Wreath-closed permutation classes

Mike Atkinson, Nik Ruškuc, and Rebecca Smith

June 17, 2008

Introduction

Pin Sequences

Unique Embedding

Finite types

Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Introduction
Definition
The basis of a pattern class is the maximum set of minimal permutations that are avoided by all permutations in the pattern class.

Note that the set of permutations avoiding a particular permutation or set of permutations is a closed class.

The permutation $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right]$ is such that the i th term of α is substituted by β_{i}. In other words $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right]$ consists of n segments order isomorphic to $\beta_{1}, \ldots, \beta_{n}$ where the relative order of the segments is the same as the relative order of the terms of α.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

The permutation $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right]$ is such that the i th term of α is substituted by β_{i}. In other words $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right]$ consists of n segments order isomorphic to $\beta_{1}, \ldots, \beta_{n}$ where the relative order of the segments is the same as the relative order of the terms of α.

Example

Let $\alpha=2413, \beta_{1}=123, \beta_{2}=21, \beta_{3}=1, \beta=312$. Then $\alpha\left[\beta_{1}, \ldots, \beta_{4}\right]=234981756$.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Mike Atkinson, Nik
 Ruškuc, and Rebecca Smith

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: $\alpha\left[\beta_{1}, \ldots, \beta_{4}\right]=234981756$.

Definition

A pattern class X is said to be wreath-closed (or substitution closed) if $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right] \in X$ for all $\alpha, \beta_{1}, \ldots, \beta_{n} \in X$.

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Definition

A pattern class X is said to be wreath-closed (or substitution closed) if $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right] \in X$ for all $\alpha, \beta_{1}, \ldots, \beta_{n} \in X$.

The intersection of wreath-closed pattern classes is itself wreath-closed. Thus any pattern class is contained in a smallest wreath-closed class which is referred to as its wreath closure.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Definition

A pattern class X is said to be wreath-closed (or substitution closed) if $\alpha\left[\beta_{1}, \ldots, \beta_{n}\right] \in X$ for all $\alpha, \beta_{1}, \ldots, \beta_{n} \in X$.

The intersection of wreath-closed pattern classes is itself wreath-closed. Thus any pattern class is contained in a smallest wreath-closed class which is referred to as its wreath closure.
In this talk, we consider the wreath-closure of $X=\operatorname{Av}(\psi)$ where ψ is any permutation. In particular, does the wreath-closure of X have a finite or infinite basis?

Definition

An interval of a permutation is a consecutive sequence of elements of the permutation that are also form a set of consecutive (integer) values.

Definition

An interval of a permutation is a consecutive sequence of elements of the permutation that are also form a set of consecutive (integer) values.

Definition

A simple permutation is a permutation whose only intervals are singletons and the entire permutation.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations
of infinite type
Indecomposable
permutations of infinite type
Summary

Definition

An interval of a permutation is a consecutive sequence of elements of the permutation that are also form a set of consecutive (integer) values.

Definition

A simple permutation is a permutation whose only intervals are singletons and the entire permutation.

Example

The permutation 58147362 is simple.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: The permutation 58147362.

In their article "Simple permutations and pattern restricted permutations", Albert and Atkinson show the crucial connection between wreath-closed classes and simple permutations:

Proposition
A pattern class is wreath-closed if and only if its basis consists of simple permutations.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Definition

An extension ξ of ψ is a minimal simple extension of ψ if

1. ξ is simple, and
2. among all simple extensions of ψ, ξ is minimal under the subpermutation order.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Definition

An extension ξ of ψ is a minimal simple extension of ψ if

1. ξ is simple, and
2. among all simple extensions of ψ, ξ is minimal under the subpermutation order.

Lemma
The basis of the wreath closure of $X=\operatorname{Av}(\psi)$ is the set of minimal simple extensions of ψ.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Example

A case where the wreath-closure of $X=A v(\psi)$ has an infinite basis.

Introduction
Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Example

A case where the wreath-closure of $X=A v(\psi)$ has an infinite basis.

Let $\psi=1234$.
Then the basis of the wreath-closure of X contains the set: \{35861472, 57(10)8361492, ...,

$$
(2 k+1)(2 k+3)(2 k+6)(2 k+4)(2 k-1)(2 k+2)(2 k-3)(2 k+4) \cdots 583614(2 k+5) 2, \ldots\}
$$

Introduction

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Wreath-closed
permutation classes
Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

To define pin sequences, we consider the graphs of permutations.

Example

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: The graph of the permutation 642351.

The rectangle of a set of points of the graph of permutation is the (minimum) rectangle that contains these points.

Example

Figure: $\operatorname{Rect}(4,2,3,5)$.

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary
Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding

Proper pin sequences were first defined by Brignall, Huczynska, and Vatter in their paper "Decomposing simple permutations, with enumerative consequences."

Mike Atkinson, Nik Ruškuc, and Rebecca Smith

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Proper pin sequences were first defined by Brignall, Huczynska, and Vatter in their paper "Decomposing simple permutations, with enumerative consequences."

Definition

If p_{1}, p_{2} are two points of a permutation then a proper pin sequence from $\left\{p_{1}, p_{2}\right\}$ is a sequences of points $p_{1}, p_{2}, p_{3}, \ldots$ such that, for each $i \geq 2$,

1. p_{i+1} lies outside $\operatorname{Rect}\left(p_{1}, p_{2}, \ldots, p_{i}\right)$,
2. p_{i+1} cuts $\operatorname{Rect}\left(p_{1}, p_{2}, \ldots, p_{i}\right)$ either to the left, right, below or above it,
3. p_{i+1} is extremal in its direction with respect to $\operatorname{Rect}\left(p_{1}, p_{2}, \ldots, p_{i}\right)$,
4. p_{i+1} separates p_{i} from $\operatorname{Rect}\left(p_{1}, p_{2}, \ldots, p_{i-1}\right)$ by lying vertically or horizontally between p_{i} and $\operatorname{Rect}\left(p_{1}, p_{2}, \ldots, p_{i-1}\right)$.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
P in Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

We also rely on the following two propositions of Brignall, Huczynska, and Vatter:

Proposition

If $P=p_{1}, p_{2}, \ldots, p_{m}$ is a pin sequence in a permutation σ then the only subsets of P that can be non-trivial intervals are $\left\{p_{1}, p_{m}\right\},\left\{p_{2}, p_{m}\right\},\left\{p_{1}, p_{3}, \ldots, p_{m}\right\}$, and $\left\{p_{2}, p_{3}, \ldots, p_{m}\right\}$.

Proposition
If p_{1}, p_{2} are points of a simple permutation σ then there is a pin sequence $P=p_{1}, p_{2}, \ldots, p_{m}$ whose final point is the last point of σ (a right-reaching pin sequence). Similarly, there is a left-reaching pin sequence whose first two points are p_{1}, p_{2}.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Example

A pin sequence extending from $p_{1}=4$ and $p_{2}=3$ in the simple permutation 58147362

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Example

A pin sequence extending from $p_{1}=$ and p_{2} in the simple permutation 58147362

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
P in Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Example

A pin sequence extending from $p_{1}=$ and p_{2} in the simple permutation 58147362

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Example

A pin sequence extending from $p_{1}=$ and p_{2} in the simple permutation 58147362

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Lemma

Let α be any permutation except for
$1,12,21,132,213,231,312$. Then there are arbitrarily long pin sequences not containing α as a subsequence.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction

Pin Sequences

Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: Pin sequences P_{1}, P_{2}.

Lemma

Let $P=p_{1}, p_{2}, \ldots$ be any pin sequence of length 5 or more and let $p_{a}, p_{a+1}, p_{a+2}, p_{a+3}, p_{a+4}$ be five consecutive points of P. Let θ be any of $12,21,132,213,231,312$.
Then among $p_{a}, p_{a+1}, p_{a+2}, p_{a+3}, p_{a+4}$ we can find a permutation isomorphic to θ and two points r, s in this permutation such that $r, s, p_{a+5}, p_{a+6}, \ldots$ is a pin sequence.

Lemma

Let $P=p_{1}, p_{2}, \ldots$ be a pin sequence that avoids 2413.
Then starting no later than p_{4}, the steps of P will be repetitions of the pattern BRAL (or a cyclic variant). Similarly, if P avoids 3142, then the steps will repeat the pattern LARB (or a cyclic variant).

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Lemma

Consider the diagrams shown below where the minimal intervals of θ and ϕ are separated by hook points. Suppose that either $\theta \neq \tau \ominus 1$ or $\phi \neq 1 \ominus \omega$. This permutation is simple and, unless $\theta=\iota_{s}$ and $\psi=\iota_{t}$, the permutation $\theta \ominus \phi$ embeds uniquely in it.

Figure: Simple extension of $\theta \ominus \phi$

Figure: Simple extension of $\theta \ominus \phi$ when $\theta=\oplus_{i=1}^{S} \delta_{r}$ and $\phi=\oplus_{i=1}^{t} \delta_{r}$.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Lemma

Consider the diagrams shown in below where the minimal intervals of $\theta=\tau \ominus 1$ and $\phi=1 \ominus \omega$ are separated by the hook points and θ and ϕ are separated by a hook point whose position is based on the relative sizes of θ and ϕ. This permutation is simple and, unless $\theta=\phi=\iota_{1}$, the permutation $\theta \ominus \phi$ embeds uniquely in it.

$|\Theta| \geqslant|\phi|$

Figure: Simple extension of $\theta \ominus \phi$ where $\theta=\tau \ominus 1$ and $\phi=1 \ominus \omega$.

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Proposition

Let α be any permutation. Then there exists a simple permutation χ such that $\alpha \preceq \chi$ and α is the unique copy of α within χ.
If the simple skeleton is 12 or 21 use the constructions of the previous lemmas or:

Figure: A simple extension of $\iota_{s} \ominus \iota_{t}$.

Finite types

Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

If the length of the simple skeleton is at least 4, use hooks:

$\theta_{\mathrm{n}-1}$ is not the top interval

θ_{n-1} is the top interval

Wreath-closed
permutation classes
Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Figure: Simple extension of $\sigma\left[\theta_{1}, \ldots, \theta_{n}\right]$

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Lemma

Let α be a permutation of the form 123, 321, or of length at least 4. Then there exists a simple permutation α_{s}^{*} that contains α, minimal subject to its simplicity. Furthermore there are permutations $\hat{\alpha}$ of arbitrary length which consist of α_{s}^{*} and a pin sequence P such that

1. $\hat{\alpha}=\alpha_{s}^{*} \cup P$ is simple and contains a unique copy of α, and
2. If $\alpha \preceq \beta \preceq \hat{\alpha}$ and β is simple then β has the form $\alpha_{s}^{*} \cup P_{0}$ where P_{0} is an initial subsequence of the pin sequence P.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Figure: The permutation $\hat{\alpha}$ for $\alpha=\theta \ominus \phi \neq \iota_{s} \ominus \iota_{t}$.

Figure: The permutation $\hat{\alpha}$ for $\alpha=\iota_{s} \ominus \iota_{t}$.

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding

Finite types

Indecomposable permutations of finite type Decomposable permutations of finite type
Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Introduction

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: The permutation $\hat{\alpha}$ for $\alpha=3142$

Introduction

Pin Sequences
Theorem
Suppose that the permutation $\psi=\sigma\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ where σ is the simple skeleton of ψ and $|\sigma|=n \geq 4$. If each α_{i} is a subpermutation of $132,213,231$ or 312 , then ψ has finite type.

Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Theorem
If ψ is of any of the following types:

1. $231 \oplus 231,312 \oplus 312,231 \oplus 312,312 \oplus 231$ or any subpermutation of these,
2. $21 \oplus 1 \oplus 21,1 \oplus 21 \oplus 1$, or any subpermutation of these, or
3. $2413 \oplus 1,1 \oplus 2413,3142 \oplus 1$, or $1 \oplus 3142$,
then ψ has finite type.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Definition

A spiral permutation ψ is made up of a centre pattern 3142 and a contiguous sequence of pin points from the clockwise pin sequence $p_{i} p_{i+1} \ldots p_{k}$ where $i \geq 2$ as shown below. Furthermore, $|\psi|>4$. Also a (dual) spiral permutation ψ is made up of a centre pattern 2413 and a contiguous sequence of pin points from the counter-clockwise pin sequence $p_{i} p_{i+1} \ldots p_{k}$ where $i \geq 2$.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type

Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: Spiral permutations with centre permutation 3142.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Lemma

A spiral permutation ψ where $|\psi| \neq 6,7,9$ has only one non-trivial interval, that is, the centre 3142 [or 2413] pattern. If $|\psi|=9$, then ψ has exactly two non-trivial intervals where the second of these intervals is made up of the first and last pin points. If $|\psi|=6,7$, then ψ has a plus or minus decomposition with one interval of length 1 and another interval of length $|\psi|-1$.

Figure: The permutation ψ when $5 \leq|\psi| \leq 9$.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Mike Atkinson, Nik
Ruškuc, and Rebecca
Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Figure: A spiral permutation with centre permutation 3142.

Introduction

Pin Sequences

Unique Embedding

Theorem

Any spiral permutation ψ where $|\psi| \neq 6,7$ has finite type.

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Some cases shown here:

Figure: $\alpha \oplus \beta \oplus \gamma \oplus \delta$ has infinite type.

Introduction

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Figure: $\alpha \oplus \beta \oplus \gamma$ has infinite type when not of the forms: $21 \oplus 1 \oplus 21,1 \oplus 21 \oplus 1$, or any subpermutation of these.

Consider a permutation with simple decomposition

$$
\psi=\sigma\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]
$$

with $n \geq 4$ that is not a spiral.
Additionally, assume that at least one of the intervals α_{i} is isomorphic to 123 , or isomorphic to 321 , or has length at least four.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Choose a special interval α_{s} as:

1. If any of $\alpha_{1}, \ldots, \alpha_{n}$ are of length 4 and not isomorphic to 2413 or 3142 then we choose α_{s} to be the longest of such intervals.
2. Else, if there are no intervals of length greater than 4 then we choose α_{s} to be any interval isomorphic 2413 or 3142.
3. Else, if there are no intervals of size 4 or more we choose α_{s} to be any 123 or 321 interval.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable

All the symmetries of ψ are of the same type (all finite, or all infinite) and so we may replace ψ by any of its symmetries. If $\alpha_{s}=a_{1} \cdots a_{k}$ then, by replacing ψ by its reverse if necessary, we can assume that $a_{k}<a_{1}$. Furthermore we may assume that $s<n$ since, if $s=n$, we can pass to the reverse complement of ψ (and have $s=1$).

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Introduction

Pin Sequences
Let α_{s}^{*} be a minimal simple permutation containing α_{s}. Let $P=\left\{p_{1}, \ldots, p_{m}\right\}$ be an arbitrarily long pin sequence out of α_{s}^{*}. Do this so that $\alpha_{s}^{*} \cup P$ is simple and has a unique subpermutation isomorphic to α_{s}.

Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

We form the permutation shown like those in the following figures. (Some variations occur in some extraordinary cases.)

Figure: The permutation ξ if $\alpha_{s} \neq 3142$.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction

Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Wreath-closed
permutation classes
Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Figure: The permutation ξ if $\alpha_{s}=3142$.

Introduction
Pin Sequences
Unique Embedding
Finite types
Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Figure: The permutation ξ if $\alpha_{s}=3142$.

The constructions (or the necessary variants thereof) will prove to be minimal simple extensions of ψ and thus show that ψ is of infinite type.

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction

Table: Classification of $\psi=\sigma\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ when $n \leq 2$

α_{1}	α_{2}	$\sigma=1$	$\sigma=12$	$\sigma=21$
1	\emptyset	F	-	-
1	1	-	F	F
1	$\{21,231,312\}$	-	F	∞
$\{21,231,312\}$	1	-	F	∞
1	$\{12,132,213\}$	-	∞	F
$\{12,132,213\}$	1	-	∞	F
$\{21,231,312\}$	$\{21,231,312\}$	-	F	∞
$\{12,132,213\}$	$\{12,132,213\}$	-	∞	F
$\{2413,3142\}$	1	-	F	F
1	$\{2413,3142\}$	-	F	F
All other combinations		-	∞	∞

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Table: Classification of $\psi=\sigma\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ when $n=3$

α_{1}	α_{2}	α_{3}	$\sigma=123$	$\sigma=321$
1	1	1	F	F
21	1	1	F	∞
1	1	21	F	∞
21	1	21	F	∞
1	21	1	F	∞
12	1	1	∞	F
1	1	12	∞	F
12	1	12	∞	F
1	12	1	∞	F
All other combinations				

Introduction

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations

Infinite types

Decomposable permutations of infinite type
Indecomposable
permutations of infinite type
Summary

Table: Classification of $\psi=\sigma\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ when $n \geq 4, \psi$ is not a spiral.

α_{i}	$\sigma=12 \ldots n$	σ simple
All $\alpha_{i} \in\{1,12,21,132,231,213,312\}$	$\infty=n \ldots 21$	F
Some $\alpha_{i} \notin\{1,12,21,132,231,213,312\}$	∞	∞

Table: Classification of Spiral Permutations ψ.

k	ψ
5	F
6,7	∞
$8,9,10, \ldots$	F

Mike Atkinson, Nik
Ruškuc, and Rebecca Smith

Introduction
Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable permutations of infinite type

Summary

Mike Atkinson, Nik

Ruškuc, and Rebecca

Thank you!

Introduction

Pin Sequences
Unique Embedding

Finite types

Indecomposable
permutations of finite type
Decomposable permutations of finite type
Spiral permutations
Infinite types
Decomposable permutations of infinite type
Indecomposable
permutations of infinite type

Summary

