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Abstract

The number of permutations that do not contain, as a factor (subword), a given
set of permutations Π is studied. A new treatment of the case Π = {12 · · · k} is
given and then some numerical data is presented for sets Π consisting of permuta-
tions of length at most 4. Some large sets of Wilf-equivalent permutations are also
given.

1 Introduction

The notion of one permutation π being contained in another permutation σ generally
refers to σ having a subsequence π′ that is order isomorphic to π. In generalised pat-
tern containment extra conditions are stipulated relating to when terms of π′ should be
adjacent in σ. The extreme case of this, which we call consecutive pattern contain-
ment, is when we require all the terms of π′ to be consecutive:– so π is consecutively
contained in σ if σ has a factor that is order isomorphic to π. For example 521643
contains 132 because of the factor 164.

A frequently studied problem in pattern containment is to enumerate the permutations
of each length that fail to contain (or avoid) one or more given patterns. In the case of
consecutive pattern containment the first systematic study of avoidance problems was
by Elizalde and Noy [4]. To describe their results and to present our own contribution
we introduce some notation.

Let Π be a set of permutations. Define Cav(Π) as the set of all permutations σ that
(consecutively) avoid every permutation in Π. If Π consists of a single permutation π
we write this as Cav(π).

To enumerate sets of this form it turns out that the exponential generating function∑
n

tnx
n/n!
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(where tn is the number of permutations in the set of length n) is the natural tool
and Elizalde and Noy used it to obtain results on avoiding the increasing pattern ιk =
12 · · · k (and less complete results for other patterns). Their approach was to con-
sider the more general problem of counting permutations with a specific number of
occurrences of ιk, define appropriate bivariate generating functions, set up differential
equations satisfied by these functions, and solve these equations (at least in principle).
In particular they found the explicit generating functions for the sets Cav(123) and
Cav(1234) as

√
3

2
exp(y/2)

cos(
√

3y/2 + π/6)

and
2

cos y − sin y + exp(−y)

respectively.

In section 2 we shall give a new approach to enumerating Cav(ιk). Our method also
requires bivariate generating functions and (partial) differential equations but it enu-
merates the permutations according to the value of their final term.

Elizalde and Noy [4] also began the study of sets Cav(Π) where Π consists of permu-
tations of length 3. This was continued by Kitaev and Mansour [6, 7]. This work
resulted in fairly complete enumeration results with the exceptions of the two sets
Cav{312, 132} and Cav{312, 231}. For the latter two sets we give enumerating re-
currences in section 3. We have used the recurrences to get approximations to certain
limits and it is convenient here to contrast such limits with the corresponding situation
for classical pattern containment.

For classical pattern containment one defines Av(Π) to be the set of permutations that
classically avoid all the permutations of a given set Π. Given such a set Π let pn be the
number of permutations in Av(Π)) of length n. Then the Marcus-Tardos theorem [8] is
that, if Π is non-empty, pn ≤ kn for some k that depends only on Π. It is also known
[2] that, when Π is a singleton set, lim n

√
pn exists but it is a tantalising open problem

to prove this in general.

Elizalde [3] observed that, for consecutive pattern containment, the situation is similar.
In particular he proved that, if cn is the number of permutations of length n in Cav(σ),
then

cn
n!
≤ kn

for some constant k < 1, and

lim n

√
cn
n!

exists. It is obvious that the first of these extends to any non-empty set Π of avoided
permutations. However, the second remains true also as is easily confirmed by check-
ing Elizalde’s proof. It is this type of limit that we approximate in Section 3. In this
section we also present some computational data for sets Cav(σ) with |σ| = 4.
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Of the sets that are defined by avoiding permutations of length 3 two are particularly
noteworthy. The first is the set Cav{123, 321} which consists of permutations which
alternate in rises and descents. They are clearly related to the alternating permutations
of André [1] and their generating function is 2(secx + tanx) − x − 1. The second
is the set Cav{123, 231, 312} which in [7] is shown to have the generating function
1 + x(secx + tanx). In section 4 we give a one-to-one correspondence between two
subsets of these sets that explains the similarity in their generating functions.

Just as for classical pattern avoidance we can define two sets Π and Π′ to be Wilf-
equivalent if the enumerations of Cav(Π) and Cav(Π′) are equal. A byproduct of
Theorem 3.2 of [4] was to prove that the singleton sets {12 · · · a τa + 1} (where τ is
any permutation of a+ 2, a+ 3, . . .) are Wilf-equivalent. In the last section we give a
substantial generalisation of this result.

2 Avoiding 123 · · · k

In this section we consider permutations that avoid ιk = 12 · · · k. Define

U (t)
na

to be the set of permutations π such that

1. π avoids ιk,

2. π has length n ≥ 0,

3. the final term term of π is a where 1 ≤ a ≤ n, and

4. π ends in t rises where, necessarily, t ≤ k − 2

Put u(t)
na = |U (t)

na |.

Permutations of U (t)
na that have t = 0 (so end in a descent) arise by appending a final

element a to a permutation σ ∈ U (s)
n−1,b where b ≥ a and 0 ≤ s ≤ k−2. It follows that

u(0)
na =

∑
b:b≥a

(
u

(0)
n−1,b + u

(1)
n−1,b + · · ·+ u

(k−2)
n−1,b

)

On the other hand permutations of U (t)
na that have t > 0 arise by appending a final

element a to a permutation σ ∈ U (t−1)
n−1,b where b ≤ a. This gives

u(t)
na =

∑
b:b<a

u
(t−1)
n−1,b

with t > 0.
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We can rewrite these two equations without the summations over b as

u(0)
na = u

(0)
n,a+1 + u

(0)
n−1,a + u

(1)
n−1,a + · · ·+ u

(k−2)
n−1,a

u(t)
na = u

(t)
n,a−1 + u

(t−1)
n−1,a−1 if t > 0

where appropriate initial conditions are

u
(0)
11 = 1

u(0)
nn = 0 if n ≥ 1

u
(t)
n1 = 0 if t > 0

We now make a change of variables and put

v
(t)
ij = u

(t)
i+j+1,i+1

With these variables the equations and initial conditions become

v
(0)
00 = 1

v
(0)
i0 = 0 if i ≥ 0

v
(t)
0j = 0 if t > 0

v
(0)
ij = v

(0)
i+1,j−1 + v

(0)
i,j−1 + v

(1)
i,j−1 + · · ·+ v

(k−2)
i,j−1

v
(t)
ij = v

(t)
i−1,j+1 + v

(t)
i−1,j where t > 0

Next we introduce the (exponential) generating functions

V (t)(x, y) =
∑
i,j

v
(t)
ij

xi

i!
yj

j!

and rewrite the recurrences as equations between the generating functions. This gives
the differential equations

∂V (0)

∂y
=

∂V (0)

∂x
+ V (0) + V (1) + · · ·V (k−2)

∂V (1)

∂x
=

∂V (1)

∂y
+ V (0)

∂V (2)

∂x
=

∂V (2)

∂y
+ V (1)

· · ·
∂V (k−2)

∂x
=

∂V (k−2)

∂y
+ V (k−3)
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and the boundary value equations are

V (0)(x, 0) = 1
V (t)(0, y) = 0 for 1 ≤ t ≤ k − 2

To solve these equations we substitute w = (x+ y)/2, z = (x− y)/2. The chain rule
for differentiation tells us that

∂V (t)

∂x
=

1
2

(
∂V (t)

∂w
+
∂V (t)

∂z

)
∂V (t)

∂y
=

1
2

(
∂V (t)

∂w
− ∂V (t)

∂z

)
so we can reformulate the equations as:

∂V (0)

∂z
= −

(
V (0) + V (1) + · · ·V (k−2)

)
∂V (1)

∂z
= V (0)

∂V (2)

∂z
= V (1)

· · ·
∂V (k−2)

∂z
= V (k−3)

Now, by elimination, we get a (k − 1)th order differential equation for V (k−2)

k−1∑
i=0

∂iV (k−2)

∂zi
= 0

The solution of this equation is

V (k−2) = A1 exp(λ1z) +A2 exp(λ2z) + · · ·+Ak−1 exp(λk−1z)

where λ1, . . . , λk−1 are the roots of

λk−1 + λk−2 + · · ·+ 1 = 0

which are the non-trivial kth roots of 1. Here A1, . . . , Ak−1 are independent of z, and
so are functions of w alone. The other variables V (k−3), V (k−4), . . . , V (0) may be
found by successive differentiation with respect to z.

To find A1, . . . , Ak−1 we use the boundary conditions. These show that A1, . . . , Ak−1

satisfy the following equations:
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A1 exp(−λ1w) +A2 exp(−λ2w) + · · ·+Ak−1 exp(−λk−1w) = 0
A1λ1 exp(−λ1w) +A2λ2 exp(−λ2w) + · · ·+Ak−1λk−1 exp(−λk−1w) = 0

· · ·
A1λ

k−3
1 exp(−λ1w) +A2λ

k−3
2 exp(−λ2w) + · · ·+Ak−1λ

k−3
k−1 exp(−λk−1w) = 0

A1λ
k−2
1 exp(λ1w) +A2λ

k−2
2 exp(λ2w) + · · ·+Ak−1λ

k−2
k−1 exp(λk−1w) = 1

To solve these equations we regard the first k − 2 of them as homogeneous linear
equations for the quantities Ai exp(−λiw) and solve the system whose matrix is

1 1 1 · · · 1
λ1 λ2 λ3 · · · λk−1

λ2
1 λ2

2 λ2
3 · · · λ2

k−1

· · · · · · · · · · · · · · ·
λk−3

1 λk−3
2 λk−3

3 · · · λk−3
k−1


by the method of determinants. Let ∆i denote the value of the determinant of the above
matrix when the ith column is removed, multiplied by a sign (+1 if i is odd, −1 if i is
even). Because the determinant is of van der Monde type its value is, to within sign,∏

r<s,r 6=i,s6=i

(λr − λs)

Then we have

A1 exp(−λ1w)
∆1

=
A2 exp(−λ2w)

∆2
= · · · = Ak−1 exp(−λk−1w)

∆k−1

If the value of this ratio is denoted by R we can find R by substituting into the final
equation. This gives (noting that λk−2

i = λ−2
i )

R =
1

λ−2
1 exp(2λ1w)∆1 + λ−2

2 exp(2λ2w)∆2 + · · ·+ λ−2
k−1 exp(2λk−1w)∆k−1

Hence

Ai =
exp(λiw)∆i

R

Therefore, using w = (x+ y)/2 and w+ z = x, the generating function V (k−2)(x, y)
is

exp (λ1x)∆1 + exp(λ2x)∆2 + · · ·+ exp(λk−1x)∆k−1

λ−2
1 exp(λ1(x+ y))∆1 + λ−2

2 exp(λ2(x+ y))∆2 + · · ·+ λ−2
k−1 exp(λk−1(x+ y))∆k−1

The expressions for V (k−3), . . . , V (0) are similar in that the denominators are the same
but the numerators have multiplying coefficients that are powers of the λi.

Examples of these functions are
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1. n = 3

V (0)(x, y) =
exp(y/2) cos(

√
3x/2 + π/6)

cos(
√

3(x+ y)/2 + π/6)

2. n = 4

V (0)(x, y) =
cosx− sinx+ exp(−x)

cos(x+ y)− sin(x+ y) + exp(−x− y)

Now observe that v(0)
0n = u

(0)
n+1,1 is by definition the number of permutations of length

n + 1 that end with the term 1. This however is the same as the total number of per-
mutations in the set of length n. In particular, the generating function that enumerates
Cav(ιk) is V (0)(0, y) and this is (again using λk−2

i = λ−2
i )

λ−2
1 ∆1 + λ−2

2 ∆2 + · · ·+ λ−2
k−1∆k−1

λ−2
1 exp(λ1y)∆1 + λ−2

2 exp(λ2y)∆2 + · · ·+ λ−2
k−1 exp(λk−1y)∆k−1

Two instances of the use of this formula are

1. The generating function of Cav(123456) is

3
exp(x/2) cos(z + π/3) +

√
3 exp(−x/2) cos(z + π/6) + exp(−x)

where z =
√

3x/2

2. The generating function of Cav(12345678) is

4
exp(−x) + cos(x)− sin(x) + 2 cos(z) cosh(z)−

√
2 cos(z) sinh(z)−

√
2 cosh(z) sin(z)

where z =
√

2x/2.

We conclude this section with an observation. The one variable generating function
V (0)(0, y) which enumerates the permutations that avoid ιk is obtained by putting x =
0 in the two variable generating function V (0)(x, y). But, in fact, V (0)(x, y) can be
obtained also from V (0)(0, y). The reason is that, from the formulae above, V (0)(x, y)
is a quotient of the form

V (0)(x, y) =
h(x)

h(x+ y)

and therefore

V (0)(0, y) =
h(0)
h(y)

from which we obtain

V (0)(x, y) =
h(x)

h(x+ y)
=

(
h(0)/V (0)(0, x)

)(
h(0)/V (0)(0, x+ y)

) =
V (0)(0, x+ y)
V (0)(0, x)
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3 Recurrences and limits

In this section we find approximations for various limits of the form lim n
√
tn/n! where

tn is the number of permutations in various pattern avoidance sets. This is done by
finding recurrence relations that allow us to compute tn for values of n far beyond
what could be achieved by generating the permutations in the set directly. The method
we use has appeared in the pattern literature before but the only general description of
it that we have been able to find is the brief hint in the final section of [5]. We then
compute the limit by calculating

tn
ntn−1

for large values of n (which has faster convergence behaviour than computing lim n
√
tn/n!

directly).

We begin by considering Cav(312, 132) and Cav(312, 231). In both cases we enu-
merate the permutations according to the values of their final two terms a, b and we
distinguish a < b from a > b. We then go on to consider Cav(σ) with |σ| = 4. Our
results indicate that there are no unexpected equalities in the values of these limits.

3.1 Avoiding 312 and 132

Let unab be the number of permutations of length n in Cav(312, 132) that end with a
rising ab and dnab the number that end with a descending ab. A permutation of length
n in Cav(312, 132) that ends with ab arises by appending b to one of length n−1 (with
appropriate renumbering of terms).

If a < b we have to ensure that the final three terms cab of this new permutation are
not isomorphic to 312. If c < a this is already assured but if c > a we need also c < b.
This gives

unab =
∑

c:c<a

un−1,c,a +
∑

c:a<c<b

dn−1,c,a

If a > b we need to ensure that the final three terms are not isomorphic to 132. Taking
into account the necessary renumbering of terms we obtain

dnab =
∑

c:b<c<a

un−1,c−1,a−1 +
∑

c:c>a

dn−1,c−1,a−1

The total number tn of avoiders of length n is then∑
a,b

unab +
∑
a,b

dnab

We have used these recurrences to compute over 100 terms of the sequence (tn). The
first 10 terms are given in Table 1. We have the approximation

lim
n→∞

n

√
tn
n!

= 0.601730727943943
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n 1 2 3 4 5 6 7 8 9 10
tn 1 2 4 10 30 108 454 2186 11840 71254

Table 1: Cav(312, 132)

n 1 2 3 4 5 6 7 8 9 10
tn 1 2 4 11 37 149 705 3814 23199 156940

Table 2: Cav(312, 231)

3.2 Avoiding 312 and 231

Again we define unab to be the number of such permutations that end with a rising ab
and dnab the number that end with a descending ab. Arguing as before leads to

unab =
∑

c:c<a<b

un−1,c,a +
∑

c:a<c<b

dn−1,c,a

dnab =
∑

c:c<b

un−1,c−1,a−1 +
∑

c:c>a−1

dn−1,c,a−1

The total number tn of avoiders of length n is then∑
a,b

unab +
∑
a,b

dnab

Here the approximate limit is

lim
n→∞

n

√
tn
n!

= 0.676388228094035

and the first 10 terms are given in Table 2.

3.3 Avoiding patterns of length 4

For the enumeration of a set of the form Cav(σ) with |σ| = 4 it is enough, as explained
in [4], to consider 7 permutations only, namely 1234, 2413, 2143, 1324, 1423, 1342,
and 1243. In the case of 1234, 1342, and 1243 the enumerations can be read off from
the generating functions found in [4]. For the other four permutations we have com-
puted the number of permutations of length n in Cav(σ) for n ≤ 34 using the same
method as above but keeping track of the final three terms of the permutations rather
than the final two. We give the data for n ≤ 10 in Table 3 and, in Table 4, give the lim-
its we have found (and, for comparison purposes, also the limits given in [4]). Elizalde
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n 1 2 3 4 5 6 7 8 9 10
2413 1 2 6 23 110 632 4237 32465 279828 2679950
2143 1 2 6 23 110 631 4223 32301 277962 2657797
1324 1 2 6 23 110 632 4229 32337 278204 2659223
1423 1 2 6 23 110 631 4218 32221 276896 2643883

Table 3: Cav(σ) with |σ| = 4

σ lim n
√
tn

1234 0.963005
2413 0.957718
2143 0.956174
1324 0.955850
1423 0.954826
1342 0.954611
1243 0.952891

Table 4: Approximate limits

and Noy noted an unusual comparison between the enumerations of Cav(1324) and
Cav(2143): the latter is smaller than the former for n ≤ 11 but greater for n = 12. For
n ≤ 34 we have found no further oddities.

4 Cav(123, 321) and Cav(123, 231, 312)

In their paper [7] Kitaev and Mansour compute the generating function for the set
Cav(123, 231, 312) as 1 + x(secx + tanx) which, of course, is strikingly similar to
the generating function for Cav(123, 321), namely, 2(secx+tanx)−x−1. It follows
quite readily from their analysis that the numbers of permutations that start with the
symbol 1 are the same for each set. In this section we give an explicit bijection between
these two sets of permutations by producing an infinite tree that describes both sets.

Let A be the set of permutations in Cav(123, 321) that start with the symbol 1 and B
the set of permutations in Cav(123, 231, 312) that also start with the symbol 1. For
both A and B we construct an infinite tree whose nodes are labelled by permutations
in the set, the root being labelled by the permutation 1 and the nodes at level n being
labelled by permutations of length n. In this tree the parent of a (non-root) node is
obtained by removing the final symbol (and renumbering the terms). The top fragment
of both trees is shown in Figure 1 and they have been drawn to suggest that they may
be isomorphic.

Lemma 1 In the tree for A the children of a node at level n with down degree d have
down degrees n− d+ 1, n− d+ 2, . . . , n.
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Tree for A 1

12
132

1423 1324

15342 15243 14352 14253 13254

Tree for B 1
12
132

14321324

1425313254 15432 1532414325

Figure 1: Trees for the sets A and B

Proof: The permutations of A are alternating and begin with 1. If a permutation
π ∈ A has even length it must end with an ascent and so, if its final symbol is k, its
children in the tree are obtained from π by appending one of the symbols 2, 3, . . . , k
(with appropriate renumbering of prior terms); in particular it has k − 1 children. On
the other hand a permutation π ∈ A of odd length n must end with a descent and, if its
final symbol is k, its children are obtained by appending one of k+ 1, k+ 2, . . . , n+ 1
to π; such a node has n+ 1− k children.

Consider a node π at level n with d children. If n is even π must end with d+ 1 and its
children must end with one of 2, 3, . . . , d+ 1. However these children are at odd depth
n+1 and so their down degrees are (respectively) n+2−2, n+2−3, . . . , n+2−(d+1),
in other words n, n− 1, . . . , n− d+ 1. If n is odd then π must end with n− d+ 1 and
have children ending with one of n− d+ 2, n− d+ 3, . . . , n+ 1. These children are
at even depth n+ 1 and so their down degrees are n− d+ 1, n− d+ 2, . . . , n also.

Lemma 2 In the tree for B the children of a node at level n with down degree d have
down degrees n− d+ 1, n− d+ 2, . . . , n.

Proof: Consider a node π of the tree for B that has depth n and suppose that it ends
with the two terms `, k. If ` < k its children arise by appending terms with values
`+ 1, `+ 2, . . . , k (with appropriate renumbering of previous terms); thus it has k − `
children and they end with the final pairs (k+1, `+1), (k+1, `+2), . . . , (k+1, k). On
the other hand if ` > k the children arise from appending terms with values 2, 3, . . . , k
and ` + 1, ` + 2, . . . , n + 1; the node therefore has n + k − ` children and their final
pairs are (k+ 1, 2), (k+ 1, 3), . . . , (k+ 1, k) and (k, `+ 1), (k, `+ 2), . . . , (k, n+ 1).

Now consider a node π at level n with d children and suppose that its final two terms
are `, k. Suppose first that ` < k. Then d = k − `, the children of π have final pairs
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(k + 1, `+ 1), (k + 1, `+ 2), . . . , (k + 1, k) and they have down degrees

n+ 1 + (`+ 1)− (k + 1), n+ 1 + (`+ 2)− (k + 1), . . . , n+ 1 + k − (k + 1)

or n− d+ 1, n− d+ 2, . . . , n.

Next suppose that ` > k. Here d = n + k − ` and the children of π end in the final
pairs (k + 1, 2), (k + 1, 3), . . . , (k + 1, k) and (k, ` + 1), (k, ` + 2), . . . , (k, n + 1).
Their down degrees are therefore

n+ 1 + 2− (k + 1), n+ 1 + 3− (k + 1), . . . , n+ 1 + k − (k + 1)

and
`+ 1− k, `+ 2− k, . . . , n+ 1− k

so the set of down degrees is again {n− d+ 1, n− d+ 2, . . . , n}.
These two lemmas suffice to show that the trees for the two sets are isomorphic and so
we have a bijection between the two sets.

5 Equal distributions

In this section we give some families of Wilf-equivalent sets as a consequence of a
more general result on equal distributions.

If α and β are permutations then α ⊕ β (and, respectively, α 	 β) denotes the permu-
tation which is the concatenation of words α′ isomorphic to α and β′ isomorphic to β
with α′ < β′ (respectively, α′ > β′).

A pair of permutations (α, β) is said to have the separation property if 1 	 β is not
(consecutively) contained in α and α⊕ 1 is not (consecutively) contained in β.

Let αβ be any permutation and let Π(α, β, k) be the set of all permutations αγβ where
|γ| = k. Notice that this notation implies that the terms of γ are greater than the terms
of αβ.

Lemma 3 Let αβ be any permutation such that the pair of permutations isomorphic to
α, β has the separation property. Let σ be any permutation and let α1γ1β1, . . . , αtγtβt

be the factors of σ that are isomorphic to permutations of Π(α, β, k). Then, for all
i 6= j, αiγiβi ∩ γj is empty.

Proof: Suppose that, for some i 6= j, αiγiβi ∩ γj is not empty. Since γi 6= γj the
initial symbol of γi precedes or succeeds the initial symbol of γj . Suppose the former
possibility occurs. Then βi ∩ γj is not empty and contains a term q. If there was term
p ∈ αj ∩ γi we would have both p < q since αj < γj and p > q since γi > βi; hence
αj ∩ γi is empty. It follows that βi contains the whole of αj and since it contains also
at least the first symbol of γj (which exceeds αj) it contains α ⊕ 1. This contradicts
the separation property.

A similar argument proves that if the initial symbol of γi succeeds the initial symbol of
γj the separation property is again violated through 1	 β being contained in α.
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Theorem 1 Suppose that αβ is a permutation such that the pair of permutations iso-
morphic to α, β has the separation property. Let

Θ = {θ1, . . . , θt} ⊆ Π(α, β, k)

for some k, where θi = αiγiβi, and letm1, . . . ,mt be any non-negative integers. Then
the number of permutations of length n that contain θi exactly mi times depends only
on α, β, k, t,m1, . . . ,mt and not on the permutations γi themselves.

Proof: We define an equivalence relation∼ on the permutations of length n as follows.
If σ and σ′ are of length n let α1δ1β1, . . . , αuδuβu be the sequence of factors of σ
that are isomorphic to permutations in Π(α, β, k) and let α′1δ

′
1β
′
1, . . . , α

′
uδ
′
uβ
′
v be the

corresponding sequence for σ′. Then σ ∼ σ′ if

1. u = v

2. αi and α′i occur at the same positions within σ and σ′ and have corresponding
equal values,

3. βi and β′i occur at the same positions within σ and σ′ and have corresponding
equal values,

4. δi and δ′i have the same set of values (though not necessarily in the same order),

5. The sequence of terms of σ not among α1δ1β1, . . . , αuδuβu is equal to the the
sequence of terms of σ′ not among α′1δ

′
1β
′
1, . . . , α

′
uδ
′
uβ
′
v

The permutations in any given equivalence class are characterised by the class itself
and by the order of terms within each factor δi. By Lemma 3 each δi can be arranged
in any order. In order that a permutation of the equivalence class contains each θi

exactly mi times it is necessary and sufficient that among its factors δ1, . . . , δu there
are mi of them isomorphic to γi. But the number of ways in which this can happen
depends on k, t,m1, . . . ,mt, u only.

Corollary 1 Suppose that αβ is a permutation such that the pair of permutations iso-
morphic to α, β has the separation property and suppose that k and t are fixed. Then
all t-element subsets of Π(α, β, k) are Wilf-equivalent.
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