
Compositions of pattern restricted sets of

permutations

M. H. Albert∗ R. E. L. Aldred† M. D. Atkinson∗

H. P. van Ditmarsch∗ C. C. Handley∗ D. A. Holton†

D. J. McCaughan†

September 3, 2004

Abstract

The composition of two pattern restricted classes X, Y is the set of all
permutation products θφ where θ ∈ X, φ ∈ Y . This set is also defined
by pattern restrictions. Examples are given where this set of restrictions
is finite and where it is infinite. The composition operation is studied
in terms of machines that sort and generate permutations. The theory
is then applied to a multistage sorting network where each stage can
exchange any number of adjacent disjoint pairs.

1 Introduction

In the theory of pattern restricted permutations it is normal to regard per-
mutations as lists of integers whereas, in algebra, permutations are regarded as
mappings. In this paper we shall explore pattern restricted sets of permutations
from an algebraic viewpoint. The notion that allows us to link the combinatorial
and algebraic aspects is that of a permuting machine. Such a machine accepts
a stream of tokens and generates an output stream that is a permutation of the
input subject to the following two conditions:

1. The names (values) of the input items are unimportant. For example, the
possible behaviours of the machine on the input 3, 1, 4, 2 are the same as
on the input 1, 2, 3, 4 (e.g. if it can reverse one input it can reverse the
other).

∗Department of Computer Science, University of Otago
†Department of Mathematics and Statistics, University of Otago

1

2. Suppose that the machine is able to transform an input α into an out-
put β and that α′ is a subsequence of α that becomes rearranged as the
subsequence β′ of β. Then the machine must be able to transform α′ (if
presented as an input sequence in its own right) into β′.

Because of the first property we can, if we wish, take the input stream to be
1, 2, . . . , n and treat the machine as a device for generating permutations; or we
can take the output stream to be 1, 2, . . . , n and treat it as a device for sorting
permutations. In this paper we shall normally adopt the former stance.

The second property shows that permuting machines are closely related to the
theory of permutation patterns for it implies that if a permutation σ can be
generated by a machine then so can any permutation whose “pattern” occurs
in σ as a subsequence. The notion of permutation pattern containment (also
called involvement) is formally defined as follows: π is involved in σ (written
π � σ) if σ has a subsequence σ′ whose terms are ordered in the same relative
way as those of π. For example, 3142 � 152463 because the latter permutation
has the subsequence 5263. Then, directly from the definitions, we have

Proposition 1 If X is the set of permutations that can be generated by the
permuting machine M then X is closed under involvement in the sense that
σ ∈ X and π � σ implies π ∈ X.

The first significant permuting machine to be studied was the stack in Knuth’s
Art of Computer Programming series [7]. The associated stack permutations are
those output sequences that can be obtained by submitting the input 1, 2, . . . , n
to a stack and performing a sequence of push and pop operations. Knuth proved
two results that more than three decades later still inspire the now active com-
binatorial area of pattern involvement. His first result was that a permutation
is a stack permutation if and only if it does not involve the permutation 312.

For a general closed set X we can consider set B(X) of permutations not lying
in X and minimal with respect to involvement. This is called the basis of X
and one easily verifies that a permutation lies in X if and only if it avoids (does
not involve) every member of the basis. In this terminology Knuth had proved
that {312} is the basis of the set of stack permutations. His second result was
a determination of the number of stack permutations of each length. Similar
enumeration problems for other closed sets are still being studied.

Other examples of permuting machines which have been studied from the same
standpoint include deques [9], networks of stacks and queues [12], stacks in
series [6], and packet switching networks [5]. For each of these the same two
questions are attacked: what is the basis of the associated closed set, and how
many permutations of each length does it contain?

Permuting machines add an algebraic dimension to closed sets when we combine
them in series channelling the output of one machine to the input of another.

2

M2 M1
input 12 · · ·n� � �output a1a2 · · · an

Figure 1: 2 machines in series

This serial combination is also a permuting machine as depicted in Figure 1.
The following result is clear.

Proposition 2 Suppose that machines M1,M2 are associated with sets X1, X2

of permutations. Then the serial combination of them is associated with the
set X2 ◦X1 of permutations that are compositions of permutations in X2 with
permutations in X1.

We will call X ◦ Y the composition of X and Y . It is a closed set but working
out its properties from those of X and Y is not easy and only a handful of
previous results have been found [3]. The difficulties stem from X◦Y being much
more complex than either of X and Y . An example of this is the composition
S2 = S ◦S where S is the set of stack permutations. Although S itself has been
very well understood since the 1960s, virtually nothing was known about the
set of permutations generated by two stacks in series until Murphy [8] proved
that it was not finitely based. The enumeration question for S2 is still open.

In Section 2 we shall collect some more positive results by identifying some
compositions that can be computed. In Section 3 we shall study a composition
that is associated with a sorting network that operates in a fixed number of
rounds; in each round a set of transpositions are effected. Finally, we record a
miscellany of smaller results and pose some open problems.

2 Some tractable compositions

In this section we shall study some families of closed sets that have figured in
previous studies and prove enough about their various compositions that enu-
meration information and basis information about them can be readily obtained.

2.1 Profile sets

Let σ be some fixed permutation of length k. The profile set P (σ) associated
with σ consists of all those permutations that can be obtained from σ by replac-
ing each of its terms of σ by an increasing segment of consecutive terms (which
may be empty) so that the relative ordering of the segments is the same as the
terms of P . For example 567123489 ∈ P (213). Profile sets were introduced in

3

[2] as a tool for classifying closed sets. They are known to be finitely based and
their enumeration problems have been solved.

When discussing a profile set P (σ) we may consider σ to be irreducible in the
sense that it contains no segment i, i + 1 (if that happened we could replace
σ by a shorter permutation). A profile set obviously has the property that
it is invariant under the “expansion” operations that replace any symbol t of
one of its permutations by the segment t, t + 1 (with appropriate renumbering
of the symbols greater than t). For brevity a set with this property is said
to be invariant under expansion. Conversely, any set which is invariant under
expansion is a union of profile classes; the number of profile classes in this this
union is finite if the number of irreducible permutations is finite.

A profile set is naturally associated with a profile machine PM(σ). The machine
PM(σ) divides its input into k segments (some of which may be empty) and
permutes the segments bodily according to the permutation σ. The following
theorem determines the permutations generated by the serial combination of
two profile machines.

Theorem 3 The composition P (σ) ◦ P (τ) is a finite union of profile sets.

To prove the theorem we need the following two lemmas.

Lemma 4 P (σ) ◦ P (τ) contains only a finite number of irreducible permuta-
tions.

Proof: The permutations of P (σ) ◦ P (τ) arise from combining the machines
PM(τ) and PM(σ) in series and applying the composite machine to the input
1, 2, . . . , n. To begin with PM(τ) outputs a sequence with |τ | segments (some
possibly empty) each being an ascending sequence of consecutive values. Then
PM(σ) causes this output to be divided into |σ| segments and permutes them.
The result consists of at most |σ||τ | segments (the intersections of the segments
defined by PM(σ) with those defined by PM(τ)) each an ascending sequence
of consecutive values. But if this is irreducible such segments must have length
at most 1.

A slightly more careful argument of the segment intersection in this proof allows
us to replace the bound |σ||τ | by |σ|+ |τ | − 1.

Lemma 5 Let X, Y be closed sets each invariant under expansion. Then also
X ◦ Y is invariant under expansion.

Proof: In this proof it is more convenient to use notations associated with
regarding permutations as mappings. In particular we shall write iα for the
image of i under the permutation α. We begin the proof by expressing the
expansion of a permutation in an algebraic form. Let α = a1a2 . . . an−1 be a

4

permutation of length n− 1 and let α̂ be the permutation of length n obtained
from α by replacing ai by ai ai + 1 (and incrementing any term greater than
ai). Then a direct calculation verifies that

α̂ = C−1
i ◦ αn ◦ Ciα

where, in general, Ck denotes the cycle (k + 1, k + 2, . . . , n).

Now let α ∈ X and β ∈ Y be permutations of length n − 1. We wish to show
that all expansions of α ◦ β lie in X ◦ Y . A typical such expansion has the form
C−1

i ◦ (α ◦ β)n ◦ Ciα◦β . But

C−1
i ◦ αβn ◦ Ciα◦β = C−1

i ◦ αn ◦ βn ◦ Ciα◦β

= (C−1
i ◦ αn ◦ Ciα) ◦ (C−1

iα ◦ βn ◦ Ciα◦β)

which is the product of an expanded permutation in X with an expanded per-
mutation in Y . Since X and Y are themselves invariant under expansions the
product lies in X ◦ Y as required.

The proof of Theorem 3 follows directly from these two lemmas. Notice also
that the method of proof is constructive and shows how the profile subsets
of P (σ) ◦ P (τ) could be found. It also follows, from the results of [2], that
P (σ) ◦ P (τ) is finitely based and has a polynomial enumeration function.

2.2 W sets

A signature is defined to be a sequence ε = (e1, e2, . . . , ek) of signs +1,−1.
For every signature we define a set W (ε) of all those permutations which are
the concatenations of k segments σ1, σ2, . . . , σk (some of which may be empty)
where σi is increasing if ei = +1 and decreasing if ei = −1. For example,
3589 421 67 ∈ W (1,−1, 1). Such sets were studied in [4] as examples of partially
well-ordered closed sets and again in [1] as examples of sets with encodings as a
regular language. The set W (ε) is associated with a machine WM(ε) that first
divides its input stream into k subsequences; those that correspond to −1 in
the signature are reversed; then all the subsequences are concatenated.

Theorem 6 Let δ, ε be two signatures and let δ = d1d2 Then W (δ)◦W (ε) =
W (η) where the signature η is defined by

η = εd1εd2 · · ·

and where ε1 = ε and ε−1 is obtained by reversing and negating ε.

Proof: The permutations of W (δ)◦W (ε) are obtained by the serial combination
of a machine WM(ε) with a machine WM(δ). The WM(δ) machine takes
a sequence structured as an ε signature, divides it into subsequences each of

5

which will also be structured with an ε signature, reverses those corresponding
to the terms di = −1 and concatenates the results. This gives a result with the
signature stipulated in the theorem.

To prove the converse we prove that every permutation of the stated signature
can be undone by an appropriate pair of undoing machines in series. Undoing
an operation of some signature τ = t1t2 · · · tr is performed by splitting the input
into r segments, reversing those that correspond to ti = −1 and merging the
segments. So what we have to do here is split the permutation according to
the segments εdi , reverse those we need to, and do a merge so that each of
the segments (now, after the reverses, all of signature ε) are merged so that
the individual segments of each ε structured segment get merged into order
(increasing or decreasing as appropriate). The result has signature ε.

Corollary 7 Let X and Y be closed subsets of W (δ) and W (ε). Then X ◦ Y
is finitely based and has a rational generating function.

Proof: X◦Y is a subset of some W (η) and the result now follows from Theorem
4 of [1].

2.3 Regular sets

In this section we study compositions using ideas from the theory of finite au-
tomata. Given a permutation σ = s1 . . . sn we define the rank of a term si to
be its relative value in the set {si, si+1, . . . , sn} (so, if the rank is ` say, there
will be ` − 1 terms in {si+1, . . . , sn} that are smaller than si). A permutation
is said to be k-bounded if every term has rank at most k. For example 243615
is 3-bounded.

Every k-bounded permutation σ = s1 . . . sn can be encoded as a word e1 . . . en in
the alphabet {1, . . . , k} where ei is the rank of si. For example, 243615 encodes
as 232311.

In [1] a closed set of k-bounded permutations was defined to be regular if its
encoding was a regular set in the sense of finite automata. For our purposes it is
convenient to use non-deterministic finite automata whose associated language
is the set of words that they can output rather than the set of words that
they accept as inputs. .Regular closed sets of permutations have many special
properties [1]: they have linear time recognisers, and algorithms based on finite
automata for computing their bases and their generating functions (which are
always rational).

In this subsection we shall prove

Theorem 8 The composition of two regular sets of permutations is regular.

Before giving the proof of the theorem we shall describe our principal tool: a
new type of machine called a finite state permuter. Such a machine has a finite

6

set M of modes and, at each point of its operation, is in one of these modes. It
also has a finite set of k registers R1, R2, . . . , Rk each of which is either empty
or holds one symbol from the input; in general the symbols held in the registers
are the next k0 symbols (k0 ≤ k) of the input (that have not yet been output).
The disposition of the machine is the content of R1, . . . , Rk up to relative order
of occurrence within the input stream; therefore the set D of dispositions is
finite. One of the modes m0 is the initial mode and the disposition d0 where all
the registers are empty is the initial disposition. The state set of the machine
is M ×D (which is finite) and the initial state is (m0, d0).

The machine begins in its initial state, undergoes a number of transitions, and
halts when all the input has been transferred to the output. Each transition is
controlled by a non-deterministic transition function τ that, given the current
state, determines the next state and possibly determines one of the registers
which then discharges an output symbol. The new disposition of the machine
may require that another symbol in the input stream be transferred to one of
the registers.

Every computation of the permuting machine results in an output that is a
rearrangement of the input. Since the names of the input symbols do not figure
in the description (only their positions within the input stream) the machine
has the first property demanded of a permuting machine. Hence we may, when
convenient, take the input stream to be 1, 2, . . . , n and consider the possible
output streams to be the set of permutations computed by the machine. There
is no guarantee that the second property holds so this set of permutations may
not be closed.

Lemma 9 The set X of permutations that can be output by a finite state per-
muter P has a regular encoding.

Proof: X is the set of permutations that P can output if presented with input
1, 2, . . . , n. From the finite state permuter P we can construct an ordinary finite
state machine F that outputs the encoded form of X. The set of states will be
the same in each. The only difference between P and F is that F outputs, rather
than a symbol s, the rank of s within the set of symbols that have not yet been
output. However this rank is determined by the transition function of P (which
picks a register) and the current disposition of symbols within the registers.
Thus an appropriate transition function for F can be defined. However, F is a
finite state machine whose output language is the encoded form of X and this
completes the proof.

We now prove a converse result.

Lemma 10 Let X be a set of permutations whose encoding is regular. Then
there is a finite state permuter that defines it.

Proof: Let E(X) be the set of words in the symbols {1, . . . , k} that are the
encodings of the permutations of X. Since E(X) is a regular set there is a

7

non-deterministic finite automaton A that outputs the words of E(X). Suppose
that Q is the set of states, q0 is the initial state of A, qf is the final state, and
τ : Q → Q× {1, . . . , k} ∪ ε the transition function.

We define a finite state permuter P with k internal registers and specify how
it operates when presented with an input stream 1, 2, . . . , n. The modes of
P are the states of A and the dispositions are simply that, for some k0 ≤ k,
R1, . . . , Rk0 hold the next k0 symbols that have not yet been output, and the
remaining registers are unoccupied.

Initially P has transitions that insert the first k symbols into the registers in
order. Subsequently, if any register Rj discharges an output symbol then the
contents of Rj+1, . . . , Rk are moved to Rj , . . . , Rk−1 and the next input symbol
is placed in Rk.

The subsequent transitions of P mirror those of A. In other words, whenever A
outputs a symbol j with 1 ≤ j ≤ k, P outputs the symbol in register Rj . The
machine P changes mode according to how A changes state and its dispositions
change as described above.

Clearly P outputs the unencoded form of a permutation generated by A and
the proof is complete.

Proof of Theorem 8

Let X and Y be regular sets of permutations (closed or not) and let P and
Q be finite state permuters for them. We construct the serial composition of
P and Q in much the same way that two transducers are composed. The set
of modes is the product set of the modes of P and Q. A transition of P that
causes no output and a transition of Q are reflected by changes to the modes
and dispositions in the appropriate component. A transition that causes output
from P causes the output symbol to be moved into Q under the control of the
transition rules for Q.

The new permuter is associated with the composition of P and Q and the proof
is complete.

3 Transposition switches in series

This section discusses a rather simple permuting machine and the rather more
complex machines that can be formed by combining any number of them in se-
ries. The machine is a transposition switch. It is capable of swapping the mem-
bers of any set of (disjoint) adjacent pairs in a list of length n. For example, given
the list 1234, it could generate the permutations 1234, 2134, 1324, 1243, 2143.

Let T be the set of permutations associated with this switch. The set T is closed,
has the basis {231, 312, 321} and is enumerated by the Fibonacci numbers (first
proved in [10]). Its permutations are layered with layers of size at most 2 and

8

1 2 3 4 5 6 7

123 4 56 7

Figure 2: T 4 contains 3267145

1 2 3

23 1

1

Figure 3: T 2 does not contain 321

could hardly be simpler. However, if we combine several identical transposition
switches in series we quickly increase the complexity of the situation.

We may depict the way a series arrangement of transposition switches generates
a permutation by a grid diagram which makes explicit which transpositions are
being used at each stage. An example of a particular permutation in T 4 being
generated is shown in Figure 2. We may consider such a diagram as consisting
of n wires, one for each symbol. The ith wire shows the position occupied by i
at each stage. Crossing wires (travelling left or right) denote a transposition at
that stage; a wire that that does not cross another (travelling vertically) denotes
a fixed point at that stage. Since each stage represents a permutation no two
wires can go through the same grid point. The illegality of the wire crossing in
the diagram in Figure 3 shows that 321 6∈ T 2.

By using the techniques given in Section 2 we shall prove that there are algo-
rithms for all of the following problems:

1. Recognising in time O(n) when a permutation of length n lies in T k

2. Enumerating the permutations of T k

9

q0

q1

1

1 2

Figure 4: T is regular

3. Finding the basis of T k (even if it is infinite).

The key to all these results is the observation that T is a regular set of permuta-
tions defined by the finite state machine in Figure 4. The reason for this is that
each permutation of T encodes as a word over the alphabet {1, 2} with no two
consecutive 2s. This is exactly the language defined by the illustrated machine.

Theorem 8 tells us that T k is also regular. Furthermore, as the proof of this
theorem is constructive, it produces a finite state automaton that recognises T k.
This automaton is the linear time recogniser that justifies the first statement
above and then, by using standard techniques from automata theory, we can
enumerate the permutations of T k by means of a rational generating function.
To find the basis of T k we use Corollary 1 of [1] which gives a method for con-
structing it as a regular expression. Unfortunately all these constructions have
very high complexity in terms of k and our implementations are not effective
beyond k = 7. Therefore ad hoc arguments are often simpler such as the one
given in the following result.

Proposition 11 For all k ≥ 5, T k is not finitely based.

Proof: We shall consider the case k = 5 only since higher values are argued
in the same way. Consider the following set of partially specified permutations
of length 4i + 5 (i = 1, 2, . . .)

4 6 8 10 12 14 16 18 . . . 4i− 4 4i− 2 4i 4i + 2
8 1 12 6 16 10 20 14 . . . 4i 4i− 6 4i + 5 4i− 2

In this notation the only positions of the permutation that are explicitly given
are those which appear in the first line. The second line gives the value of the
permutation at that position. For the moment we shall not need to define the
terms of the permutation at the other positions.

Irrespective of the unspecified terms these permutations do not belong to T 5.
To see this we shall demonstrate that there is no wire diagram to represent such

10

1

6

8 10 12 14 16 21

2116 1412 108 1

6

Figure 5: A series of forced wire positions and a final impossible wire

a permutation in 5 stages. If such a diagram existed then, because symbol 1
occurs in position 6 there would have to be a wire that carried symbol 1 left
by one position in each of the 5 stages. Now consider symbol 8 which occurs in
position 4. Its wire must have moved leftwards 4 times and remained in the same
place once. However, as this wire and the wire carrying 1 cannot intersect on a
grid point, its stationary point must be at the fifth stage. Thus this wire, like
the wire carrying 1, is forced to be positioned in one way only. Next we argue
that the symbol 6, in position 10, has had to move to the right by 4 positions
which entails 4 stages in which it moves right by one step and one stage in
which it is stationary. However, in order not to intersect the wire carrying 8,
the stationary stage must occur in the first stage. So the positioning of this
wire is also forced. We continue to argue in this way for the wires carrying
successively 12, 10, 16, 14, . . . until we consider the symbol 4i + 5 in position 4i
(see Figure 5 for the case i = 4). At this point we reach a contradiction since
this symbol has to move left in all 5 stages and its wire then intersects with the
wire for 4i− 2.

We have now displayed infinitely many permutations not belonging to T 5. To
actually find infinitely many basis elements we must now specify the entire
permutation in all cases. We do this in the simplest way possible: the remaining
terms of the permutation are arranged in increasing order of size and then
allocated serially to the unallocated positions. Thus for the permutation arising
from Figure 5, where i = 4, we would obtain

2 3 4 8 5 1 7 12 9 6 11 16 13 10 15 21 17 14 18 19 20

A rather laborious check now confirms that, if any symbol is omitted from such
a permutation, the result lies in T 5.

For the values k ≤ 4, our calculations show that T k is finitely based. It turns
out that the basis elements of T 2 have length at most 4, for T 3 their length
is at most 5, and for T 4 their length is at most 8. These calculations, whilst
computationally intensive, all rely on the regular set methods of [1]. These
methods also apply for higher values of k although, in practice, we cannot go
beyond k = 7. As an example of what they can achieve we record the fact that

11

2 3 5 1 7 4 9 6 11 8 13 10 14 15 12

Figure 6: 2 3 5 1 7 4 9 6 11 8 13 10 14 15 12 ∈ T 3

there are 188022304133598393331500 elements of length 50 in the basis of T 7.

One further respect in which the structure of T k becomes more complex as k
increases is given in the next result.

Proposition 12 T k is partially well-ordered if and only if k ≤ 2.

Proof: Since T k−1 ⊆ T k it suffices to prove that T 3 has an infinite antichain
whilst T 2 is partially well-ordered.

The infinite set of permutations 2 3 5 1 7 4 · · · 2n + 1 2n− 2 2n + 2 2n + 3 2n
(n ≥ 2) is an infinite antichain (a minor variant on the antichain appearing in
[11]). But each permutation lies in T 3 as exemplified in Figure 6; the pattern
of this diagram obviously generalises.

To prove that T 2 is partially well-ordered it suffices (by a result in [4]) to prove
that its set of indecomposables is partially well-ordered. For an indecomposable
permutation σ we consider the cycle containing symbol 1. As each symbol differs
by 1 or 2 from the previous symbol in the cycle it must have one of the forms

(1, 3, 5, . . . , 2m− 1, 2m, 2m− 2, 2m− 4, . . . , 4, 2)

or
(1, 3, 5, . . . , 2m− 1, 2m + 1, 2m, 2m− 2, . . . , 4, 2)

or the inverse of such a cycle.

In all cases the cycle contains a contiguous set of terms and, since σ is indecom-
posable, it must be the whole of σ. The former cycle is clearly involved in the
latter one. Therefore the indecomposable permutations fall into two ascending
chains and, as such, obviously form a partially well-ordered set.

The last result shows rather more about T 2. It also shows that the numbers
of indecomposable permutations of lengths 1, 2, 3, . . . is 1, 1, 2, 2, Hence the
generating function of T 2 is 1

1−g(x) where g(x) = x + x2 + 2x3/(1 − x). This
comes to

1− x

1− 2x− x3

12

The generating functions for some higher powers of T can be calculated using
the automata-theoretic methods. For example, the generating function for T 3

is
1− x− 2x2 + x3 − x4

1− 2x− 2x2 − 6x4 + 2x5 − x6

4 Conclusions and open questions

We have shown that serial combinations of permuting machines are closely con-
nected with compositions of pattern restricted sets. We have also given a number
of general families of closed sets whose compositions can be computed. How-
ever, it is an apparently difficult question to decide of two finitely based closed
sets whether their composition is finitely based and we have seen examples of
rather simple finitely based closed sets whose composition is not finitely based
(S ◦ S, T 2 ◦ T 3). Beyond this our knowledge is extremely sketchy.

Suppose that C is the set of all powers of all cycles (1, 2, . . . , n). Thus C ◦ X
consists of the permutations in X and all their cyclic variants. We expect the
following conjecture to be true.

Conjecture If X is finitely based then C ◦X is finitely based,

We have verified this conjecture in the two cases that X has the basis {321} or
the basis {231}.
Our results on transposition switches in series show that, for each fixed k, there
is a linear time algorithm to decide whether a permutation σ belongs to T k. The
algorithms are derived from regular encodings and finite automata. However,
we have not given a uniform treatment in the sense that, when k is not specified
in advance, we can say what exchanges should be applied to sort σ, especially
in the first round. An answer to the following problem would greatly enhance
our understanding of transposition switches.

Problem Find an algorithm that can sort a given permutation in the smallest
number of applications of a transposition switch.

References

[1] M. H. Albert, M. D. Atkinson, N. Ruškuc: Regular closed sets of permu-
tations, Theoretical Computer Science 306 (2003), 85–100.

[2] M. D. Atkinson: Restricted Permutations, Discrete Math. 195 (1999), 27–
38.

[3] M. D. Atkinson, R. Beals: Permuting mechanisms and closed classes of
permutations, Australian Computer Science Communications 21 (3) 119–
127.

13

[4] M. D. Atkinson, M. M. Murphy, N. Ruškuc: Partially well-ordered closed
sets of permutations, Order 19 (2002) 101–113.

[5] M. D. Atkinson, D. Tulley, M. J. Livesey: Permutations generated by token
passing in graphs, Theoretical Computer Science 178 (1997), 103–118.

[6] M. Bóna: A Survey of Stack-Sorting Disciplines, Electronic J. Combin. 9(2)
(2003), Paper A1.

[7] D. E. Knuth: Fundamental Algorithms: Volume 1 of The Art of Computer
Programming, First edition, Addison-Wesley (Reading, Mass.) 1968.

[8] M. M. Murphy: Restricted permutations, Antichains, Atomic Classes and
Stack Sorting, PhD thesis, St Andrews 2003.

[9] V. R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268–277.

[10] R. Simion, F. W. Schmidt: Restricted permutations, Europ. J. Combina-
torics 6 (1985), 383–406.

[11] D. A. Spielman, M. Bóna: An Infinite Antichain of Permutations, Note N2,
Electronic. J. Combin. 7(1), 2000.

[12] R. E. Tarjan: Sorting using networks of queues and stacks, Journal of the
ACM 19 (1972), 341–346.

14

