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An algorithm is given which, in time 0( n log n), determines all the Euclidean 
congruences (if any) between two n-point sets in 3-dimensional space. The al- 
gorithm is shown to be optimal to within a constant factor. 0 1987 Academic ~rers. 1nc. 

1. INTRODUCTION 

A congruence between two objects S and T in 3-dimensional space is a 
mapping composed of a rotation followed by a translation (followed, 
possibly, by a reflection) which transforms S onto T. If it exists, such a 
transformation demonstrates that S and T are essentially identical save for 
their position in space (and, possibly, their orientation). 

Let Cong(S, T) denote the set of all congruences between S and T. A 
classical problem in geometry is to decide whether Cong( S, T) is nonempty. 
There may be many congruences between S and T; in fact it is easy to see 
that, when Cong(S, T) is nonempty, it is a complete coset of the subgroup 
Cong(S, S) in the group of all symmetries of 3-dimensional space. Infor- 
mally, then, there can be many congruences only if S is highly symmetrical. 

In this paper we shall consider the discrete case that S and T are finite 
n-point sets and develop an algorithm to determine all the congruences 
between them, The complexity of the algorithm will be shown to be 
O(n logn) and we shall also show that this cannot be improved. We shall 
assume the standard RAM model of computation and assume also that 
arithmetic operations are to indefinite precision. The data to the algorithm 
will be assumed to be the two lists of n Cartesian triples which describe the 
sets S and T (but, of course, the coordinatisation is not important). 
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It is easy to see that, in time O(n), S and T may be translated so that 
their centroids are at the coordinate origin. We shall assume that this has 
always been done, in which case the set Con&S, T) consists of rotations 
about the origin followed perhaps by a reflection. In fact it is sufficient to 
find all rotation congruences; for, if this is possible, we can find the full set 
of congruences by first finding the rotations which transform S to T and 
then finding the rotations which transform S to a mirror image of T. Thus 
the central problem in computing Cong(S, T) is to compute the set 
Rot(S, T) of rotations about the origin which transform S to T. 

If the sets S and T are point sets on a line (the l-dimensional case) a 
congruence rotation exists if and only if S = T or S = - T. Consequently 
determining whether Rot(S, T) is nonempty is no easier than testing for set 
equality; therefore, by virtue of [4], we may conclude that the time complex- 
ity of the congruence problem is Q(n log n). The main part of this paper is 
the description of an algorithm which attains this lower bound. This 
algorithm, together with the remarks above show that the congruence 
problem has time complexity 0( n log n). 

If S and T lie in a plane (the 2-dimensional case) a technique first noted 
by Manacher [2] can be used to derive an O(n log n) algorithm (or, 
assuming the data are appropriately sorted initially, a linear time algorithm). 
In the 3-dimensional case, for the special situation that S and T are the 
vertex sets of polyhedra, Sugihara [5] has given an 0( n log n) congruence 
testing algorithm (but note that, in his work, n is the number of edges of 
the polyhedra). 

Before giving the algorithm for determining the complete set Rot(S, T) 
for arbitrary sets S and T we observe that a simple algebraic calculation 
will solve the problem in most cases. A congruence rotation can be 
described in analytic terms as a transformation on 3-vectors of the form 

x -+ Rx, 

where R is some orthogonal matrix whose existence must be determined. 
Let A be the 3 X n matrix whose columns are the Cartesian coordinates of 
the points in the set S, and let B be the similarly defined matrix for the set 
T. If it exists, the matrix R must satisfy 

RA = BP, 

where P is some n X n permutation matrix (this equation states that R 
transforms the points of S to those of T in some order). Since P-l = PT 
(the transpose of P) and R-l = RT it follows that 

RAAT = BBTR 

and hence R maps the eigenspaces of the 3 x 3 matrix AAT to those of 
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BBT (with the same eigenvalue). In particular, if AAT and BBT do not have 
the same set of eigenvalues then S cannot be congruent to 7. If AAT and 
BBT do have the same set of eigenvalues and these are distinct then the 
orthogonal matrix R is determined uniquely by its effect on the one-dimen- 
sional eigenspaces; we must then test whether R is indeed a congruence 
between S and T. The argument fails if the sets of eigenvalues of AAT and 
BBT are the same but not distinct. Unfortunately, this happens whenever 
there is more than one congruence between the point sets (and so they have 
nontrivial symmetries; from a geometrical point of view, this is perhaps the 
most interesting case). 

2. THE CONGRUENCE ALGORITHM 

2.1. Discussion 

We shall give the algorithm in a number of major steps, justify each step, 
and give the execution time analysis of each step. A central concept in the 
algorithm is the idea of a stable pair of sets; such a pair S*, T* essentially 
allows all the congruences between S and T to be recovered from the set 
Rot(S*, T*) even though S* and T* may be much smaller in size than S 
and T. Formally we define two nonempty sets S*, T*, neither of them 
containing the origin and of the same size, to be a stable pair (with respect 
to S and T) if every rotation which maps S onto T maps S* onto T*; in 
other words Rot(S*, r) 2 Rot(S, T). Notice that we do not require that 
equality holds. Of course, if S* and P are not rotationally congruent then 
neither are S and T but the converse may be false. However, even if 
Rot(S*, T*) is nonempty it may be possible to identify the subset Rot( S, T) 
efficiently. 

The algorithm falls into two separate parts. In the first part a stable pair 
S*, P is found with S* bounded above by a constant. In the second part 
Rot(S*, P) is examined and one of two possibilities occurs. The first is 
that Rot(S*, T*) has size bounded above by a constant; in this case we test 
each of its members for membership in Rot(S, T) (by checking whether the 
image of S is T). The second possibility is that the members of Rot(S*, Tc) 
have a common axis of rotation and, in this case, an extension of Manacher’s 
technique can be used to compute Rot(S, T). The algorithm can terminate 
prematurely in either part if it is discovered that S and T are not 
rotationally congruent. 

2.2. Production of a Small Stable Pair 

In the first of the two parts of the algorithm, we generate stable pairs 
of decreasing sizes until a suitably small pair is found. The overall structure 
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of this procedure is as follows: 

s* := s; T* := T; 
while IS*1 > K do 
begin 

Replace the current stable pair by a new 
stable pair S*, T* of sets of at most half the 
size 

end 

In this scheme K is an absolute constant chosen to satisfy certain inequali- 
ties which arise in the description and justification of the algorithm. 

To find the new stable pair within the body of the while loop we employ 
a number of different tricks but all of them are variants of the following 
general principle. Suppose we can find a geometric property 9, invariant 
under rotations about the origin, which is possessed by some but not all the 
points of the current S*. Thus 

S’ = {u E S*la has S} 

is a proper nonempty subset of S*. Let 

T’= {a~T*lahas9}. 

If S* and T* are congruent then any congruence which maps S* to T* must 
map S’ to T’ and, in particular, S’ and T’ must have the same size. Thus, if 
IS’1 # IT’I, we can immediately conclude that S* is not congruent to T* and 
hence that S is not congruent to T; then the algorithm can terminate. If 
IS’/ = IT’1 then both (S’, T’) and (S* - S’, r* - 7”) are stable pairs and, in 
one of them, the two sets are of size at most half the sizes of S* and P; 
one of these pairs can then become the new stable pair. We shall refer to 
this process as reducing through 9. 

The loop body attempts to reduce through 9 for a succession of 
properties 9 in the following way. We find a property 9 possessed by at 
least one point of S*. Then an attempt to reduce through 9 leads to one of 
three outcomes: 

(i) The reduction succeeds and we go on to the next iteration of the 
loop body. 

(ii) The algorithm reports that S and T are not congruent (because 
the sets S’ and T’ mentioned above have different sizes) and the algorithm 
terminates. 

(iii) The reduction fails because S’ = S* and T’ = P; this means that 
every point of both S* and P has property B and, armed with this 
information, we go on to consider further geometric properties. 
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TO analyse the time spent in the first part of the algorithm we shall show 
that each attempt to reduce through a property takes a time O(n* log n*), 
where n* = IS*]. Since at most four properties are considered it follows that 
each iteration of the loop body also takes time O(n* log n*); hence the total 
time spent in the while loop is bounded above by a constant multiple of 

n log n + n/2 log n/2 + n/4 log n/4 + n/8 log n/8 + - . . 

and this expression is of order n log n. 
We shall now consider in turn the properties used in attempting to find a 

new stable pair in some typical iteration of the loop body. Recall that for 
each property being considered it may be assumed that all the points of 
both S* and T* possess all the previously considered properties. 

MODULUS PROPERTY. Choose any point of S* and let r be its modulus 
(its distance from the origin). The property of having modulus r is 
obviously invariant under rotations and we will proceed to consider further 
properties only if every point of S* and P is of this modulus; that is, in 
calculating with further properties we may assume that all the points of S* 
and T* lie on the sphere centred at the origin and of radius r. Clearly, the 
calculations required by this step only require time O(n*). 

The algorithm of [3] can find in time O(n* log n*) the closest pair of 
points in S*, but the method of [3] is slightly more general than this. The 
same divide and conquer technique can be used to find all the pairs whose 
distance apart is minimal even if the minimal distance occurs more than 
once. By applying this more general form of the algorithm we can define an 
undirected graph on the set S*, two points (vertices) being joined by an 
edge if and only if the distance between them is the minimal distance 
between pairs of points in S*. It is easy to see that this graph is planar and 
that each vertex has degree at most 5. It is most convenient, for our 
applications, to represent this graph by listing, for each vertex, its adjacent 
vertices. 

VERTEX PROPERTY. For any vertex u in this graph let V(U) be the 
geometric figure (the vertex figure) formed on the sphere by u and its 
adjacent vertices. Let uO be any vertex which is not isolated. Consider the 
property that a vertex u has vertex figure congruent to V(Q). Whether a 
vertex figure has this property can be determined in constant time since a 
vertex figure has at most 6 points. Therefore we can attempt to reduce 
through the property of having vertex figure congruent to V(u,). This 
calculation requires time O(n*). It will be necessary to go on to consider 
further properties only if all the vertex figures in S* and T* are congruent. 
In particular, each vertex has the same degree d, 1 < d I 5, and we must 
now consider the different possibilities for d. 
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We consider first the case d = 1. In this case the n* points of S* fall into 
n*/2 disjoint pairs, each pair being a closest pair. None of the centroids of 
these pairs can be at the origin, for otherwise the two points would be 
diametrically opposed and so maximally distant apart; this would imply 
that n* = 2 which can be ruled out provided that the constant K is taken 
larger than 2. Therefore we can take the new S* to be this set of centroids, 
and define the new T* similarly. 

Our discussion of the other values of d requires the following technical 
proposition whose proof is postponed until the Appendix. 

PROPOSITION A. There exists a monotonic function f(v) with the follow- 
ing property. Let G be any graph whose n* vertices are on a sphere and for 
which two vertices are joined if and only if their distance apart is the minimal 
distance between vertices. Suppose that G has a connected component with v 
vertices all of the same degree d, with 2 I: d I; 5, whose centroid is at the 
centre of the sphere. Then n* < f(v). 

Now we consider the case d = 2. In this case the graph on S* (and on 
T*) is a collection of disjoint polygons. Suppose one of these polygons is a 
triangle. This triangle cannot have its centroid at the origin (for the lemma 
would give n* < f (3) which cannot hold within the loop body provided that 
we take K > f(3)). Let S’, T’ be the set of nonzero centroids of the 
polygons of S*, T*. Then S’ is nonempty and, if S* is congruent to T*, S’ 
is congruent to T’. If IS’1 = (7”I we may take S’. T’ as the next stable pair; 
or otherwise we conclude that S is not congruent to T. To complete the 
case d = 2 we now have to consider the case that none of the polygons is a 
triangle. 

CHAIN PROPERTY (d = 2). For any vertex v we define the chain figure 
C(u) to be the geometric figure formed by v and the two points before IJ 
and the two points after u in the polygon containing v. We fix one vertex Q, 
and consider the property that a vertex v has chain figure congruent to 
C(Q). We try to reduce through this property. Just as for the vertex 
property, the calculations require time O(n*) and further consideration of 
the case d = 2 will only be necessary if all the chain figures of S* and F 
are congruent. 

If the chain figures are all congruent they are congruent to one of 

n -7 
where all the obtuse angles are equal. It follows easily that the polygons are 
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(respectively) regular, or look like 

and in all three cases have an axis of symmetry. This axis meets the sphere 
in two points. The meeting places of these axes can be taken as a new set 
S* and we can define P similarly. Since every polygon is being replaced by 
a two-point set the new sets S*, T* have size at most half the old sizes. 

Finally we have to consider the cases d = 3,4,5. Recall that a face of a 
planar graph is a circuit which encloses no other vertex. The face type of 
a vertex u is a sequence pl, p2,. . . , pd of integers indicating that u is a 
meeting place of a pi-gon face, p,-gon face,. . . , pagan face (listed in 
clockwise order). The face types of all the vertices of S* (and P) can be 
found by an edge traversal in time O(n*) as follows: 

For each vertex, list in clockwise order, the edges out of it, and mark 
these directed edges as live. A dead edge (u, u) is one which has been 
traversed in the direction u to u; 
repeat 

Find a live edge (u, u); 
Starting with this edge follow an edge path 
in which, on coming to each vertex, we turn 
to the right to leave it; 
On returning to u after, say, p edges, we 
record a triple ( p, in-edge, out-edge) for 
every vertex visited 

until all edges are dead. 
This traversal visits every directed edge once only and travels clockwise 
around each face. The resulting triples allow the face type F(u) of 
every vertex to be determined. For each vertex u we list the triples 
associated with it in the order (pl, e,, e,), (p2, e,, e3), . . . , 

(pd-ly ed-ly ed)? (Pd, ed? el>- 
Then the face type of u iS (pl, p2,. . . , pd). 

FACE PROPERTY (d = 3,4,5). Let u0 be any vertex. The property that a 
vertex has face type equal to F( or,) is invariant under congruence and so we 
can try to reduce through this property. As usual, we only need to continue 
the analysis further if all vertices of S* and P have the same face type. If 
all the vertices do have the same face type we have enough information that 
the graphs on S* and T* are severely restricted. 
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Consider an arbitrary connected component of S* or T* with q vertices. 
Since the degree of each vertex is d this component has qd/2 edges. 
Suppose that the face type of each vertex is (pi,. . . , pd). Then the total 
number of faces in the component is 

#/Pl + l /P2 + . . . + VP,). 

Therefore, by Euler’s formula, 

q+q(1/p1+1/p2+...+1/pd)=qd/2+2 

or 

l/P1 +VP* + *** + ‘/pd = d/2 - 1 + 2/q. (t) 

PROPOSITION B. The diophantine equation (t) has only three infinite 
parametric families of solutions: 

(1) d = 4, p1 = p2 = p3 = 3, p4 = q/2, 

(2) d = 3, pl = ~2 = 4, ~3 = q/2, 

(3) d = 3, { ~1, p2> = (3,617 ~3 = q/Z 

and a finite number of sporadic solutions. 

The calculations which yield these solutions are very similar to those 
which arise in the classification of the Archimedean and Platonic solids, 
and the proof is delayed until the Appendix. In fact, slightly more argument 
proves that each sporadic solution either does not correspond to an actual 
graph or corresponds uniquely to an Archimedean or Platonic solid. We do 
not need this fact but we do require the fact that the parametric solution (1) 
corresponds to an antiprism. Indeed it is easily seen by direct construction 
that solution (1) drawn in the plane is 

which is the planar net of an antiprism. 
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When drawn on the sphere all the triangles must be equilateral and hence 
equiangular. This forces the antiprism to have its two q/Zgon faces plane 
and parallel. The antiprism therefore has an easily computable axis and we 
may calculate the two meeting points of this axis with the sphere. Thus 
when S* (and T*) is a collection of antiprisms we can take these pairs of 
meeting points as the new sets S*, T*. 

In the case of solution (2) each component has q/2 quadrilaterals (in fact 
these components are prisms). Lemma 2 (in the Appendix) ensures that the 
quadrilaterals do not have centroid at the origin (so long as K > 9) and for 
the new S*, T* we take the centroids of the quadrilaterals of S*, T*. 

Solution 3 is impossible if q > 12, and so may be included among the 
sporadic solutions. For if the face type of a vertex is (3,6, q/2) (to within a 
cyclic shift) then a neighbouring vertex must have face type (6,3, q/2) 
(again to within a cyclic shift) and so not all the vertices have the same face 

type. 
For the sporadic solutions let u be the maximum component size. Then, 

by Proposition A, n* I f(u) and so, provided we take K > f(o), the 
sporadic solutions do not occur in this part of the algorithm. 

2.3. Examination of Rot(S*, T*) 

This part of the algorithm divides into two cases 

(i) IS*1 = 1, or IS*1 = 2 and S* consists of two diametrically opposed 
points on the sphere, 

(ii) IS*1 > 2, or IS*1 = 2 and the two points of S* are not diametri- 
cally opposed. 

In the latter case we can find two points (Y, j3 of S* which are not 
diametrically opposed. Any rotation about the origin is completely de- 
termined by its effect on the points (Y, p. In particular each member of 
Rot(S*, r) is determined uniquely by the images of (Y, p and, since IT*1 is 
bounded, Rot(S*, T*) is a subset of some known bounded set A. However, 
Rot( S, T) is contained in Rot(S*, T*) and so may be determined by 
checking each element of A for whether it maps S onto T; these checks 
require time O( n log n). 

Case (i) requires slightly more discussion, and here we use a generalisa- 
tion of the technique used by Manacher [2] in his treatment of the 
2-dimensional case. When the conditions of (i) hold, the single point (or 
two diametrically opposed points) of S* determines an axis through the 
origin. Any congruence which maps S* to T* must transform the axis of S* 
to the corresponding axis of Tc; and any two such congruences differ only 
by a rotation about one of these axes. Therefore we may apply a transfor- 
mation to map the axis of S* to the axis of T* and thereafter assume that 
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these two axes are the same. Since Rot(S, T) is a subset of Rot(S*, T*) we 
may obtain all the congruences of Rot( S, T) by determining the rotations 
about the fixed common axis of S* and T* which map S to T. 

By a change of coordinate system we may take the common axis of S* 
and T* to be the z axis. We express every point of S, T in cylindrical 
coordinates (r, 0, z) and list the points of S and T in increasing order of 
argument # (and for points with the same argument, in increasing order of 
r coordinate). Let 

A necessary and sufficient condition for there to be a rotation which maps 
S onto T is that, for some j, 

ak = 7,L+j> zk = wk+j, e k+l - ek = +kil - +k? 

k = O,l,..., n - 1 

(where here, and subsequently, all subscripts are reduced modulo n and the 
last equation is interpreted modulo 2~). If we let 

2 = (%~l,...,%-1) and T= (Po,P~,...,Pn-11, 

where 

% = bk? zky ek+l - ek> and Pk = bk, wk, +k+l - +k) 

we can restate this condition as follows: there is a one-to-one correspon- 
dence between rotations which map S onto T and integers j, 0 2 j -C n, 
such that 

ak = bk+j, k=O,l,..., n-l. 

Integers j satisfying this criterion correspond precisely to occurrences of 
the “pattern” Z within the “text” &B,p, . . . &-,& . . . p,-, and they may 
be found in time O(n) by the pattern matching algorithm of [l]. 

APPENDIX 

We derive the proof of Propositions A and B used in Section 2.2 in a 
series of lemmas. I thank Dr. Ralph Martin for the proof of the first lemma 
and thereby substantially shortening my original argument. 

LEMMAS. Every closed curve of length less than 2nr lying on a sphere of 
radius r lies entirely within a hemisphere. 
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FIGURE 1 

Proof. Suppose that a closed curve C has length d -C 2?rr. Choose two 
points A, B which are distance d/2 apart measured along the curve. Let P 
be the midpoint of a great circle segment joining A to B. We shall show 
that the hemisphere which has P as its pole contains the curve. 

Suppose that it does not, in which case the curve intersects the boundary 
of the hemisphere at a point Q. Now consider a different curve QBQ’ (see 
Fig. 1); the part from Q to B is the same as on the curve C and the part 
from B to Q’ is obtained by rotating the segment AQ on the curve C 
through an angle 7r about the axis of the hemisphere (note that B is the 
image of A under this rotation).Then 

length( QBQ’) = length( QB) + length( BQ’) 

= length( QB) + length( AQ) 

= length( A B) 

= d/2 < srr. 

However, Q and Q’ are at opposite ends of a diameter and so any curve 
which joins them lying on the sphere must have length at least rr. This 
contradiction shows that the hemisphere contains the curve C. 

LEMMA 2. Let S* be a graph with vertices on a sphere with an edge 
between two vertices if the distance between them is the smallest distance m 
that occurs between vertices. Suppose also that there is a polygon with t 
vertices also on the sphere whose centroid is at the centre of the sphere, and 
whose successive vertices are distance m apart. Then 

(S*l I 16/(sin2r/t (4 - sin2r/t)). 

Proof. Let r be the radius of the sphere. By joining successive vertices 
of the polygon by segments of great circles we obtain a curve on the sphere 
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whose centroid is at the origin. In particular the curve (and also the 
polygon) does not lie within a hemisphere. Hence the length of the curve is 
at least 2nr and each great circle segment has length at least 2Tr/t. 
Therefore consecutive points on the polygon subtend a central angle of at 
least 2a/t and so m 2 2r sin n/t. 

If we surround every point of S* by a ball of radius r sin a/t none of 
these balls can overlap. Each of them intersects the sphere in a circle of 
radius 

and so these circles enclose areas on the sphere of at least 

Thus 

:r2sin27r/t(4 - sin2m/t). 

IS*/. $r2sin27r/t(4 - sin27r/t) S 4nr2 

from which the result follows. 

LEMMA 3. Let S* be a graph with vertices on a sphere with an edge 
between two vertices if the distance between them is the smallest distance that 
occurs between vertices. Suppose the graph has a connected component with v 
vertices all of degree d whose centroid is at the centre of the sphere. Then 

lS*( s 16/(sin27r/vd(4 - sin2r/vd)). 

In particular, since d _< 5, IS*/ is bounded in terms of the size of the 
component. 

Proof The connected component has a closed (self-intersecting) path 
visiting each vertex d times and each edge twice, once in each direction. 
This path defines a (degenerate) polygon with ud vertices whose centroid is 
at the centre of the sphere, and successive vertices on it are distance m 
apart. Now apply Lemma 2. 

The last lemma suffices to prove Proposition A, and we now turn to the 
proof of Proposition B. 

LEMMA 4. Let l/x + l/y = k + 2/q where k is some explicit positive 
constant. If k is not of the form l/t for some integer t, there are only a finite 
number of solution triples (x, y, q) in positive integers. If k has the form l/t 
there is, in addition, on& the infinite families of solutions (x, y, q) = 
(6 q/2, q), (q/2, t, 4) for all even 4. 

Proof Assume x I y. Then 2/x 2 l/x + l/y = k + 2/q > k. There- 
fore x < 2/k and there are only a finite number of possibilities for x. 
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Consider one of these possibilities x = x0, where x0 # t, in the case 
k = l/t. Then l/y = k - l/x, + 2/q = j + 2/q, where j is some positive 
or negative (but nonzero) constant. If j is positive we have l/y > j or 
y < l/j, so that y is also bounded, and there are only a finite number of 
possibilities for y (and so a finite number of possibilities for q). If j is 
negative then 2/q = l/y - j > -j; thus q < - 2/j, and again there are 
only a finite number of possibilities for q and y. The only case not covered 
by this argument is where k has the form l/t and x,, = t; clearly y = q/2 
giving the infinite family in the statement of the lemma. 

We now consider, in turn, the values of d in Eq. (7). 

(1) (d = 3) l/a + l/b + l/c = l/2 + 2/q. Assume a 5 b < c. Not 
all of a, b, c exceed 5, for otherwise 

Hence we can take a = 3,4 or 5. 
1.1 (a = 5) Here l/b + l/c = & + 2/q, and Lemma 4 shows this 

has but finitely many solutions. 
1.2 (a = 4) Here l/b + l/c = $ + 2/q. Lemma 4 shows that the 

only solutions are (b, c, q) = (4, q/2, q), (q/2,4, q) and finitely 
many others. 

1.3 (a = 3) Here l/b + l/c = $ + 2/q. Lemma 4 shows that the 
only solutions are (b, c) = (6, q/2, q), (q/2,6, q) and finitely 
many others. _’ 

(2) (d = 4) l/a + l/b + l/c + l/d = 1 + 2q. Assume a 5 b I c I 
d. Not all of a, b, c, d exceed 3, for otherwise 

Hence we may take u = 3. Then 

l/b + l/c + l/d = ; + 2/q. 

Not all of b, c, d can exceed 4, for otherwise 

;=j+:+f>l/b+l/c+l/d=;+2/q>f. 

Hence b = 3 or 4. 
2.1. (b = 4) Here l/c + l/d = & + 2/q and Lemma 4 shows this 

has only finitely many solutions. 
2.2 (b = 3) Here l/c + l/d = : + 2/q and apart from finitely 

many solutions we have, again by Lemma 4, only (c, d) = 
(39 q/29 4), (4/2?3,4)* 
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(3) (d = 5) l/a + l/b + l/c + l/d + l/e = $ + 2q. Assume a I b 
I c I d s e. Not all of a, b, c, d, e exceed 3 for otherwise 

1 = f + $ + a + $ + $ 2 l/a + l/b + l/c + l/d + l/e = $ + 2/q > 5 4 

Hence we may take a = 3 and obtain 

l/b + l/c + l/d + l/e = g + 2/q. 

Again, not all of b, c, d, e can exceed 3 for otherwise 

1=~+~+:+$2l/b+l/c+l/d+l/e=~+2/q>~. 

Hence we may take b = 3 and obtain 

l/c + l/d + l/e = 2 + 2/q. 

Again, not all of c, d, e can exceed 3 for otherwise 

i=++:+$>l/c+l/d+l/e=i+2/q>i. 

Thus c = 3. We now have 

l/d -t l/e = $ + 2/q. 

Once more it is clear that not both d, e exceed 3 and so d = 3. Then 
l/e = l/6 + 2/q > $ and, since e < 6, there are only finitely many solu- 
tions. 

PROPOSITION B. The diophantine equation (t) only has solutions 

(1) d = 3, (~1, ~2, ~3) = (474, q/21, 

(2) d = 3, (~1, ~2, ~3) = (376, q/2), 

(3) d = 4, (~1, ~2, ~3, ~4) = (3,393, q/2), 

together with finitely many others. 
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