutations contains a forbidden pattern, then v is a gap vector.

This is almost true...

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Gap Vectors			
Gap Vector Co	nsiderations		

The standard algorithm for finding gap vectors fails when $q = q_1 \cdots q_i \overline{q_{i+1}} \cdots \overline{q_k}$.

Theorem

Let $q \in \overline{S}_m$ such that $q_* = q_1 \cdots q_{m-1}$. Then there are *no* gap vectors for $[\{q\}, p]$ for any prefix *p*.

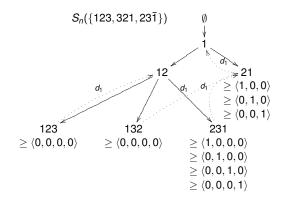
Barred Patterns	Enumeration Schemes	Results 00000	Summary
Gap Vectors			
(Partial) Algorithm	1		

Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_n(Q)$ in the following way.

• Let
$$N = \{\emptyset\}$$
, and let $E = \{[\emptyset, \emptyset, \emptyset]\}$.

- 2 Let N2 = {children of n ∈ N}, E2 = {[n_i, G_i, R_i]}, where for n_i ∈ N2, G_i is the corresponding set of gap vectors, and R_i is the corresponding set of reversibly deletable elements.
- ③ If $R_i \neq \emptyset$ for all $n_i \in N2$, then return $E \cup E2$. Otherwise, let $E = E \cup E2$, $N = \{n_i \in N2 | R_i = \emptyset\}$, and return to step 2.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Stop Points			
One more consider	ation		



gives the sequence $1, 1, 2, 1, 0, \ldots$, but we expect $1, 1, 1, 1, 0, \ldots$. What goes wrong?

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Stop Points			
Stop Points			

With barred patterns, there may be *no* permutations of length n that avoid Q and begin with p, but there may be such permutations of longer length.

Given *Q* and *p*, we say $s \ge |p|$ is a *stop point* for [Q, p] if there are no permutations of length $\le s$ that avoid *Q* and begin with prefix *p*.

Observation: If p is an interior scheme prefix, the set of stop points for [Q, p] is finite.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Summary			
Algorithm			

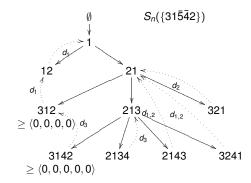
Given Q, a set of forbidden patterns, we can find an enumeration scheme E for $S_n(Q)$ in the following way.

• Let
$$N = \{\emptyset\}$$
, and let $E = \{[\emptyset, \emptyset, \emptyset, \emptyset]\}$.

2 Let $N2 = \{$ children of $n \in N\}$, $E2 = \{[n_i, G_i, R_i, S_i]\}$, where for $n_i \in N2$, G_i is the corresponding set of gap vectors, R_i is the corresponding set of reversibly deletable elements, and S_i is the corresponding set of stop points.

③ If $R_i \neq \emptyset$ for all $n_i \in N2$, then return $E \cup E2$. Otherwise, let $E = E \cup E2$, $N = \{n_i \in N2 | R_i = \emptyset\}$, and return to step 2.

Summary of Extra Considerations



- More complicated to test for recurrences between subsets. (Deletion is no longer trivial, bars require more cases in analysis)
- May need to find recurrences that delete multiple letters at once.
- Gap vectors may be tricky to find depending on the structure of the forbidden patterns.
- More work to determine base cases of recurrence.

Barred Patterns	Enumeration Schemes	Results	Summary
		0000	

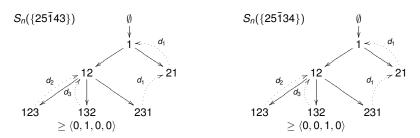
Statistics

Success Rate

Pattern Lengths	Success Rate	Pattern Lengths	Success Rate
[2,1]	1/1 (100%)	[3,0],[3,0],[3,1]	43/45 (95.6%)
[2,1],[2,0]	2/2 (100%)	[3,0],[3,0],[3,2]	45/45 (100%)
[2,1],[2,1]	2/2 (100%)	[3,0],[3,1],[3,1]	135/138 (97.8%)
		[3,0],[3,1],[3,2]	280/280 (100%)
[3,1]	4/4 (100%)	[3,0],[3,2],[3,2]	138/138 (100%)
[3,2]	4/4 (100%)	[3,1],[3,1],[3,1]	115/118 (97.5%)
[3,0],[3,1]	18/20 (90%)	[3,1],[3,1],[3,2]	378/378 (100%)
[3,0],[3,2]	20/20 (100%)	[3,1],[3,2],[3,2]	378/378 (100%)
[3,1],[3,1]	27/28 (96.4%)	[3,2],[3,2],[3,2]	118/118 (100%)
[3,1],[3,2]	50/50 (100%)		
[3,2],[3,2]	28/28 (100%)	[4,1]	12/16 (75%)
		[4,2]	25/26 (96.2%)
[3,1],[4,0]	59/71 (83.1%)	[4,3]	16/16 (100%)
[3,1],[4,1]	229/240 (95.4%)		
[3,1],[4,2]	355/364 (97.5%)	[5,1]	15/89 (16.9%)
[3,0],[4,1]	84/88 (95.5%)	[5,2]	(in progress)
[3,0],[4,2]	133/136 (97.8%)		
[4,0],[5,1]	(in progress)		

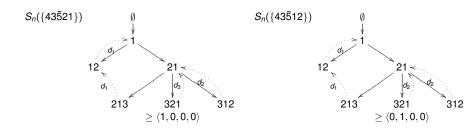
Barred Patterns	Enumeration Schemes	Results ○●○○○	Summary
Examples			

New Results: Length 5 with 1 Bar



both give the sequence 1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \le n \le 15$.

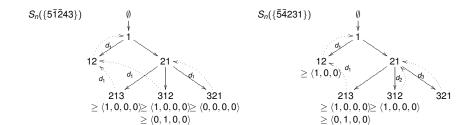
Barred Patterns	Enumeration Schemes	Results ○o●oo	Summary
Examples			



both also give the sequence

1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results ○○○●○	Summary	
Examples				
New Results: Length 5 with 2 Bars				



gives the new sequence 1, 2, 5, 14, 43, 143, 511, 1950, 7903, 33848, 152529, 720466, 3555715, 18285538, 97752779

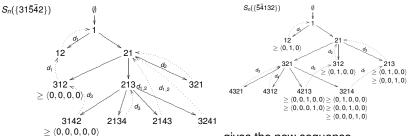
for $1 \le n \le 15$.

gives the new sequence 1, 2, 5, 14, 43, 146, 561, 2518, 13563, 88354, 686137, 6191526, 63330147, 720314930, 8985750097

for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results ○○○○●	Summary
Examples			

New Results: Length 5 with 2 Bars



gives the new sequence 1, 1, 2, 5, 14, 43, 144, 522, 2030, 8398, 36714, 168793, 813112, 4091735, 21451972, 116891160 for $1 \le n \le 15$. gives the new sequence 1, 1, 2, 5, 14, 43, 147, 575, 2648, 14617, 96696, 754585, 6794015, 69116493, 781266266, 9688636317 for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results 00000	Summary

Summary

- The method of enumeration schemes confirms many known results for barred patterns and generates new results for S_n(25143), S_n(25134), S_n(43521), S_n(43512), S_n(51243), S_n(54231), S_n(31542), S_n(54132).
- It remains to find other ways to count permutations avoiding barred patterns.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Summary			

Based on computation:

- Conjecture: If *q* is a barred pattern of length *k* with k 2 bars then either $S_n(q) = 1$ or $S_n(q) = (n (k 2))!$.
- Conjecture: $S_n(\overline{31}542)$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_n(\overline{1}43\overline{5}2)$ has generating function $\prod_{n\geq 0} \frac{1}{(1-\frac{x}{(1-x)^n})^{(1/2)^{n+1}}}$ (OEIS A122993).
- There are at least 24 new sequences obtained by counting $S_n(q)$, where q is a barred pattern of length 5.

Barred Patterns	Enumeration Schemes	Results 00000	Summary
Summary			

Based on computation:

- Conjecture: If *q* is a barred pattern of length *k* with k 2 bars then either $S_n(q) = 1$ or $S_n(q) = (n (k 2))!$.
- Conjecture: $S_n(\overline{31}542)$ gives the number of ordered factorizations over the Gaussian polynomials. (OEIS A047970)
- Conjecture: $S_n(\overline{1}43\overline{5}2)$ has generating function $\prod_{n\geq 0} \frac{1}{(1-\frac{x}{(1-x)^n})^{(1/2)^{n+1}}}$ (OEIS A122993).
- There are at least 19 new sequences obtained by counting $S_n(q)$, where q is a barred pattern of length 5.