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Abstract

Sets of permutations which are closed under both pattern involvement
and multiplication are classified.
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1 Introduction

Over the last few years there has been much interest in both combinatorics
and computer science in the notion of permutation involvement. Although we
shall often use cycle notation for permutations, involvement is best described by
writing permutations ¢ in image form as a sequence [19,27,...]. We recall that
a permutation 7 is tnvolved in a permutation o if, when written in image form,
o has a subsequence which is order isomorphic to 7. For brevity we generally
write 7 < 0. For example, with ¢ = [5,1,4,2,3]and 7 = [1, 3, 2], we have 7 < &
by virtue of the subsequence [1,4,3] of o. Trivially, involvement is a partial
order on the set of all finite permutations. Interest usually centres on closed
sets of permutations: those sets X for which ¢ € X and 7 < ¢ imply 7 € X.

In combinatorics closed sets arise in the study of sets defined by forbidden
patterns. Often one wants to know how many permutations fail to involve all
the permutations of some given set. Examples of this type of investigation are
[3, 5, 6, 8]. In computer science closed sets arise in the study of data movement
in various environments. Examples of this are [1, 2, 4, 7].



Figure 1: A permuting environment

In this paper we shall study a new question on closed sets. For which closed
sets do the permutations of each degree form a group? Our main result is a
complete answer to this question. Before giving the details of our methods we
pause to motivate the question. Of course, it 1s about two notions, permutation
involvement and permutation composition, which are each studied intensively
already; in one sense therefore the question is quite a natural one. But the
combination of these two notions has at least one point of independent interest.

Suppose we have an environment through which can pass any finite sequence
of items 1,2,...,n and that the effect of the environment is to permute this
sequence in one of a number of ways (see Figure 1). Roughly speaking, so long
as an environment processes its input by re-ordering it in a way oblivious to the
actual 1tem values, and permutes subsequences in the way that they would be
permuted if the other items were omitted, then the permutations effected will
constitute a closed set. For example, all the network mechanisms described in
[2] have this property. Three further examples are

1. a stack, where the numbers 1,2,...,n are subjected to a series of push
and pop operations to generate an output,

2. a riffle shuffler, which cuts a deck of cards 1,2,...,n and interleaves the
two sections in any way,

3. a card cutter, which simply cuts a deck of cards into two sections and
places the bottom section of the cut on top of the top section.

In these cases, and many others, the set of possible permutations (of all lengths)
is a closed set. Now suppose we pass the output of the environment on to a
copy of the same environment (or feed it back into the original environment)
and repeat this as many times as we wish. In the first example this is like
having an unlimited number of stacks in series, in the second it is like allowing
an unlimited number of rifle shuffles, and in the third it is like allowing an
unlimited number of cuts.

When we have an environment that is endowed with feedback it is clear that the
set of permutations of each degree which can be generated is a group. It is also
quite easy to check that the set of all permutations which can be generated is
closed provided that this was true of the original environment. In other words
we have an example of the sort of closed set considered in our main result.



In general we use the phrase group closed set for a closed set in which the
permutations of each degree form a group.

We begin with some notation. If X is any set of permutations we let X (n) =
X NSy, the subset of X whose permutations have degree n. We let p, be the
“reversal” permutation [n,n — 1,...,2, 1] (which, in cycle notation, would be
written (1,n)(2,n—1)...).

Using this notation we can give some examples of group closed sets X by spec-
ifying the groups X (n) for each n.

1. For some fixed k and ¢, X (n) = Sk x Sy, acting as S; on {1,...,k}, fixing
each point in {k +1,...,n— £}, and acting as Sp on {n —£+1,... ,n}.

2. The cyclic groups: X(n) ={([2,3,4,...,n,1]).
3. The full symmetric group: X (n) = S,.

4. The groups generated by any of the above (with & = £ in example 1)
together with the permutation p,.

Our results show that in a closed group set the sequence X (n) converges to one
of the above types. They also give information about the sort of groups X (n)
which can arise before convergence occurs.

Next we have a useful technical construction. If o is a permutation of {1,2,... ,n}
and 1 <1 < n then, o—i denotes the permutation of {1,2, ... ,n—1} obtained by
removing the image of 7 from the sequence [17,...  n?] and subtracting 1 from
those images greater than ¢ so that the new sequence is indeed a permutation
of {1,2,...,n—1}. Clearly c — i < 0.

As an example of the construction [3,4,2,1,5]— 3 =[2,3,1,4].

If, by a slight abuse of notation, we identify o — ¢ with the permutation of degree
n that fixes n and otherwise acts as o — 7, we have

o—i=C(i,n)eC(i, n)""
where C'(7,n) denotes the cycle (1,1 +1,...,n).

Lemma 1 Suppose that X is a group closed set, 0 € X(n), and 1 <i<n-—1.
Let j=i, k= (i+ 1) andlet T = (0 —i)" (o — (i+ 1)) € X(n —1). Then
7 is the cycle (j,j+1,...,k—1) if j < k and the cycle (k,k+1,...,5—1)7!
if j > k. In addition, if j and k are not consecutive modulo n, then X (n — 2)
contains a transposition of the form (t,4+ 1).



Proor: For the first statement we have:

(c—i)Ho—(i+1)) = CGE%n)e™'C(i,n)"*C(i+1,n)0C((i +1)7,n)""
= C(j,n)o™'(i,i+ 1)aC(k,n)™"
= (Gyooosn)(G, k) (ky . n) 7t

and the result follows.

For the second part, note that both 7 and 7= lie in X(n — 1) since X (n — 1) is
a group. Without loss in generality assume that 7 = (j,j+ 1,...,k—1). Since
j and k are not consecutive modulo n, 7 is not the identity nor the permutation
(1,2,...,n—=1). Ifj# 1 then (j—1)" =j—1and j7 = j+ 1 so, by part 1,
X(n — 2) contains (1 — (j — 1))~ (7 — j) = (j — 1,7). On the other hand, if
k # n then k™ =k and (k- l)T_l = k — 2 so that, again by part 1, X(n — 2)
contains (k — 2,k —1). |

Our analysis of group closed sets X divides naturally into two cases according
to whether X (n) is transitive for all n (the transitive case) or intransitive for
some n (the intransitive case).

2 Intransitive groups

Throughout this section X will denote a group closed set for which not every
X (n) is transitive. Notice that if X (n) is transitive then so also is X(n — 1).
For suppose that 1 < i < n— 1. Then i € 1X() g0 there is a permutation
o € X(n) with 17 = i. But then, putting k& = n°"" we have 1°% = i and
oc—k € X(n—1). We can deduce that, as there is at least one intransitive
X (L), the groups X (n) are intransitive for all n > L.

For each n > L we define an integer k, in terms of the orbit 1X() of X (n):
kn +1 is the smallest point not in this orbit. In a similar way we define £,, using
the orbit of X (n) containing n: n — £, is the largest point not in this orbit.

We first note that (ky) is a non-increasing sequence. For, if 1 < j < ky, then
19 = j for some o € X(n). Then, as (kn +1)7 > k,, 19~ #=+1) = j This shows
that k,—1 > k,. A similar argument shows that (¢,) is non-increasing. Since
the two sequences (k,), (£,) are non-increasing and bounded below they have
limits k, £. Therefore we have

Lemma 2 There exist constants k, £, M such that, foralln > M, {1,2,... k} C
X k41¢@ 150 and {n—04+1,... ,n} CnX) n—rgnX®

Lemma 3 Lett—1,t be in different orbits of X(n—1) and let 0 € X (n). Then
either



1. t° =t and o preserves both {1,...,t —1} and {t +1,... ,n} or

2.7 =n—t+1, (n—t+1)° =1t and o interchanges {1,... t — 1} and
{n—t+2,...,n}

Proor: Leti,j € {l,...,n} besuch that i < ¢ < j. Then, for any o € X(n),
(t — 1)°~" # ¢t°=3. This can only occur if i < t° < j% or j° < t° < i°. In
other words, the triple (7,¢, j) is mapped monotonically by any ¢ € X (n). Since
the choices of i and j were independent, it follows that any ¢ € X (n) either
preserves both sets {1,...,t—1}and {t+1,...,n} or maps {1,... ,t— 1} onto

{t? +1,...,n}. In the first case, t° =t and in the second case t = n —t + 1.
However, in the second case we can consider o~! and conclude that (n—¢+1)° =
tand {n—¢+2,...,n}? ={1,... ,t — 1} which completes the proof. |

Lemma 4 There exists a constant N such that either

1. Foralln> N, 1X0) = {1, k} and n*®) = {n—L+1,... n} or
2. k=~Land foralln >N, 1X") ={1 . kn—k+1,... n}

Proor:  Let n > max{M + 1,2k, 2¢}, where M is the constant defined in
Lemma 2, and let ¢ € X(n). Since k and k + 1 are in different orbits of
X (n — 1) we know from Lemma 3 that we have one of

Al. o preserves {1,...,k} or
A2. o interchanges {1,... k}and {n—k+1,... ,n}

Also n—¢ and n—£+1 are in different orbits of X (n—1) and another application
of Lemma 3 yields

Bl1. o preserves {n—£+1,... n} or
B2. ¢ interchanges {1,... ,f} and {n — ¢+ 1,... n}

Since n > max{2k,2¢}, Al and B2 are incompatible as are A2 and B1. We
therefore have, for all o € X (n),

Cl. o preserves {1,... , k}and {n —£+1,... n}or
C2. k = ¢ and o interchanges {1,...  k} and {n —k+1,...,n}

Therefore according to whether C1 holds for all & or not we have

11X =41, k}and nX®) ={n—¢4+1,... ,n} or



2. k=fand 1X") ={1,... kn—k+1,...  n}

Finally we notice that if the first of these holds for a particular n then it must
hold for n+ 1 also since, if 17 = n4 1 for some o € X(n+1), then 17-("+1) =
in X(n). Thus one of the two alternatives holds uniformly from some point on.

Lemma 5 If the first case of Lemma 4 holds then there exists K such that, for
alln > K, X(n) fizes all points in k+1,... ,n—£. If the second case holds then
there exists K such that for allm > K and all 0 € X (n) either o fizes every
point ink+1,... n—k or o maps every such point s ton—s—+ 1.

ProoF:  Suppose that the first alternative of Lemma 4 holds. Suppose that
n > N, the constant defined in Lemma 4. Then k£ and k£ + 1 are in different
orbits of X(n) as are n — £ and n — £ + 1. Hence, by Lemma 3, both £ + 1 and
n—{+ 1 are fixed in X(n+1). But then k, k4 1,k + 2 are in different orbits of
X(n+1)and so k+ 1 and k + 2 are fixed in X (n + 2); similarly, n — £+ 1 and
n—{£+2 are fixed in X (n+2). Continuing this argument we see that, whenever
n > 2N, all of the points in £+ 1,...,n — £ are fixed in X (n).

If the second alternative of Lemma 4 holds the same argument shows that if
o€ X(n)and k+1 < s < n—*k then, provided n > 2N, s = sor s” =n—s+1.

However, Lemma 3 proves that s = s precisely when {1,2,... k} is preserved
by o. Thus in this case s = s for all s in the range 4+ 1,... ,n — k or
s =n— s+ 1 for all s in this range. |

Theorem 1 Let X be a group closed set in which not every X (n) is a transitive
group. Then one of the following holds:

1. X(n) = Sk x Se, acting as Sy, on {1,2,... ,k} and as Sp on {n—L+1,n—
L+ 2,...,n}, and fizing the remaining points, for all n > ny.

2. X(n) = Sk 17y = (Sk x Sk).{pn) where the group Sy x Sk acts as in the
previous case (with k = £) for all n > ny.

Proor:  Consider values of n large enough that the conclusions of Lemmas 4
and 5 hold. Suppose first that X (n) fixes every point from £+ 1 to n — £. Then
{1,...,k} is an orbit of X (n) but rather more than this is true: if Y'(n) denotes
the point stabiliser of n—£+1,... ,n then Y (n) is also transitive on {1,... k}.
To see this notice that in X (n+£) we can find a permutation mapping the point
1 to an arbitrarily chosen point 7 of {1,...,k} and this permutation involves a
permutation of X (n) that also maps 1 to i and fixesn—£+1,... ,n.

In X(n + 1) there are permutations o; that map the symbol k to each of
1,2,...,k in turn (and fix £+ 1 and also n — £+ 2,... ,n+ 1). But then
the permutations o; — 1 lie in Y (n), fix k, and map k— 1 to each of 1,... [ k—1.



Thus Y (n) is 2-transitive on its orbit {1,...,k}. A similar argument with the
groups X(n + 2),...,X(n + k — 1) establishes the k-transitivity of Y (n) on
{1, ...k} so it acts on this orbit as the full symmetric group. In the same way
the pointwise stabiliser in X (n) of {1,..., k} acts on the orbit {n—£+1,... n}
as the full symmetric group. This proves that X (n) = Sk x S.

Now suppose that the second case of Lemma 5 holds. Then X (n) has a subgroup
Z(n) of index 2 fixing all of k+1,... ,n—k+1 and the above arguments prove
that Z(n) = Sk x Sk acting in the natural way on {1,... k,n—k+1,... n}.
Using Lemma 5 it is easily seen that the permutation p, lies in X (n)\ Z(n) and
the proof is complete.

3 Transitive groups

We denote by Z, the permutation group of degree n generated by the n-
cycle (1,2,...,n), and we denote by D, the permutation group generated by
(1,2,...,n) and (1,n)(2,n—1) - - -. We call these groups the natural cyclic and
dihedral groups of degree n. It is clear that

Lemma 6 Let G be a transitive group of degree n. Then G is the natural cyclic
or dihedral group if and only if for all 0 € G and all i = 1,2,... ,n, i° and
(i + 1)7 are consecutive modulo n.

Also, from elementary facts about permutation groups, we have

Lemma 7 A permutation group G of degree n that contains cyclesy = (1,2,... ,n)
and § = (1,2,...,m) with 1 < m < n contains the alternating group of degree
n.

Lemma 8 If X is a group closed set and X (n) is transitive for all n then each
X(n) contains the cycle (1,2,...,n).

ProOOF:  Suppose, for a contradiction, that there is some integer n; for which
X (n1) does not contain (1,2,...,n;). Let p be any prime larger than n; and
put ¢ = p+ 2. Then X (gq) also does not contain a cycle (1,2,...,q) and so it is
not the natural cyclic or dihedral group of degree q. Hence, by Lemma 6, X (q)
has a permutation ¢ for which there are two points i,7 + 1 with % and (7 + 1)°
not consecutive modulo q.

However, Lemma 1, now shows that X (¢ — 2) contains a transposition of the
form (¢,t+1). But X (¢—2) is primitive since ¢ — 2 is prime and so is necessarily
the full symmetric group; therefore it contains (1,2,...,¢ — 2). Tt follows that
X (n1) must contain (1,2,...,n1), a contradiction. |



A permutation group G of degree n with an n-cycle (1,2,...,n) is said to be
anomalous if

H=(c—-i|loceG,1<i<n)# Sh1

The natural cyclic and dihedral groups of degree n are both anomalous (the
group H being cyclic or dihedral of degree n — 1).

Lemma 9 If G s an anomalous group of degree n and not cyclic or dihedral
then n s even, and G has a block system with two blocks, one consisting of
the odd points the other the even points. Conversely, any group with a cy-
cle (1,2,...,n) and satisfying these conditions is anomalous. For anomalous
groups which are not cyclic or dihedral the group H s the alternating group
Ap_q.

ProoF:  As G containsy = (1,2,...,n) it follows that A must contain y—n =
(1,2,...,n—1). Foranyoc € Gand 1 <i < nlet §(o,i) = (¢ —i)" (o —(i+1)).
By Lemma 1 §(o, ©) is a cycle of length m(c, ) = |i°—(i+1)7]. Since G is neither
cyclic nor dihedral, at least one of these cycle lengths must lie strictly between
1 and n — 1; therefore, by Lemma 7, H contains A,_;. By hypothesis, however,
H is not the full symmetric group and therefore both n — 1 and all m(o, ¢) must
be odd. The latter condition implies that the elements of 17,27,... ,n? are
alternately even and odd. Hence each element o maps odd points to odd points
or maps odd points to even points, giving the required block system.

The converse follows by reversing the arguments. |

Theorem 2 Let X be a closed set in which every X (n) is a transitive group.
Then, with the exception of at most two groups, one of the following occurs.

1. Every X (n) is a symmetric group.

2. For some integer M, X (n) is a symmetric group forn =1,2,... , M, and
the remaining groups are natural dihedral.

3. For some integers M < N, X(n) is a symmetric group forn =1,2,... M,
X (n) is natural dihedral forn =M +1,... N, and the remaining groups
are natural cyclic.

The exceptions, if they arise at all, are in the second and third cases and are of
two types:

(i) X(M + 1) is the alternating group and X (M + 2) is an imprimitive group
of the type described in Lemma 9, or

(i1) X (M + 1) contains a full cycle but is not dihedral.



ProOF:  Since X is closed
(c—i|loeX(n),1 <i<n)C X(n-—1) for all n.

Suppose that not every X (n) is the symmetric group S, and let X (M + 1) be
the first that is not. Then X (M + 2) is anomalous and either

1. X(M + 2) is an imprimitive group of the type appearing in Lemma 9 and
X (M + 1) is the alternating group, or

2. X (M + 2) is the natural cyclic or dihedral group

In either case, by Lemma 9 again, X (n) is the natural cyclic or natural dihedral
group for all n > M + 3. Finally we note that, if X(n) is the natural cyclic
group then X (n + 1) is also the natural cyclic group. |
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