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Abstract

The cyclic closure of a permutation pattern class is defined as the set
of all the cyclic rotations of its permutations. Examples of finitely based
classes whose cyclic closure is also finitely based are given, as well as an
example where the cyclic closure is not finitely based. Some enumerations
of cyclic closures are computed.

1 Introduction

We shall investigate the connection between two relations on permutations:
pattern containment and cyclic rotation.

A permutation π is said to be a subpermutation of (or pattern within) a permu-
tation σ if σ has a subsequence that is order isomorphic to π. Within the last
few years this notion has been studied intensively, see [5] and references therein.
The subpermutation relation is generally studied by means of closed classes of
permutations: those that are closed downwards under forming subpermutations.
Such classes can always be specified by a set of avoided permutations, and the
minimal avoided set is called the basis of the class. The class defined by an
avoided set B is denoted by Av(B).

Typical questions about closed classes are:

1. How many permutations of each length are contained in the class?

2. What is the basis of the class; in particular, is it finite?
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Cyclic rotation is a much simpler relation: σ is a cyclic rotation of π if there is
some reading of π, regarded as a circular list, that agrees with σ. Clearly, every
permutation of length n is related by cyclic rotation to exactly n permutations
(including itself).

To study how these two relation interact we define cyclically closed classes of
permutations: these are classes closed downwards under taking subpermuta-
tions, and closed also under taking cyclic rotations.

If we are given the basis of a closed class it is trivial to verify whether the class
is cyclically closed: we just have to check that the basis is closed under all
cyclic rotations. That observation leads to a simple way to construct the largest
cyclically closed class contained in some given closed class: we simply take the
basis of the given class, form all the cyclic rotations of its permutations, discard
the ones not minimal under taking subpermutations, and take the result as the
basis of a new class. In particular, if the original basis was finite, so also will be
the basis of the new class.

This suggests a dual problem: given a closed class X, find the smallest cyclically
closed class containing it (we call this the cyclic closure of X and denote it by
cc(X)). Notice that cc(X) can be obtained from X by forming all the rotations
of the permutations of X. We shall be interested in how to enumerate cc(X)
given an enumeration of X, and how its basis is related to the basis of X.

In section 2 we shall develop some techniques to describe the basis of a cyclic
closure and we shall use them to prove that the cyclic closures of classes of the
form Av(σ) are finitely based whenever σ has length 3. By contrast we shall
give an example of a permutation σ of length 6 where the cyclic closure of Av(σ)
has an infinite basis.

The enumerations (sn) and (tn) of a closed class X and its cyclic closure cc(X)
clearly satisfy

sn ≤ tn ≤ nsn

and, from this, one readily deduces that, if λ = limn→∞ n
√

sn exists, then so
does limn→∞

n
√

tn and this is also equal to λ. To get more precise enumeration
information it is necessary to work out which cyclic rotations of permutations
in X also lie in X. We shall give some example enumerations in section 3.

2 Pattern restrictions

In this section we shall study the basis of a class cc(X) where X = Av(B)
itself is given by its basis B. Since the permutations of both cc(X) and its
complement are closed under cyclic rotation we shall often consider them to be
circular lists; in particular, when we refer to either a subsequence or a segment
we shall allow wrap-around subsequences and segments. For example, 312, 261
are subsequences of 361524, and 152, 2436 are segments.
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The basis of cc(X) is the set of permutations minimal with respect to not lying
in cc(X). Therefore we begin by giving a condition that a permutation does not
lie in cc(X); in other words, none of its cyclic rotations lie in X. This requires
two definitions.

Let σ be any permutation. A subsequence θ of σ that is order isomorphic to
a permutation of B is called a basic subsequence; although basic subsequences
are defined with respect to the basis B, we shall omit a notational reference to
B since it will always be clear from the context. Given a basic subsequence θ
with first term s and last term t let θ̃ = sβγt be the segment that begins with
s and ends with t, and write

σ = αsβγtδ or σ = γtδαsβ

according to whether θ̃ = sβγt wraps or not. The rotations of σ that begin
with a term of the segment W (θ) = δαs all contain θ as a subsequence without
wrap-around; so none of these permutations lie in X. We say that θ witnesses
the points of the segment W (θ), or that W (θ) is a witnessed segment.

Lemma 1 σ 6∈ cc(X) if and only if the witnessed segments cover σ.

Proof: The remarks above already prove that, if the witnessed segments of σ
cover σ, then no cyclic rotation of σ lies in X; so σ 6∈ cc(X). Conversely, if there
is some term that lies in no witnessed segment then the cyclic rotation of σ that
begins with this term contains no basic subsequence (without wrap-around) and
so lies in X; thus σ ∈ cc(X).

Proposition 2 Let X = Av(B), where B is finite and suppose there is a bound
∆ depending on B alone such that, for all σ 6∈ cc(X), there is a collection of at
most ∆ witnessed segments that cover σ. Then cc(X) is finitely based.

Proof: Suppose that σ 6∈ cc(X). By hypothesis there is a set θ1, . . . , θd with
d ≤ ∆ for which the witnessed segments W (θ1), . . . ,W (θd) cover σ.

Consider the subsequence σ′ of σ that consists of the points of all of θ1, . . . , θd

and renumber its points so that it is a permutation. Clearly, the witnessed
segments W (θ1), . . . ,W (θd) of σ′ cover σ′; so, by the previous lemma, σ′ 6∈
cc(X). Furthermore, σ′ is a union of at most ∆ segments, each of length no
longer than M , where M is the maximal length of a permutation of B; thus
|σ′| ≤ M∆.

We have proved that every permutation not in cc(X) has a subpermutation also
not in cc(X) of bounded length. This proves that there are only finitely many
permutations minimal with respect to not lying in cc(X); thus cc(X) is finitely
based.

The following theorems exploit this proposition.
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Theorem 3 cc(Av(321)) is finitely based.

Proof: Suppose that σ 6∈ cc(Av(321)) and write it as

σ = 1αnβ

after some suitable rotation. Suppose first that β is not increasing in which case
we can find a descent vu of β; say β = γvuδ. The basic subsequences nvu and
vu1 determine witnessed segments δ1αn and αnγv. Together these cover every
point of σ except for u. However u is covered by some other witnessed segment
and so, in this case, σ is covered by 3 witnessed segments.

Next suppose that β = b1 · · · bf is increasing and non-empty. By Proposition
2 the term b1 lies in some witnessed segment W (θ) determined by some basic
subsequence θ. Either θ has its largest term within β (in which case it may be
taken to be bf , with its next two terms a2, a1 ∈ α) or its 3 decreasing terms
a3, a2, a1 all lie in α. In both cases W (θ) contains b1, . . . , bf−1. However, nbf1
is also a basic subsequence and this defines the witnessed segment αn. So,
with the possible exception of bf , every term of σ lies in one of two witnessed
segments, and hence again σ can be covered by 3 witnessed segments.

Finally, suppose that β is empty. Then α cannot be increasing since σ 6∈ Av(321)
and so it has the form α = γdcδ where dc is a descent. But now the basic
subsequences ndc and dc1 define witnessed segments δn and γd. These cover
every point of σ except for 1 and c, and hence σ can be covered by no more
than 4 witnessed segments.

We can now apply Proposition 2 with ∆ = 4.

Theorem 4 cc(Av(231)) is finitely based.

Proof: Suppose that σ 6∈ cc(Av(231)). We consider the longest chain of
descents that end with the symbol 1 and the symbol u immediately preceding
this chain. By taking a suitable cyclic rotation we can write

σ = uv1v2 . . . vrvr+1 . . . vr+sβ

where vr+s = 1 and

v1 > v2 > . . . > vr > u > vr+1 > . . . > vr+s.

We have a basic subsequence φ = uv1vr+1 that witnesses the segment

W (φ) = vr+2 . . . vr+sβu.

The term vr+1 lies in some other witnessed segment W (θ) say. Hence there is
some basic subsequence θ = bca order isomorphic to 231 that begins at vr+1 or
later and ends before vr+1.

4



If a is not one of v1, v2, . . . , vr then W (θ) contains all of these symbols. Then
every point of σ except possibly vr+1 lies in W (θ) ∪ W (φ) and so σ can be
covered by 3 witnessed segments.

On the other hand, if a is one of the symbols of v1, v2, . . . , vr, we may assume
that c is also one of these symbols (if not, we may redefine a as u and revert
to the previous case). Now it follows that b ∈ β and c and a can be taken
as some vi and vi+1; here W (θ) contains at least the points vi+2, . . . , vr+1.
However, as b > vi+1, vi+1bu is a basic subsequence and its witnessed segment
is v1, v2, . . . , vi+1. Again σ is covered by 3 witnessed segments and we can now
apply Proposition 2.

The upper bounds on the length of basis elements of both cc(Av(321)) and
cc(Av(231)) provided by Proposition 2 are excessive. In fact, computer calcu-
lations show these bases are, respectively,

1. {15432, 14325, 164253, 163254, 1472536}, and

2. {13425, 13524, 14253, 14523}

together with all their cyclic rotations.

We have succeeded in proving that cc(Av(σ)) is finitely based only for one
permutation σ of length greater than 3.

Theorem 5 cc(Av(4321)) is finitely based.

Proof: Let σ 6∈ cc(Av(4321)). Among the basic subsequences of σ choose one,
θ = dcba say, spanning the smallest number of points. After a suitable rotation,
write

σ = δdγcβbαa

Note that W (θ) is the interval δd. We want to find a bounded number of
witnessed intervals that cover γcβbαa.

Figure 1 shows some of the structure of σ. Those blocks denoted by 0 are empty,
and rising lines denote increasing subsequences; all these properties follow from
the minimality of θ.

We shall begin by finding a single witnessed interval that contains the set Ξ of
points in cβb that are also greater than or equal to c (as Figure 1 shows, these
points are increasing). Consider some witnessed segment W (φ) containing c. If
the basic sequence φ does not begin in cβb then W (φ) itself contains Ξ. On the
other hand, if φ contains just one point of cβb, then that point is b or a point
smaller than b (in which case it may be taken to be b itself) or it is a point of
Ξ (in which case it may be taken to be the last point of Ξ); in all cases W (φ)
contains the whole of Ξ as required.

By exploiting the reverse-complement symmetry we may, in the same way, find
a single witnessed segment that contains all the points of cβb that are smaller
than or equal to b.
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Figure 1: A basis element of cc(Av(4321))

We turn now to points of αa and find a single witnessed segment that contains
all of them. If region A contains a point a′ then W (a′dcb) is such a segment;
and if region B contains a descent b2b1 then W (b2b1cb) is such a segment; so
assume that neither of these occur. Consider some witnessed interval W (η) that
contains a. If η = zyxw does not end in the segment α then W (η) will contain
αa as required; so assume that η ends within α; hence b < w. However, then η
must begin within δ or the minimal property of dcba will be contradicted. The
second point y of η must also lie within δ or dyxw would have smaller span
than dcba; and hence, by the increasing property of B, y must be less than c.
But it is now impossible that x ∈ α; hence η may be replaced by zyxb and now
αa ∈ W (η).

Finally, using the reverse-complement symmetry again, all the points of dγ lie
in a single witnessed segment.

Despite these examples, not every finitely based class has a finitely based cyclic
closure:

Theorem 6 The cyclic closure of Av(265143) is not finitely based.

This theorem is proved by exhibiting infinitely many permutations π2, π3, . . . in
the basis of Av(265143). The permutation πn, where n ≥ 2, is defined as the
concatenation of segments:

πn = AnBnCnDnEnFnGnHnIn.

The segments themselves are defined below. In these definitions we separate the
terms in a segment from one another by spaces and vertical bars; the types of
separators have no significance other than to display the segment clearly.

6



An = 4n + 6
Bn = 4n + 10 | 4n + 14 | 4n + 13 | 4n + 9 | 4n + 12
Cn = 4n + 3
Dn = 4n− 1 | 4n− 5 | 4n− 9 | · · · | 3
En = 4n + 11
Fn = 29 5 1 4 | J2 J3 · · · Jn

Gn = 4n + 8 | 4n + 2
Hn = 4n + 4
In = 4n + 7

where Ji = 4i + 5 | 4i− 2 | 4i.

The first two of these permutations are

π2 = 14 18 22 21 17 20 11 7 3 19 2 9 5 1 4 13 6 8 16 10 12 15

and

π3 = 18 22 26 25 21 24 15 11 7 3 23 2 9 5 1 4 13 6 8 17 10 12 20 14 16 19.

To further clarify the form of πn we display the graph of π10 (a permutation on
54 points) in Figure 2.

Lemma 7 πn /∈ cc(Av(2 6 5 1 4 3)).

Proof: We shall show that each term of πn lies in a witnessed segment and then
appeal to Proposition 2. First, observe that BnEn, CnEnGnInAn and 295143
are all basic subsequences of πn. We have that FnGnHnInAn is contained in
W (BnEn), BnCn is contained in W (CnEnGnInAn), and En is contained in
W (2 9 5 1 4 3).

It remains to show that each term of Dn belongs to some witnessed segment.
The terms 4i− 1 with 2 ≤ i ≤ n (that is, all terms of Dn except the final term)
lie in witnessed segments of the form

W (4i− 1 | 4n + 11 | 4i + 5 | 4i− 2 | 4i + 4 | 4i + 3).

The final term 3 lies in

W (3 | 4n + 11 | 9 1 8 7).

Lemma 8 Every proper subpermutation of πn belongs to S = cc(Av(265143)),
for all n ≥ 2.
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Figure 2: The graph of π10, and its segments
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Proof: We shall find a set of pairs P = {(σ, p)} with the following properties:

1. σ is a basic subsequence and p is a term of πn,

2. p ∈ W (σ) but p lies in no other witnessed segment.

Then we shall check that, for every term t of πn, there exists a pair (σ, p) ∈ P
such that t is a term of σ but t 6= p. From this we can deduce that, if t is removed
from πn, the term p of the result lies in no witnessed segment; therefore, by
Proposition 2, this permutation belongs to S. Since that will be true for every
term of πn, all its proper subpermutations will belong to S.

Each pair (σ, p) of P is proved to have the correct property by a similar ap-
proach. We suppose that σ′ = s1s2s3s4s5s6 6= σ with p ∈ W (σ′) and derive a
contradiction.

Case 1: σ = 29 5 1 4 3 and p = En.

Here s2 lies in one of FnGnHnIn, An, Bn or CnDn.

Suppose that s2 is in FnGnHnIn. Consider the case where s2 occurs before
4. We are then forced to have s2 = 9 which in turn forces s1s3s4s5s6 =
2 5 1 4 3 and so σ′ = σ giving a contradiction. Therefore s2 has to be to
the right of 4 in FnGnHnIn, that is in a subsequence of πn that avoids
321. Therefore, regardless of whether s3 is in FnGnHnIn or in CnDn, we
are forced to have s4 in CnDn which in turn forces s5 to the right of En.
This contradicts p having to be contained in W (σ′).

If s2 is in AnCnDn then we are forced to have s3 and s4 in CnDn and,
since CnDn is decreasing, s5 to the right of En, a contradiction.

If we suppose that s2 is in Bn then s1 has to be outside Bn otherwise we
have s1 = 4n + 10 and s2 = 4n + 14 which forces σ′ = BnEn. Now, we
have s1 < Bn and so s4 must also be outside Bn, which forces s4 into
CnDn. Therefore, s5 is to the right of Dn and so p cannot be in W (σ′).

Therefore, no such σ′ exists and so W (σ) is the only witnessed segment
containing p.

Case 2: σ = BnEn and p = 9.

The argument is similar to that in Case 1. We cannot have s2 being one
of En, 2, 9 for then p could not belong to W (σ′); nor can we have s2 as
one of 5, 1, 4 since s2 has value at least 6. Hence we must have s2 in either
AnBnCnDn or in FnGnHnIn and, in this case, to the right of symbol 4. If
s2 lies in FnGnHnIn we can follow the argument given in Case 1 resulting
in s5 being to the right of En, which forces s6 to the right of 9. It then
follows that W (σ′) does not contain p, a contradiction.

Again following the argument in Case 1, if s2 in AnCnDn then s5 is to the
right of En giving a contradiction as above. Finally, if s2 belongs to Bn
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then, by Case 1, s1 must be outside Bn otherwise σ′ = BnEn = σ; this
results in s5 being to the right of Dn, which in turn forces s6 to the right
of 2. Therefore, W (σ′) cannot contain 9

Case 3: σ = 4i + 3 | En | 4i + 9 | 4i + 2 | 4i + 8 | 4i + 7 and p = 4i + 3 for any
i ∈ [0, n− 1].
First note that s2 cannot be in CnDn since this would force s1 to the left
of Cn and s5 to the right of Dn.
Next suppose that s2 = En. We then have s1 in Dn, that is, s1 = 4j + 3
where j ≤ i. We cannot have s4 outside FnGnHnIn as this forces s4 to
be between s1 and En. Therefore s4 is in FnGnHnIn and as a result, so
is s3.
Now, s3 has to be in FnGnHnIn such that s3 ≥ 4j + 6, that is s3 is
contained in ρ where

ρ = 4j + 9 | Jj+2 | Jj+3 | · · · | Jn | Gn | Hn | In.

Furthermore, s4 has to be to the right of s3 and less than 4j + 3, giving
s4 = 4j + 2 as the only candidate; this in turn gives s3 = 4j + 9. Finally,
FnGnHnIn avoids 321 so we must have s6 in AnBnCnDn and left of s1;
this forces s6 = 4j+7 and in turn, s5 = 4j+8. We now have W (σ′) = 4j+3
and so j = i. Therefore, σ = σ′ and we have a contradiction.
The argument in Case 1 now handles the remaining possibility of s2 being
in FnGnHnIn, An or Bn to show that no σ′ exists.

Case 4: σ = CnEnGnInAn, p = Cn.
Here s2 can be in any one of En, FnGnHnIn, An or Bn. As in case 3, s2

cannot be in Dn.
Suppose s2 = En, and that s1 = Cn. We then require s3 to be on the
interval (Cn + 2, En) = [4n + 6, 4n + 10]. Therefore, s3 is contained in
4n + 8 | In | An | 4n + 10 and so s3s5s6 is a subsequence of

4n + 8 | Hn | In | An | 4n + 10;

this forces us to have s3s4s5s6 = Gn | In | An, which gives σ′ = σ, a
contradiction. On the other hand if s1 = 4j + 3 for some j ∈ [0, n − 1]
then s6 = 4j + 7 by Case 3 and so p cannot be contained in W (σ′).
Again, the argument in Case 1 handles the remaining possibility of s2

being in FnGnHnIn, An or Bn and we can therefore conclude that σ′ does
not exist.

Now we confirm that, for every term t of πn, we can find some (σ, p) ∈ P such
that t ∈ σ with t 6= p (the latter condition will be automatic so long as t is
not the first term of σ). We view each term of πn as of the form 4j + h, where
j ∈ [1, n + 3] if h = 0, j ∈ [0, n + 3] if h ∈ {1, 2} and j ∈ [0, n + 2] if h = 3.
Table 1 shows which cases handle which terms of πn

Since all terms of πn are accounted for the proof is complete.
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Cases
1 2 3 4

0 j = 1 j = n + 3 j ∈ [2, n + 1] j = n + 2
h 1 j ∈ [0, 2] j ∈ [n+2, n+3] j ∈ [1, n + 1] N/A
value 2 j = 0 j ∈ [n+2, n+3] j ∈ [1, n− 1] j ∈ [n, n + 1]

3 j = 0 j = n + 2 j ∈ [1, n] j = n + 1

Table 1: Table of which cases handle which terms of πn.

3 Enumeration

When gathering enumeration results for cyclic closures it is helpful to note that
4 of the usual symmetries of the subpermutation relation (the ones generated by
reversal, and complementation) respect cyclic closure. For the cyclic closures of
Av(σ) where σ has length 3, this means that only σ = 321 and σ = 231 need be
considered. We recall that, for each of these permutations, Av(σ) is enumerated
by the Catalan sequence (cn).

Theorem 9 cc(Av(231)) is enumerated by

n (cn − cn−1 − cn−2 − · · · − c1)

for n ≥ 2.

Proof: Every permutation of Av(231) of length n lies in a rotation class con-
sisting of its n (different) cyclic rotations and every permutation of cc(Av(231))
arises in this way. Thus the permutations of degree n of cc(Av(231)) fall into
disjoint rotation classes of size n. We shall find, in each such rotation class, a
distinguished permutation of Av(231). Then we shall count the totality of such
distinguished permutations and multiply the total by n.

Consider any one such rotation class and let σ be a permutation of it that
lies in Av(231). Put σ = αnβ. Since 231 6� σ we have α < β. Let β =
n− 1, n− 2, . . . , n− k + 1, θ where either θ is empty or θ = uφ with u < n− k.
In the former case either α does not begin with n − k or α = n − kδ and the
rotation δn, n− 1, . . . , n− k also lies in Av(231). In the latter case (as α < uφ)
the rotation uφαn, n− 1, . . . , n− k + 1 ∈ Av(231).

These remarks show that, as the distinguished representative of any rotation
class, we can take a permutation of the form

σ = αn, n− 1, . . . , n− k + 1

where, if α is non-empty, then α does not begin with its maximal symbol. The
number of permutations of this type is easily seen to be

cn − cn−1 − cn−2 − · · · − c1
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since the only permutations we do not count are those of the form αnβ where
α begins with its maximum symbol and β = n − 1, n − 2, . . . , n − k + 1 (there
being cn−k−1 of this type).

Theorem 10 cc(Av(321)) is enumerated by

n

(
cn − 2n +

(
n

2

)
+ 2

)
for n ≥ 4.

Proof: As in the previous proof we shall find a distinguished permutation of
Av(321) in every rotation class of permutations of cc(Av(321)) and then count
these distinguished permutations.

Put Y = Av(321, 2143) and consider first the permutations of Av(321)\Y . Such
a permutation σ has a subsequence s2s1s4s3 isomorphic to 2143 and we may
write

σ = αs2βs1γs4δs3ε

It is routine to check that there is no other cyclic rotation of σ that avoids 321.
Hence permutations of Av(321) \ Y are the only permutations of Av(321) in
their rotation class.

Permutations of Y , however, are known [1] to have one of the forms shown in
Figure 3 and, from this, it is easy to see that they have a rotation of the form 1γ
that also lies in Y , and we shall take that to be the distinguished permutation
of its rotation class.

Let (yn) enumerate the class Y . We have cn− yn distinguished permutations of
length n in Av(321) \ Y and yn−1 distinguished permutations of length n in Y .
Thus cc(Av(321)) is enumerated by n(cn− yn + yn−1). However, it is known [6]
that

yn = 2n+1 − 2n− 1−
(

n + 1
3

)
and the result now follows.

The methods employed in the proofs of the two previous theorems can be applied
in other cases too. As examples of the results that can be obtained we give, in
Table 2, a summary of enumerations of all inequivalent cyclic closures of classes
of the form Av(α, β) where α and β each have length 3. The final line of the
table treats Av(3142, 2413), the class of separable permutations, which was first
introduced in [4]. Both this class and its enumeration by the Schröder sequence
(sn) have since made several appearances in the theory of subpermutations [2, 7].

Finally, we remark that enumerating the cyclic closures of Av(σ) with |σ| ≥ 3
is probably at least as hard as enumerating the original classes themselves.
Therefore, in view of the results proved in [3], perhaps the next step would be
the enumerate the cyclic closure of Av(1342).
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Figure 3: The two types of permutations in Av(321, 2143)

Class Enumeration
cc(Av(123, 132)) n(2n−1 − 2)
cc(Av(123, 231)) n(n2 − 3n + 4)/2
cc(Av(123, 321)) 0 for n ≥ 5
cc(Av(132, 213)) n(2n−1 − n + 1)
cc(Av(132, 231)) n(2n−2)
cc(Av(132, 312)) n(2n−1 − n + 1)
cc(Av(3142, 2413)) nsn−1

Table 2: Some enumerations
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