SUMS OF LEXICOGRAPHICALLY ORDERED SETS

M.D. ATKINSON,1 A. NEGRO2 and N. SANTORO1
1School of Computer Science, Carleton University, Ottawa, Canada
2Dipartimento di Informatica, Universita' di Salerno, Salerno, Italy

Received 21 May 1987
Revised 11 March 1988

We consider the problem of determining finite integer sets which are knapsack-solvable in linear time (that is, it is possible to determine in linear time, for any integer \(b \), whether \(b \) can be expressed as a sum of distinct elements of that set) and where the largest element is as small as possible. We study the condition that the \(k \)-subsets (for fixed \(k \)) when lexicographically ordered have increasing sums. We give an optimal construction of sets with this property, prove that it is unique, and give the asymptotic behaviour of the largest member. Using these results, we construct sequences of positive integers where the largest element is minimal, the subset sums are distinct and lexicographically ordered, and are knapsack-solvable in linear time.

1. Introduction

Consider a set \(A = \{a_1, \ldots, a_n\} \) of \(n \) distinct positive integers, where \(a_i < a_{i+1} \) \((1 \leq i < n)\). The Knapsack problem on \(A \) is the problem of determining for any integer \(b \) whether \(b \) can be expressed as a sum of distinct elements of \(A \), and, if so, of identifying such elements. Given a polynomial \(p(n) \), the set \(A \) is said to be \((Knapsack-)solvable in \(O(p(n)) \) time if there exists an algorithm which solves the Knapsack problem on \(A \) in \(O(p(n)) \) time.

Because of its applicability to public key codes [4], the identification and characterization of such sets (and the associated algorithms) have been the object of several investigations. In particular, due to the nature of this application, two goals can be identified:

(i) find solvable sets where the degree of \(p(n) \) is very small (possibly, linear);
(ii) determine (for a fixed degree of the polynomial \(p \)) solvable sets in which the largest integer \(a_n \) is as small as possible.

It is not difficult to see that the set \(A \) of powers of 2 \((a_i = 2^{i-1}) \) is solvable in \(\text{linear} \) time; this is due to the fact that this set has the following property

\[
\text{superincreasing: } a_i > \sum_{j<i} a_j \quad (1 \leq i \leq n).
\]

Observe that any set with the superincreasing property is solvable in linear time; thus, any such set would meet goal (i) described above. As for goal (ii), the powers of 2 example has \(a_n = 2^{n-1} \), and any superincreasing set has \(a_n \geq 2^{n-1} \). The
question open is whether there exists a family of sets which are solvable in linear
time and satisfy \(a_n < 2^{n-1} \). To this end, observe that the superincreasing property
implies the following property:

distinct subset sum: the \(2^n \) different subsets of \(A \) have all different sums.

The problem of finding sets of positive integers with the distinct subset sum property
has been independently studied by researchers in number theory; in
particular, Erdős [2] specifically asked for sets with the distinct subset sum property
in which the largest integer \(a_n \) was as small as possible. A lower bound
on \(a_n \) has been established by Erdős and Moser who observed that, for any set of
positive integers with the distinct subset sum property

\[
na_n = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n-1} (a_n - a_i) \geq 2^n - 1 + n(n - 1)/2
\]

since \(\sum_{i=1}^{n} a_i \) is the largest of \(2^n \) non-negative distinct sums and the bracketed
terms are distinct positive integers. Thus

\[
a_n \geq 2^n/n + (n - 1)/2;
\]

but it seems likely that this lower bound is far from the best possible. Conway and
Guy [1] found some sets with the distinct subset sum property which have
\(a_n < 2^{n-2} \) and recently Lunnon has slightly improved their construction [3].
However, the distinct subset sum property alone does not guarantee solvability in
linear time; in fact, with the exception of superincreasing sets, all other sets with
distinct subset sums which have been considered in those investigations are not
known to be even polynomially solvable.

We shall study another class of sets with the distinct subset sum property, first
described in Petit [5]. It is based on the following natural ordering (the complete
lexicographic ordering) on the set of subsets of \(\{a_1, \ldots, a_n\} \). In this ordering all
the \(k \)-subsets (subsets of cardinality \(k \)) come before the \((k+1) \)-subsets \((k = 0, 1, \ldots, n - 1) \) and, for each \(k \), the \(k \)-subsets are listed in lexicographic order.
For example, the ordering for \(n = 4 \) is shown in Fig. 1.

The sets that we investigate have the characteristic property that their sums are
increasing with respect to this ordering. The sets are not such good solutions to
the Erdős problem as those of Conway, Guy and Lunnon because they satisfy a
more restrictive property; however, they are better than the obvious solution with
the powers of 2 in that \(a_n < 2^{n-1} \). We quantify this by giving the asymptotic
behaviour as \(n \to \infty \) of \(a_n \) in optimal sets for our various problems, and provide a
simple technique for constructing those optimal sets. Furthermore, like the
superincreasing sets (and unlike the sets of Conway, Guy and Lunnon), they are
solvable in linear time. Fuller details of the solution algorithm may be found in [5]
and here we sketch only the most important ideas for finding the subset \(C \) of
\(A = \{a_1, \ldots, a_n\} \) whose sum \(s \) is given. Suppose that the partial sums \(s_k = a_1 + a_2 + \cdots + a_k \) have been computed. Then \(k = |C| \) is determined as \(k = \)
Sums of lexicographically ordered sets

2. The lexicographic ordering on k-subsets

Let $A = \{a_1, \ldots, a_n\}$ be a set of n distinct positive integers, where $0 < a_1$ and $a_i < a_{i+1}$ ($1 \leq i < n$), and let k be any integer with $1 \leq k \leq n$. To each k-subset S of A we can associate a vector $(a_{i(1)}, \ldots, a_{i(k)})$ whose components are the members of S listed in increasing order of subscript. If $(a_{i(1)}, \ldots, a_{i(k)})$ and $(a_{j(1)}, \ldots, a_{j(k)})$ are any two such vectors we say the first precedes the second if,

$$\min\{t : s < s_t\} - 1.$$ Now we successively determine whether $a_1 \in C$, $a_2 \in C$, ... At the time we are determining whether $a_i \in C$ we shall know of $B = C \cap \{a_j, a_{i+1}, \ldots, a_n\}$ both $r = |B|$ and $s = \sum_{b \in B} b$. Then $a_i \in C$ if and only if $s < s_{i+r} - s_i = a_{i+1} + \cdots + a_{i+r}$. Having made this test, i is increased and both r and s are updated.

We obtain our results by studying a less restrictive condition, namely that the k-subsets of A (for fixed k) when lexicographically ordered have increasing sums. We give an optimal construction of sets with this property, prove that it is unique, and give the asymptotic behaviour of the largest member. Using these results, we construct sequences of positive integers with a_n minimal and, for each k, the k-subsets having lexicographically ordered sums. A simple trick then allows us to impose on these sequences the additional condition that, for each k, the $(k + 1)$-sums exceed the k-sums; we thereby obtain the condition that the subset sums are increasing in the complete lexicographic order given above.

Fig. 1. Lexicographic ordering of the subsets of $\{a_1, a_2, a_3, a_4\}$.

$$\begin{align*}
\{ & \} \\
\{a_1\} & \\
\{a_2\} & \\
\{a_3\} & \\
\{a_4\} & \\
\{a_1, a_2\} & \\
\{a_1, a_3\} & \\
\{a_2, a_3\} & \\
\{a_1, a_4\} & \\
\{a_2, a_4\} & \\
\{a_3, a_4\} & \\
\{a_1, a_2, a_3\} & \\
\{a_1, a_2, a_4\} & \\
\{a_1, a_3, a_4\} & \\
\{a_2, a_3, a_4\} & \\
\{a_1, a_2, a_3, a_4\} & \\
\end{align*}$$
for some \(r \),
\[
 i(1) = j(1), \quad i(2) = j(2), \ldots, \quad i(r - 1) = j(r - 1), \quad \text{and} \quad i(r) < j(r).
\]

In this way we obtain an induced ordering on the \(k \)-subsets of \(A \), the well-known lexicographic ordering.

\(A \) is said to have the \(\text{lex}(k) \) property (the lexicographically ordered subset sum property on \(k \)-subsets) if whenever \(B \) and \(C \) are two \(k \)-subsets of \(A \) with \(B \) preceding \(C \) then

\[
 \sum_{x \in B} x < \sum_{x \in C} x.
\]

Lemma 1. The \(\text{lex}(k) \) condition holds if and only if for all \(t \) and \(i \), with \(1 \leq t \leq k \) and \(k - t + 1 \leq i \leq n - t \),
\[
 a_i + \sum_{j=2}^{i} a_{n-t+j} < \sum_{j=1}^{i} a_{i+j}.
\]

Proof. We show that the inequalities given in the statement of the lemma are precisely the conditions which ensure that the sum of a \(k \)-subset is less than the sum of its successor. Given any \(k \)-subset \(B \) which is not last in the order we let \(a_{i_{t+1}} \) be the first of the elements \(a_n, a_{n-1}, a_{n-2}, \ldots \) which is not in \(B \). Of course \(1 \leq t \leq k \). We also define \(a_i \) to be the element of \(B - \{a_{n-t+2}, a_{n-t+3}, \ldots, a_n\} \) with largest subscript. Then \(i \leq n - t \) since \(a_{n-t+1} \notin B \). Moreover \(i \) is the largest of \(k - t + 1 \) such subscripts and so \(i \geq k - t + 1 \). Thus \(B = \{a_j, a_k, \ldots, a_i, a_{n-t+2}, a_{n-t+3}, \ldots, a_n\} \) (increasing subscripts) and its successor \(\{a_j, a_k, \ldots, a_i+1, a_{i+2}, a_{i+3}, \ldots, a_{i+t}\} \). Hence the \(\text{lex}(k) \) condition is precisely that
\[
 a_i + a_k + \cdots + a_i + a_{n-t+2} + a_{n-t+3} + \cdots + a_n < a_j + a_k + \cdots + a_{i+1} + a_{i+2} + \cdots + a_{i+t},
\]
as required. \(\Box \)

Lemma 2. \(\text{lex}(k) \Leftrightarrow \text{lex}(n-k) \).

Proof. It is sufficient to prove that \(\text{lex}(n-k) \Rightarrow \text{lex}(k) \). So assume \(\text{lex}(n-k) \) and let \(i, j \) satisfy \(1 \leq i \leq k \) and \(k - i + 1 \leq j \leq n - t \). Put \(t' = n - t + 1 - i \), \(k' = n - k \), and \(i' = i \) and use \(\text{lex}(k') \) to deduce (since \(1 \leq t' \leq k' \) and \(k' - t' + 1 \leq i' \leq n - t' \)) that
\[
 a_i + \sum_{j=2}^{i+t} a_{n-t+j} < \sum_{j=1}^{i} a_{i'+j},
\]
that is
\[
 a_i + a_{i+t+1} + a_{i+t+2} + \cdots + a_n < a_{i+1} + a_{i+2} + \cdots + a_{n-t+1}
\]
and hence
\[
 a_i + (a_{n-t+2} + a_{n-t+3} + \cdots + a_n) + (a_{i+1} + a_{i+2} + \cdots + a_{i+t})
 + (a_{i+t+1} + \cdots + a_n)
 < (a_{i+1} + a_{i+2} + \cdots + a_{n-t+1}) + (a_{n-t+2} + a_{n-t+3} + \cdots + a_n)
 + (a_{i+1} + a_{i+2} + \cdots + a_{i+t}).
\]
Sums of lexicographically ordered sets

and hence

\[a_i + (a_{n-t+2} + a_{n-t+3} + \cdots + a_n) + (a_{i+1} + a_{i+2} + \cdots + a_n) \]
\[< (a_{i+1} + a_{i+2} + \cdots + a_{i+t}) + (a_{i+1} + a_{i+2} + \cdots + a_n) \]

giving the result. □

Proposition 1. If \(k \leq \lfloor n/2 \rfloor \) then \(\text{lex}(k) \) is equivalent to the following inequalities

\[a_{n-2j+1} + \sum_{r=2}^{j+k} a_{n-j+r} < \sum_{r=2}^{j+k} a_{n-2j+r}, \quad 1 \leq j \leq k \]
\[a_{n-2j} + \sum_{r=2}^{j+k} a_{n-j+r} < \sum_{r=2}^{j+k} a_{n-2j+r}, \quad 1 \leq j \leq k \]
\[a_i + \sum_{r=2}^{k} a_{n-k+r} < \sum_{r=2}^{k} a_{i+r}, \quad 1 \leq i < n-2k. \]

Proof. The inequalities are clearly necessary. It is sufficient to show that they imply all the inequalities of the \(\text{lex}(k) \) condition. We show how to deduce a typical inequality

\[a_i + a_{n-t+2} + \cdots + a_n < a_{i+1} + \cdots + a_{i+t}, \quad k - t + 1 \leq t \leq k, \quad 1 \leq i \leq n - t. \quad (*) \]

In (*) we may assume there are no common terms on the left and right hand sides; if so, they may be mutually cancelled thereby effectively reducing \(t \). Thus we may assume that \(i + t < n - t + 2 \), that is \(i \leq n - 2t + 1 \). If \(i = n - 2t + 1 \) or \(i = n - 2t \) then (*) is one of the inequalities in the statement of the proposition, so we assume \(i < n - 2t \). Put \(i = n - 2j \) or \(i = n - 2j + 1 \) (according to the parity of \(n - i \)) with \(j > t \). We consider only the latter case since the former case follows by a similar argument. One of the inequalities above is

\[a_{n-2j+1} + a_{n-j+2} + a_{n-j+3} + \cdots + a_n < a_{n-2j+2} + \cdots + a_{n-j+1} \quad (**) \]

and hence

\[(a_{n-2j+2} + a_{n-2j+3} + \cdots + a_{n-2j+t+1}) - (a_{n-2j+1} + a_{n-t+2} + a_{n-t+3} + \cdots + a_n) \]
\[= (a_{n-2j+2} + \cdots + a_{n-2j+t+1} + a_{n-2j+t+2} + \cdots + a_{n-j+1}) \]
\[- (a_{n-2j+t+2} + \cdots + a_{n-j+1}) \]
\[- (a_{n-2j+1} + a_{n-j+2} + \cdots + a_{n-t+1} + a_{n-t+2} + \cdots + a_n) \]
\[+ (a_{n-j+2} + \cdots + a_{n-j+1}) \]
\[> (a_{n-j+2} + \cdots + a_{n-j+1}) - (a_{n-2j+t+2} + \cdots + a_{n-j+1}) \geq 0 \]

(the latter inequality following from \(j > t \)). Hence

\[(a_{n-2j+1} + a_{n-t+2} + a_{n-t+3} + \cdots + a_n) < (a_{n-2j+2} + a_{n-2j+3} + \cdots + a_{n-2j+t+1}) \]
Corollary 1. If \(k \leq \lceil n/2 \rceil \) then \(\text{lex}(k) \Rightarrow \text{lex}(k - 1) \).

Corollary 2. \(\text{lex}(\lceil n/2 \rceil) \Rightarrow \text{lex}(k) \) for all \(k \).

3. Constructing optimal sets with lexicographic ordering

We can use Proposition 1 to construct sets \(\{a_1, \ldots, a_n\} \) with the \(\text{lex}(k) \) property. Notice that \(\{a_1, \ldots, a_n\} \) has the \(\text{lex}(k) \) property if and only if \(\{a_1 + p, \ldots, a_n + p\} \) also has it, and hence we may translate any such set of integers to obtain one with positive elements. In fact our interest is in \(\text{lex}(k) \) sets in which \(a_n \) is minimal (and these sets are called optimal sets). Therefore we should try to produce sets in which \(a_n - a_i \) is minimal and then translate them so that \(a_1 \) maps to 1.

Our strategy is to choose an arbitrary value for \(a_n \) and then maximise \(a_i \). To do this we define a \(\text{lex}(k) \) sequence \(b_1, \ldots, b_n \) with \(b_1 = 1 \) for which the inequalities of the proposition are as 'tight' as possible, namely

\[
\begin{align*}
b_{n-2j+1} &= \sum_{r=2}^{j+1} b_{n-2j+r} - \sum_{r=2}^{j} b_{n-j+r} - 1, \quad 1 \leq j \leq k \\
b_{n-2j} &= \sum_{r=1}^{j} b_{n-2j+r} - \sum_{r=2}^{j} b_{n-j+r} - 1, \quad 1 \leq j \leq k \\
b_i &= \sum_{r=1}^{k} b_{i+r} - \sum_{r=2}^{k} b_{n-k+r} - 1, \quad 1 \leq i < n - 2k.
\end{align*}
\]

These equations define \(b_{n-1}, b_{n-2}, \ldots \) in terms of \(b_n \) and the boundary condition \(b_1 = 1 \) determines \(b_n \).

Proposition 2. If \(\{a_1, \ldots, a_n\} \) is a set of positive integers with the \(\text{lex}(k) \) property then \(a_i \geq b_i, 1 \leq i \leq n \), and, if \(a_n = b_n \), then \(a_i = b_i, 1 \leq i \leq n \). Thus \(\{b_1, \ldots, b_n\} \) is the unique optimal set of size \(n \) with the \(\text{lex}(k) \) property.

Proof. Let \(c_i = a_i - b_i \). The relations between the \(a_i \) and \(b_i \) imply that \(c_n \geq c_{n-1} \geq \cdots \geq c_1 \). But, since \(a_1 \) is positive, \(c_1 \geq 0 \). □

Example 1. The optimal set of 9 positive integers whose 3-subsets have lexicographically increasing sums is 1, 38, 58, 69, 75, 78, 80, 81, 82.
Theorem 1. \(b_n = O(\lambda^n) \) where \(\lambda \) is the largest root of \(x^{k+1} - x^k + 1 = 0. \)

Proof. The defining conditions for \(\{b_1, \ldots, b_n\} \) may be rewritten in terms of \(d_i = b_i - b_{i-1} \) as

\[
d_i = \sum_{j=1}^{k} d_{i-j} - \sum_{j=1}^{k-2} d_j + 1 = \sum_{j=1}^{k} d_{i-j}
\]

together with \(2k \) equations which determine \(d_1, \ldots, d_{2k} \). This recurrence has solution \(d_i = O(\lambda^i) \) where \(\lambda \) is the largest root of \(x^{k} - x^{k-1} - x^{k-2} - \ldots - x - 1 = 0. \) Multiplying this equation by \(x - 1 \) gives \(x^{k+1} - x^k + 1 = 0. \) However \(b_n - 1 = b_n - b_1 = d_{n-1} = O(\lambda^n). \)

In the case \(k = \lfloor n/2 \rfloor \), these results show how to obtain sets of positive integers whose \(k \)-subsets, for each \(k \), are lexicographically ordered and which have \(a_n \) minimal. In fact, if we extend the lexicographic order to all sets, listing first the singletons, then the doubletons etc, we can ask for sets all of whose subsets have the lexicographically ordered sum property; as mentioned previously, this was the condition studied by Petit. We take an optimal set of \(n + 1 \) integers \(a_0, a_1, \ldots, a_n \) with \(\text{lex}(\{(n + 1)/2\}) \) and translate it so that \(a_n = 0. \) Then, for each \(k \), the inequality

\[
a_0 + a_{n-k+1} + \cdots + a_n < a_1 + a_2 + \cdots + a_{k+1}
\]

implies that the \((k + 1) \)-subset sums exceed the \(k \)-subset sums.

The following sequence provides a very handy method of constructing these optimal lexicographic sets which are knapsack-solvable in linear time: \(1, 1, 2, 3, 6, 11, 22, 42, \ldots \). The rule is

\[
c_1 = c_2 = 1 \quad \text{if } i \text{ is even} \quad \text{and} \quad c_{i+1} = 2c_i - c_{i/2} \text{ if } i \text{ is odd.}
\]

Then, for any given \(n \), we can derive the optimal lexicographic set \(\{a_1, a_2, \ldots, a_n\} \) of \(n \) integers by the rules

\[
a_n = c_1 + c_2 + \cdots + c_n
\]

and

\[
a_{n-i} = a_{n-i+1} - c_i, \quad i = 1, 2, \ldots, n - 1.
\]

This follows from a straightforward but tedious check that the sequence satisfies the optimality conditions given above. If we let \(e_n \) denote the largest element \(a_n \) in the optimal lexicographic set on \(n \) elements then, from the recurrences above, we have

\[
e_{n+1} = 2e_n - e_j, \quad \text{where } j = \left\lfloor \frac{n-1}{2} \right\rfloor.
\]
Example 2. The optimal 7-element set whose sums are lexicographically ordered is

22, 33, 39, 42, 44, 45, 46.

Numerical computations show that \(e_n \) satisfies the asymptotic formula

\[
\frac{e_n}{2^{n-1}} = 0.6333683473. \ldots \quad \text{as } n \to \infty.
\]

The first few values of \(e_n \) are shown in Fig. 2.

References