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Abstract

A poset is (3 4 1)-free if it contains no induced subposet isomorphic to the disjoint union of a 3-
element chain and a 1-element chain. These posets are of interest because of their connection with
interval orders and their appearance in the (3 + 1)-free Conjecture of Stanley and Stembridge. The
dimension 2 posets P are exactly the ones which have an associated permutation = where ¢ < j in
P if and only if ¢ < j as integers and ¢ comes before j in the one-line notation of 7. So we say that
a permutation 7 is (3 + 1)-free or (3 + 1)-avoiding if its poset is (3 4+ 1)-free. This is equivalent to
avoiding the permutations 2341 and 4123 in the language of pattern avoidance. We give a complete
structural characterization of such permutations. This permits us to find their generating function.
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1. Introduction

The permutation 7 of [n] = {1,2,...,n} contains the permutation o of [k] if = has a subsequence
of length k order isomorphic to o, and such a subsequence is called an occurrence, or copy, of o.
For example, 7 = 391867452 (written in list, or one-line notation) contains ¢ = 51342, as can be
seen by considering the subsequence 91672 (= 7(2), 7(3), 7(5), 7(6), 7(9)). If = does not contain o
we say that 7 avoids 0. A permutation class, sometimes abbreviated to simply class, is a downset of
permutations under this order; thus if C is a permutation class, 7 € C, and 7 contains o, then o € C.
Every permutation class can be described by the minimal permutations which are nof in the class.
We call such a set a basis, and denote by Av(B) the class with basis B.

Given a class C, we denote by C,, the set of permutations in C of length n. It is natural to ask for
the enumeration of C and this is usually answered in terms of its generating function,

Z g™l = Z |Cp|z™.

meC n>0

The class we will consider in this paper is motivated by ideas in the theory of posets (partially or-
dered sets). Call a poset (a+b)-free if it contains no induced subposet isomorphic to a disjoint union
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of an a-element chain and a b-element chain. Fishburn [6] characterized the (2 + 2)-free posets as
those which could be modeled by intervals of real numbers, where we let [a, b] < [c, d] if and only if
b < ¢ so that [a, b] is completely to the left of [c, d] on the real line. He also characterized the posets
which are both (2 + 2)- and (3 + 1)-free as those interval orders where all the intervals have length
one. But until more recently there has been no characterization of (3 + 1)-free posets. These posets
also come up in the (3 + 1)-free Conjecture of Stembridge and Stanley [16]. Stanley [15] defined a
symmetric function generalization X¢ of the chromatic polynomial of a graph G. The conjecture
in question states that if one takes the incomparability graph G of a (3 + 1)-free poset (making two
vertices adjacent in the graph if the corresponding elements are incomparable in the poset) and ex-
presses X in the elementary symmetric function basis, then all the coefficients are nonnegative. To
date there has been only partial progress on this question by Gasharov [7], Gebhard and Sagan [8],
and Lee and Sagan [13].

As is well-known, every permutation 7 gives rise to a poset P, by letting i < j in P, if and only
if i < j and i appears to the left of j in 7. The posets arising this way are exactly those of dimension
2. Call a permutation 7 (34 1)-free or (3+ 1)-avoiding if its poset is (3 +1)-free. Note that P, = 3+1
precisely when 7 = 2341 or 4123. So the class of (3 + 1)-free permutations is Av(2341,4123). In
this paper we completely characterize the elements in this class. Using this characterization, we
are able to compute the corresponding generating function. The hope is that this viewpoint might
also be useful in making progress on the (3 + 1)-free Conjecture in the case of dimension 2 posets.
We should mention that Skandera [14] has a useful characterization of all (3 + 1)-free posets. But
his involves conditions on the entries of the square of the antiadjacency matrix of the poset and so
seems to be quite different from ours.

A secondary motivation for enumerating the class Av(2341, 4123) is that it belongs to a family
of classes which have proved to be a fertile testing ground for different enumerative techniques.
For bases B consisting of a single permutation of length at most 4, exact enumerations for Av(B)
are known except in the notable case of B = {1324} (or its symmetry, B = {4231}). (Here only
lower and upper bounds are known, see Albert, Elder, Rechnitzer, Westcott, and Zabrocki [2] and
Bona [5].) For bases B consisting of two permutations, exact enumerations are known in the case
where one element of B has length at most 3 and the other has length at most 4. However, in the
case where B consists of two permutations of length 4, much less is known.

The permutation containment relation is invariant under the 8 symmetries generated by rever-
sal, complementation, and inversion. These symmetries can be used to cut down the number of
cases; in particular, the (%') different sets B consisting of two permutations of length 4 split into
56 different symmetry classes. Of these 56 essentially different classes, it is known that there are 38
different enumerations, which follows from a long string of papers [4, 9, 10, 11, 12]. Only about half
of these have been enumerated.

The approach we use here to enumerate Av(2341, 4123) is based on simple permutations, so we
briefly recall the salient definitions and properties. An interval of a permutation 7 = 7(1)7(2) - - - 7(n)
is a contiguous subsequence 7 (i)7(i + 1) - - - w(j) whose values form a contiguous set of integers.
If a permutation has no intervals except for itself and its singletons then it is said to be simple. For
example, 871329456 has nontrivial intervals 87, 132, and 456, while 31524 is simple. Figure 1 shows
the plots of three further simple permutations; in this diagram and, in subsequent similar diagrams,
the dots are placed at cartesian coordinates (4, 7(i)).

Simple permutations are precisely those that do not arise from a non-trivial inflation, in the
following sense. Let o be any permutation of length m and a1, as, . . ., a;, any sequence of permu-
tations. Then the inflation of o by a1, as, ..., amn, denoted ofai, aa, . .., ), is the permutation of
length || + - - + |y, | which decomposes into m segments o o - - - o), where each segment ¢
is an interval which is order isomorphic to «;, and the sequence a;as - - - a,, formed by any (and



Figure 1: The two simple permutations on the left are the 123-avoiding parallel alternations. The permutation shown on the
right is another simple permutation in Av (2341, 4123).

D

Figure 2: The two types of permutations in Av(123,3412). Throughout this paper, D denotes the class of decreasing
permutations, i.e., Av(12).

hence every) choice of a; from ¢ is order isomorphic to o. For example the inflation of 3142 by
21,132,1,123 s
3142[21,132,1,123] = 87 132 9 456.

The precise connection between simple permutations and inflations is furnished by a result
from Albert and Atkinson [1].

Lemma 1.1. For every permutation 7 there is a unique simple permutation o such that
T =olog,q,. .., Q]

Furthermore, except when o = 12 or o = 21, the intervals of o that correspond to oy, ;. ..,y are
uniquely determined. In the case that o = 12 (respectively o = 21), the intervals are unique so long as we
require the first of the two intervals to be sum (respectively, skew) indecomposable, which means that it
cannot be decomposed further as a nontrivial inflation of 12 (respectively, of 21).

One important feature of Av(2341,4123) is that it is a sum closed class, meaning that if o and =
lie in Av(2341,4123) then 12[o, 7] also lies in Av(2341,4123). The generating function for any sum
closed class is easily seen to be 1/(1 — g), where g is the generating function for the non-empty sum
indecomposable permutations in the class.

A final lemma which we use was proved by Atkinson [3].

Proposition 1.2. Every permutation in Av(123,3412) is either a horizontal or vertical juxtaposition of two
decreasing permutations (see Figure 2).

2. Categories of Simple Permutations in Av(2341,4123)

In this section we categorize simple permutations in Av (2341, 4123) according to whether they
contain or avoid the permutations 123 and 3412.

Proposition 2.1. Let o be any simple permutation of Av(2341,4123) that contains both 123 and 3412.
Then o = 5274163.
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Figure 3: The first structure diagram for the simple 3412-containing permutation o € Av(4123,2341).
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Figure 4: The second and third structure diagrams for the simple 3412-containing permutation o € Av(4123,2341).

Proof. Consider a simple permutation o € Av(2341,4123) that contains both 123 and 3412.

Figure 3 shows ¢ with the 5 x 5 grid defined by a copy of 3412. The unlabeled cells must be
empty and the cells labeled D (with or without a subscript) must be decreasing; this is a direct
consequence of the avoidance conditions. Another consequence (not shown in Figure 3 but shown
in subsequent diagrams) is that every point in Dj is to the right of every point in D;, and every
point in D is to the right of every point in D;. If we choose the copy of 3412 so that the ‘4’ and the
‘1" points are as close (vertically) as possible then the two cells labeled Z must be empty and the
cell labeled Y must be decreasing.

However, rather more can be gleaned from the vertical proximity of the ‘4" and “1’. Consider
the two cells D, and D, that flank the center cell labeled Y. There can be no increase from D; to Y
nor from Y to D; because any such increase would result in a copy of 3412 with a closer ‘4" and “1".
The diagram on the left of Figure 4 displays these conditions. Again in this diagram all cells that
are not labeled are empty, and no claim is yet made about the four corner cells labeled C;.

Notice that the central D cell is either empty or consists of a single point; if it were any larger
it would comprise a non-trivial interval. Now consider the cell labeled C; and the D cell to its
right. If any entry in this pair of cells was larger than any entry of C'; we would have a copy 4123.
Similarly, if any entry in the cell labeled Cj or the D cell above it were to the right of an entry in the
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Figure 5: The two types of permutation in Proposition 3.1. As usual, cells labeled by D represent decreasing sequences.

cell labeled C then we would have a copy of 2341. Therefore the entries in the cell labeled C must
lie above and to the right of all other entries in o, and so C'> must be empty by simplicity. Similarly,
it can be seen that C's must be empty. This gives the diagram on the right of Figure 4.

In this diagram the 2 x 2 array of cells in the top-left cannot contain 123 (since that would give
a copy of 2341). Similarly, the 2 x 2 array of cells in the bottom-right cannot contain 123. However,
we have assumed that o contains a copy of 123. By inspection, this copy of 123 must be formed
by an entry in D3, an entry in the central D cell (which is known to be at most a singleton), and
an entry in Dy. This, by the avoidance conditions, implies that the cells labeled ' and Cy must be
empty.

Now consider the cell in the top row labeled D. This cell cannot contain an entry to the left of
an entry in the Ds cell because that would create a copy of 4123, so all of the entries in this cell must
lie to the right of all of the entries in Ds. However, if there are any such entries, then they would
form an interval with the ‘4" of the identified copy of 3412, so the D cell in the top row must be
empty. Similarly, it can be seen that the three other peripheral D cells are empty. By simplicity it
then follows that the cells labeled D; and D, must be empty and that D3 and D, must be singletons.
This shows that o = 5274163, as desired. O

Corollary 2.2. If o is a simple permutation in Av(2341,4123) then either

1. o contains 123 but not 3412,
2. o contains 3412 but not 123,
3. o contains both 123 and 3412 and is the permutation 5274163,

4. o contains neither 123 nor 3412. There are exactly two such permutations of this type of every even
length n > 4.

Proof. The final alternative is the only one that does not follow directly from Proposition 2.1. How-
ever the form of permutations in Av (123, 3412) is given in Proposition 1.2. Such a permutation can
be simple only if the two decreasing sequences shown in that proposition exactly interlace and the
permutation neither begins with its largest entry nor ends with its smallest entry. Hence the per-
mutation must have even length and there is one such permutation for each length for each of the
two forms in Proposition 1.2. O

3. The Structure of Simple Permutations in Av (2341, 4123, 3412)

We now work towards a description of the simple permutations in Av(2341,4123,3412). The
following result, which actually holds for all permutations in this class, is a stepping stone towards
that goal.
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Figure 6: Structure diagrams for a permutation in Av(2341, 4123, 3412) in which n precedes 1 but n is not the first entry
and 1 is not the last entry.

Proposition 3.1. Every permutation m € Av(2341, 4123, 3412) in which the greatest entry precedes the
least entry has one of the two forms shown in Figure 5.

Proof. Consider an arbitrary permutation 7 € Av(2341,4123, 3412) of length n in which n precedes
1. If either n is the first entry or 1 is the final entry, then the remainder of 7 avoids 123 and 3412,
and the result follows from Proposition 1.2. Suppose now that n is not the first entry of 7 and that
1 is not the last entry of =. Because 7 avoids 3412, this implies that 7(1) < m(n), giving the situation
depicted on the left of Figure 6.

From the fact that 7 avoids 2341, we see that the cells labeled C; and C> must be empty, while
the cell D; must be decreasing. Using the 4123 avoidance of 7, we see that the cells labeled C5 and
C4 must be empty, while the cell D, must be decreasing. This gives the center diagram of Figure 6.

The 2341-avoidance proves that the region Y U Z is decreasing, while the 4123-avoidance proves
that X UY is decreasing. If the entire region X UY U Z is decreasing then 7 has the structure shown
on the left of Figure 5, and we are done.

So suppose to the contrary that X UY U Z is not decreasing. Then cell Y must be empty.
Furthermore, the first (and largest) point of cell X must precede the last (and smallest) point of cell
Z and it follows from the 2341, 4123-avoidance again that the cell X and the cell labeled D to its left
must form a single decreasing sequence, as must the cell Z and the cell labeled D to its right. The
permutation 7 is therefore a vertical juxtaposition of decreasing sequences, which is the structure
on the right of Figure 5, completing the proof. O

Corollary 3.2. Every permutation of length n in Av(2341,4123, 3412) whose first entry is greater than its
last entry has one of the forms of Figure 7.

Proof. The permutations of the corollary are the inverses of the permutations of Proposition 3.1.
The result follows because inversion is represented by reflection of permutation diagrams about
the southwest-northeast diagonal and Av(2341, 4123, 3412) is closed under taking inverses. O

The previous two results have described very restricted subsets of Av(2341,4123, 3412). We now
broaden our study to consider arbitrary permutations in this class. Recall that the entry = (j) of 7 is
a left-to-right maxima (I-r max for short) if 7(j) > = (¢) for all ¢ < j, and a right-to-left minima (r-1 min
for short) if 7(j) < w(k) for all £ > j. It is convenient to connect the I-r maxes and connect the r-1
mins by axes-parallel paths as depicted in Figure 8. In this relative extrema diagram the entries of the
permutation are depicted by circles as usual while the squares denote inflections in the axes-parallel
paths. From the definition of I-r maxes and r-1 mins, it follows that there are no entries above the
l-r max path and no entries below the r-1 min path.

In our situation there are strong conditions on the interaction between the l-r maxes and the r-1
mins.
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Figure 7: The two types of permutation in Corollary 3.2.

(]
Figure 8: L-r maxes and r-1 mins in an arbitary permutation, connected by axes-parallel paths.



Figure 9: Four illegal configurations for a permutation in Av(2341, 4123, 3412).

Lemma 3.3. If m € Av(2341, 4123, 3412) is sum indecomposable then the inflection points form an increas-
ing sequence in which the inflections associated with the I-r maxes alternate with the inflections associated
with the r-l mins.

Proof. The inflections associated with the l-r maxes are all increasing by definition, as are the inflec-
tions associated with the r-1 mins. To show that their union is increasing we just have to show that
neither of the two situations on the left of Figure 9 can arise.

The first situation in Figure 9 cannot arise, because it contains 3412. Now suppose that the
second situation of Figure 9 occurs in one of these permutations. The inflection in the lower-right
position comes from the I-r max path, so 7 cannot contain any entries above this path. Similarly, =
cannot contain any entries below the r-1 min path. This implies that 7 must be sum decomposable,
which is a contradiction.

It remains to show that the two types of inflection alternate. Essentially, the only way this
property can fail is if the permutation contains the third or fourth situation from Figure 9. Both of
these situations contain a copy of either 2341 or 4123, completing the proof. O

This lemma holds, of course, for all simple permutations in Av(2341, 4123, 3412) (of length more
than 2) and we now build on it to pin down the structure of such permutations. Figure 10 shows one
of the two ways in which the I-r maxes can interact with the r-1 mins in such a simple permutation.
In this figure the leftmost inflection is associated with the l-r maxes; the other way is where the
leftmost inflection is associated with the r-1 mins and the two types are related by inversion.

Figure 10 shows the permutation partitioned into cells: these cells are called corner cells if they
abut a l-r max or a r-1 min, and central cells otherwise. Successive corner cells, except for the first
two and final two, are always separated by a central cell. As we shall soon see there are strong
dependencies between consecutive cells.

In such a simple permutation, consider any four points consisting of two consecutive l-r maxes
and two consecutive r-1 mins whose associated inflection points are also consecutive, together with
the set of points of the permutation contained within the rectangle they define. There are two
possible ways for the two I-r maxes to interleave with the two r-1 mins (as a 2413 or as a 3142), and
in each case the subpermutation in the rectangle they define is of one of the types considered in
Proposition 3.1 or Corollary 3.2. Therefore the possible forms for the subpermutation are as shown
in Figure 11. Following our conventions, the empty regions in these diagrams are empty. Also,
because of simplicity, a central cell labeled D must be either empty or a singleton.

We call the rectangles of Figure 11 formed from the l-r maxes and r-1 mins of a simple permuta-
tion in Av(2341,4123,3412) the “tiles” of the permutation, and we say that each tile is of type 2413
or 3142 (the type being determined by the relative order of the four extremal entries). The whole
permutation is then a union of overlapping, alternating tiles (overlapping in strips and alternating
in type). Since we know the structure of the tiles and that they must fit together with compatible
intersections we can deduce strong consequences for the cells of a permutation.



Figure 10: One of two possible interactions of I-r maxes and r-1 mins in a permutation whose inflection points satisfy the
conditions of Lemma 3.3.
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Figure 11: The possible forms of the rectangles defined by two consecutive l-r maxes and two consecutive l-r mins in a
simple permutation in Av(2341, 4123, 3412).



To give suggestive names to the tiles in Figure 11 call the diagrams in the first row _| and _|
left-to-right. Similarly call the second row diagrams [~ and [-.

Theorem 3.4. A simple permutation 7 of length more than 2 lies in Av(2341,4123, 3412) if and only if it
satisfies the following four conditions.

(a) The inflection points form an increasing sequence in which the inflections associated with the I-r maxes
alternate with the inflections associated with r-I mins.

(b) The corner cells of m are decreasing.

(c) Every pair of consecutive corner cells either form a decreasing sequence or interlace as a parallel alter-
nation in the sense of Figure 1.

(d) A non-empty corner cell interlaces with either the previous or next corner cell, but not both.

(e) A central cell s contains at most one element. If the two corners adjacent to it interlace then s is empty;
otherwise these two cells together with s form a decreasing sequence.

Proof. We first prove that every simple permutation in Av (2341, 4123, 3412) satisfies (a)—(e), begin-
ning by observing that (a) is a direct consequence of Lemma 3.3. By (a), the graph of 7 can be
decomposed into tiles of one of the four forms shown in Figure 11. All corners in these tiles are
decreasing, so (b) must hold.

To prove (c) consider any two consecutive corner cells. We shall assume that they are neither
the first nor last pair of corner cells (these exceptional cases are treated by an almost identical
argument). The two corner cells are separated by some central cell and lie in a tile in which they
are the second and third corners of the tile. If the tile is of type [~ or _| then these cells form a
decreasing sequence. If the tile is of type [ or _| then they must interlace as a parallel alternation
for otherwise one of the cells will contain two elements forming a block or a single element forming
a block with the l-r max or r-1 min on its boundary, which contradicts simplicity.

To prove (d) let A, B, C be 3 consecutive corner cells with the middle cell B non-empty. Consider
a tile containing them whose first three corner cells correspond to A, B, C (the case where the last
three corner cells of the tile correspond to A, B, C is similar). If this tile is of type [ or _| then AUB
is decreasing while, by the argument of (c), B and C interlace. If the tile is of type [~ or _| then
B U C is certainly decreasing. But, if AU B is also decreasing then B, together with its abutting
extremal point, would be a non-trivial interval of = contradicting simplicity.

For the proof of (e) note first that every central cell s of 7 is the central cell of some tile and we
have already observed that such central cells have at most one point. If the adjacent corner cells of
this tile interlace then the tile has type [ or _| and so s is empty. Otherwise the adjacent corners
form a decreasing sequence and (if this is non-empty) the tile has type [~ or _| in which case the
corners also form, together with s, a decreasing sequence.

For the converse let m be any permutation satisfying (a)—(e). Condition (a) shows that the l-r
maxes and r-1 mins of m or 7! interlace as shown in Figure 10 and conditions (b)- (e) show that
the permutation is an overlapping union of the tiles shown in Figure 11.

If 7 contains a copy of 2341 then, by replacing the ‘1" in this copy by a subsequent smaller point
if necessary, we may take the ‘1’ to be a r-1 min. Then (see Figure 10) the points corresponding to
the 2’, ’3’, and ‘4’ must lie in the 4 or 5 cells that contain points before and larger than the ‘1’. In
particular a copy of 2341 is contained in a tile and, from the form of the tiles, this is impossible.
Thus 7 avoids 2341 and, by a similar argument also avoids 4123.

Suppose now that 7 contains a copy of 3412. The ‘3" in this copy must be contained in a cell
associated with a l-r max because points in other types of cell are never followed by a smaller
increasing pair of points. The ‘4’ in this copy is not contained in the same cell as the ‘3’ nor in the
immediately succeeding central cell (since, from the form of the tiles, the entries in adjacent cells
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form a decreasing sequence). Hence the only location where the ‘1’ and ‘2’ can be situated is in the
corner cell following the one that contains the ‘3", but that is impossible as cells are decreasing.

To show 7 is simple, we again seek a contradiction and suppose that it contains a nontrivial
block B. The subsequence of 7 consisting of all I-r maxes and all r-1 mins is isomorphic to a simple
permutation (see Figure 10). So if B contains more than one point of this subsequence it must
contain every point and we would have B = 7 which contradicts nontriviality. Otherwise B must
be contained in a tile, but the tiles themselves are easily seen to be simple. This final contradiction
finishes the proof of the converse. O

4. Enumeration of simple permutations in Av(2341,4123,3412)

As we saw in the previous section simple permutations in Av(2341, 4123, 3412) of length more
than 2 have their leftmost inflection point associated with either a I-r max or a r-l min and, as these
two types are related by an inversion, there are equal numbers of each in every length. So we shall
enumerate those whose leftmost inflection is associated with a l-r max and then double the result.

We shall obtain the generating function of this set as a sum of terms, with a typical term counting
simple permutations in which there are n extremal points (and therefore n corner cells), a fixed set
of k interlacing corner pairs, and ¢ central cells (lying between non-interlacing corner cells) that can
have 0 or 1 point. The set of simple permutations of such a type is enumerated by the generating
function

" yk Zt (1)
where y = z?/(1 — 2%) and z = 1 + . This is because every interlacing pair of corner cells con-
tributes some positive even number of points to the permutation while each central cell between
non-interlacing corners contributes 0 or 1 point to the permutation.

Note that there are n — 3 central cells because there is no central cell between the first and last
pairs of corner cells. So the value of ¢t depends on whether the first pair of corner cells and the last
pair are among the set of k interlacing pairs. There are 3 different cases:

1. Both the first and last pairs of corner cells interlace. Heret =n -3 - (k—2)=n—k — 1.
2. Only the first pair or the last pair of corner cells interlaces. Heret =n—3—(k—1) =n—k—2.
3. Neither the first or the last pairs of corner cells interlace. Heret =n —3 -k =n —k — 3.

To find the number of choices for the £ interlacing pairs of corner cells in each of these 4 cases
we make use of the following well-known result.

Lemma 4.1. The number of ways of picking ¢ non-overlapping pairs (i,7 + 1) from {1,...,m} is

m—/{
(")

In the first case of the above 3 possibilities two of the k pairs are already chosen and the remain-
ing k — 2 pairs have to be chosen from the interior n — 4 corner cells: this can be done in (”74,;_(’2“ *2))
ways by the previous lemma. Similarly the second and third cases give, respectively, 2 (”73,;_(’1“71))
and ("727*) choices for selecting the k interlacing pairs of corner cells.

Hence, for fixed n, the sum of all the terms in expression (1) over all choices of k interlacing
corner pairs is

n—Fk—2 n—k—1 n—k—2 n—k—2 n—k—2 n—k—3 n, k
(( b9 )x +2< b1 )z + A z x"y".
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Figure 12: The situation in the proof of Proposition 5.1: o (%) is not the ‘2’ or ‘3" in a copy of 231, nor the ‘2’ in a copy of 312,
nor the ‘1’ in a copy of 312.

So we need to sum the above expression over n > 4 (since there are no simples for n < 3)and k£ > 0.
This double summation is first summed over n using the binomial expansion and then over k as a
geometric series (taking care of the boundary cases £ = 0 and k = 1 separately). The end result is

ztz zty 224y vhy?2(1 — 2z + )2

l—2zz (1—22)? 1—2z (1-—22)2(01—22z—2%y2)
Expressing this in terms of 2 and, multiplying by 2, we obtain

Theorem 4.2. The generating function for simple permutations of length greater than or equal to 4 in
Av(2341,4123,3412) is
2(x* + 28 + 29)
(1 —22)(1 — 22+ 23 — )’

5. The enumeration of Av(2341,4123)

We now only have to assemble the pieces we have developed. We begin by determining the
allowed inflations in this class.

Proposition 5.1. Let 0 € Av(2341,4123) be a simple permutation of length m > 4. The inflation
olai, ..., an] lies in Av(2341,4123) if and only if every «; is a decreasing sequence.

Proof. First, if each «; is decreasing then any copy of 2341 or 4123 in o[a, . . ., o] could contain at
most one entry from each «;, which is impossible because o itself avoids 2341 and 4123.

Now take olaq, ..., an] € Av(2341,4123) and suppose to the contrary that «; contains 12 for
some index i. Then o (i) must not be the ‘2’ or the ‘3’ in a copy of 231 (in o), because that would
lead to a copy of 2341 in o[ay, .. ., ayy]. Similarly, o(7) is neither the "1” nor the 2 in a copy of 312.
Because o (%) is not the 2" in a copy of 231, the entries of ¢ to the right of (i) must consist of a series
of entries below o (i) followed by a entries of terms above o(i). The other three conditions imply
similar restrictions on the entries below o (%), the entries to the left of o(i), and the entries above
o(i). These restrictions are displayed in Figure 12 (following our conventions, unlabeled cells are
empty in this diagram) which shows that ¢ is sum decomposable if either W or Z is non-empty or
skew decomposable if W and Z are both empty; in particular ¢ is not simple. O
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Because Av(2341,4123) is sum closed, its generating function, which we label f, satisfies f =
1/(1 — g), where g denotes the generating function for nonempty sum indecomposable permuta-
tions in the class. Therefore we need only determine g. Because we will often be inflating permuta-
tions by decreasing sequences, it is convenient to define d = x/(1 — ). Using Corollary 2.2 the set
of nonempty sum indecomposable permutations in Av(2341, 4123) is then the union of

(i) the permutation 1,

(i) inflations of 21 by permutations in Av(123), where the first entry is inflated by a skew inde-
composable permutation,

(iii) inflations of simple permutations of length at least 4 in Av(123) = Av(2341,4123,123) by
decreasing sequences,

(iv) inflations of simple permutations of length at least 4 in Av(2341,4123,3412) by decreasing
sequences, and

(v) inflations of 5274163 by decreasing sequences.

These sets are disjoint except for an intersection between those of types (iii) and (iv). This intersec-
tion consists of the inflations of 123-avoiding parallel alternations (see Figure 1), of which there are
two of every even length, so we have

s 2d*
g.f. for (iii) N (iv) = T
Notice that the sets of type (i)—(iii) together comprise the set of non-empty sum indecomposable
permutations of Av(123). As every permutation is either sum indecomposable or sum decompos-
able, we can obtain the generating functions of these permutations by subtracting the generating
function of sum decomposable permutations from the generating function for the non-empty per-
mutations of Av(123). The sum decomposable permutations in Av(123) are inflations of 12 by
decreasing sequences, so we see
g.f. for (i)~(iii) = ¢ — d?,
where ¢ = (1 — 22 — /1 — 42)/(2x) is the generating function for the non-empty permutations in
Av(123).
Finally, Theorem 4.2 gives us the generating function for sum indecomposable permutations of
type (iv):
2(d* + d° + d°)
(1—d?)(1—2d+d3—d*)’
and sum indecomposable permutations of type (v) are counted by d".
Putting all these expressions together gives

g.f. for (iv) =

Theorem 5.2. The generating function f for Av(2341,4123) has the form f =1/(1 — g) where

(1 -2z —+/1—4x)
2z
(1 — 13z + 742 — 24723 + 5392% — 8052° + 8342° — 59527 + 2832° — 802° + 8x19)2?
(1—2)"(1-2x)(1 — 6x+ 1222 — 923 + z*)

Further calculations with a computer algebra package such as Singular shows that f satisfies
the quadratic
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(14427 — 352422* + 386482% — 259931222 4 12317502! — 442038522 4 1253380527
—288440312'8 + 54839380x!7 — 871793436 + 1168332992'° — 132706667z 4
+12816992923 — 10539663322 4 737614002 — 43835832210 + 22029889
—93019172% + 326945827 — 9442152° + 220007x° — 40293z* + 55783 — 54822
+34x — 1) f2

+ (—482% + 13802 — 1755622 + 134339222 — 708318221 + 277540020 — 846416227
420701382218 — 41428652217 + 6878573826 — 95667058x1° + 11218305714
—1113721322'3 + 9379841522 — 670250682 + 4056237720 — 20710152x° + 88658798
—315346427 4 92000225 — 21619225 + 39867x* — 554827 + 5472% — 34a + 1) f

+ (42?® — 1322 + 19212?® — 1662422? + 97464x2! — 41674022° + 1361690x"°
—35089142'® 4+ 729007827 — 12404442216 4 174800775 — 2055647224 + 20271017213
—168008142'2 4+ 11703343z — 6835800210 + 33313772 — 134382628 + 443390z
—1176162° 4 2445925 — 3838x* + 4272° — 302% + x)

=0.

The growth rate of the class C is the limit of {/|C,| as n — oo (if this limit exists). In our case,
this is the reciprocal of the least positive root of the discriminant of the minimal polynomial above,
which is 4, the same as the growth rate of Av(123).
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