
Permutations generated by stacks and deques

M. H. Albert∗ M. D. Atkinson∗ S. A. Linton†

June 23, 2009

Abstract

Lower and upper bounds are given for the the number of permutations
of length n generated by two stacks in series, two stacks in parallel, and
a general deque.

Keywords: Deque, parallel stacks, serial stacks, permutation, enumer-
ation, growth rate.

Mathematics Subject Classification: Primary 05A05, 05A16; Sec-
ondary 68P05

1 Introduction

In the exercises of section 2.2.1 of the first edition of volume 1 of The Art of
Computer Programming [6] Donald Knuth raised some fascinating questions
about the number of permutations that various data structures could generate.
The most famous of these was about the number of permutations that could be
generated by a stack which he solved completely. Another scenario that he com-
pletely solved concerned the number of permutations that could be generated by
an output-restricted deque. In Exercise 2.2.1.13 he asked the same question for
general deques and in the exercises of section 5.2.4 in volume 3 [7] he introduced
the problem of generating permutations through serial compositions of stacks.

Knuth’s work soon inspired two follow-up papers. Tarjan [12] considered net-
works of stacks and queues, particularly serial and parallel compositions. For
queues his results were fairly complete but for stacks he ended by commenting
on the difficulty of these problems. Pratt [9] studied the cases of two stacks in
parallel and general deques. While all three authors realised that the permuta-
tions generated by the various configurations could be described by forbidding
certain patterns to occur in the permutations it was Pratt who drew explicit
attention to the subpermutation relation:
∗Department of Computer Science, University of Otago
†School of Computer Science, University of St Andrews

1

“. . . the subtask relation on permutations is even more interesting
than the networks we were characterizing. This relation seems to be
the only partial order on permutations that arises in a simple and
natural way, yet it has received no attention to date.”

Despite this remark the study of permutation classes defined by forbidden pat-
terns did not resume until Simion and Schmidt revived it in [10]. Since then
there have been many papers on the subject but there remain still some sig-
nificant unanswered questions arising out of the work of Knuth, Tarjan, and
Pratt. Some of these questions are the focus for this paper and we shall attack
them using tools that have been developed for the study of permutation classes.
Specifically we shall address the following three problems:

1. How many permutations of length n can be generated by two stacks con-
nected in series?

2. How many permutations of length n can be generated by two stacks con-
nected in parallel?

3. How many permutations of length n can be generated by a general deque?

While we cannot give exact answers to these problems we shall prove lower and
upper bounds on “growth rates”. Suppose that tn is the number of permuta-
tions of length n generated by one of these three systems. We shall prove that
limn→∞

n
√
tn exists and give lower and upper bounds on the value of this limit.

Our paper is organised as follows. In section 2 we shall define our terms and
state the problems precisely. Section 3 explains how the upper bounds are
obtained and section 4 explains how lower bounds are obtained.

2 Preliminaries

We give the basic terminology of pattern classes and permuting machines thereby
defining the common background of all three enumeration problems.

The “subtask” relation that Pratt referred to is nowadays called the “subper-
mutation” relation and is defined as follows. Let π, σ be two permutations of
length m,n and suppose that σ has a subsequence of length m that is isomor-
phic to π (its terms are ordered relatively the same as the terms of π). Then
we say that π is a subpermutation of σ and write π � σ. For example 231 is a
subpermutation of 13542 because of the subsequence 352 (or 342).

A pattern class is a set of permutations closed under taking subpermutations.
A pattern class P is said to respect direct sums if, whenever α, β ∈ P , we have
α⊕ β ∈ P (α⊕ β is the permutation which can be written as the juxtaposition
of two sequences α′, β′ which are isomorphic to α, β respectively and for which
every term in α′ is less than every term in β′).

2

A permuting machine is a device that accepts a stream σ of input and produces
an output stream τ that is a rearrangement of its input. The permutational
behaviour of a permuting machine M is represented by its set A(M) of allowable
pairs: those pairs (σ, τ) such that τ is a possible output if M is presented with
σ as input. The machine is said to be oblivious if whenever

(x1x2 · · ·xn, y1y2 · · · yn) ∈ A(M)

and ρ is a bijection with x′i = ρ(xi) then (putting y′i = ρ(yi)) we have

(x′1x
′
2 · · ·x′n, y′1y′2 · · · y′n) ∈ A(M)

It is said to have the subsequence property if whenever

(x1x2 · · ·xn, y1y2 · · · yn) ∈ A(M)

and xi1xi2 · · ·xim
is a subsequence of x1x2 · · ·xn whose terms appear as the

subsequence yj1yj2 · · · yjm
in y1y2 · · · yn then

(xi1xi2 · · ·xim
, yj1yj2 · · · yjm

) ∈ A(M)

The oblivious property tells us that the behaviour of M does not depend on the
names of the symbols in the input stream so we might as well rename them as
1, 2, . . . , n. Then the possible outputs of M are permutations of length n and
we call them the permutations generated by M . The subsequence property tells
us that any subpermutation of a permutation generated by M is also generated
by M ; in other words, the permutations generated by M form a pattern class.

In most cases of interest the pattern class associated with a machine will respect
direct sums because, if α, β are permutations that a machine can generate we
can feed the machine with input 1, 2, . . . , a, a + 1, . . . , a + b where a = |α| and
b = |β| and allow it to output α as it processes 1, 2, . . . a and then output a
permutation isomorphic to β as it processes a+ 1, . . . , a+ b.

Now suppose that t = (t0, t1, . . .) is an infinite sequence. If the limit

g(t) = lim
n→∞

n
√
tn

exists it is called the growth rate of t and tn can be crudely approximated by
g(t)n. It is suspected that, whenever t is the enumeration sequence of some
proper pattern class, then g(t) exists. If the pattern class respects direct sums
then, certainly, g(t) exists and is finite (a consequence of an argument of Arratia
[2] and the celebrated Marcus-Tardos theorem [8]).

The three systems studied in this paper can all be modelled by permuting ma-
chines. Figure 1 depicts two stacks combined in series. An input sequence is
transferred, symbol by symbol, to an output stream. Each symbol enters the
right stack (the push operation I), is eventually transferred to the left stack
(the operation T pops it from the right stack and pushes it onto the left stack)

3

I = InsertT = TransferD = Delete

Figure 1: Two stacks in series

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure 2: Two stacks in parallel

and is ultimately popped into the output stream (operation D). A computation
of this machine is caused by a sequence of n I operations, n T operations, and
n D operations. There is no restriction on the order in which the operations
I, T,D are carried out other than the natural restriction that pop operations
cannot be carried out on an empty stack. Pop operations always apply to the
top symbol of a stack, while push operations place a symbol on top of a stack.

Figures 2 and 3 show the permuting machines that define the operation of two
parallel stacks and a general deque. In each case there are two operations (I1, I2)
that enable the next input symbol to enter the system and two operations
(D1, D2) to transfer a symbol to the output stream. Again these operations
operate on the ends of the structures shown.

In all three cases it is clear that the permuting machine is oblivious, has the
subsequence property and respects direct sums. Therefore the sets of permu-
tations generated by the machines form pattern classes and have well-defined
growth rates.

3 Upper bounds

Each permutation generated by one of the three systems under consideration
arises from a sequence of operations (I, T,D in the case of two stacks in series,
I1, I2, D1, D2 in the case of two stacks in parallel and a general deque). Thus

4

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure 3: Deque

upper bounds on the numbers of permutations generated by the systems can be
obtained by enumerating the number of possible operation sequences. However
the number of operation sequences greatly exceeds the number of permutations
because, frequently, the same permutation can be generated by many differ-
ent operation sequences. In this section we show how, nevertheless, counting
operation sequences can deliver non-trivial upper bounds on growth rates.

Before giving these details, however, it is interesting to recall Knuth’s treatment
of stacks and input-restricted deques. In the case of stacks every permutation is
generated by a unique operation sequence so the count of operation sequences
delivers the number of stack permutations exactly. For input-restricted deques
(where we only have the operations I1, I2, D1) this is no longer true. Knuth
showed how this difficulty can be overcome by insisting that, when the deque
is empty, its next operation must be I1 rather than I2 and (more significantly
from our point of view) any operation sequence with a segment I2D1 should
not be counted since the same permutation can be achieved by replacing the
segment I2D1 with D1I2. Subject to these two restrictions operation sequences
turn out to be equivalent to permutations and this enabled the enumeration to
be calculated exactly.

For our more complicated systems we have not managed to find a complete set
of operation sequences that is in one-to-one correspondence with the generated
permutations and it is possible that there is no finite set of replacement rules
that will define such a set. Nevertheless we have carried out a computer search
for pairs of operation sequences that have the same effect on a system. For
example, for two stacks in series, ITDT has the same effect as TITD and
ITTD has the same effect as TDIT ; and for two stacks in parallel (and in a
deque) the operations I1 and D2 commute.

We can describe our search for equivalent operation sequences in general terms
that apply to any permuting machine M that is manipulated by operations that
transform an input sequence into an output sequence. Suppose M is the set
of operations in question. For two words λ, ρ over M we write λ → ρ if, for
all words µ1, µ2 over M, whenever the operation sequence µ1λµ2 generates a

5

permutation π, the same permutation can be generated by µ1ρµ2. For example,
for two stacks in series, TITD → ITTD. These λ→ ρ relations define rewriting
rules for words over M. Following the usual procedure in rewriting systems we
define a well-founded total order on the set of words over M that is respected
by juxtaposition of words and arrange our rewriting rules λ→ ρ so that λ > ρ.
This ensures that every word over M can be rewritten into one which has no
subword equal to the left-hand side of a rewriting rule.

Suppose we have found all the rewriting rules λ→ ρ for |λ| = |ρ| < n. Consider
the language defined by all words with no left-hand side λ as a subword. This
is a regular language and we may construct the finite state automaton that
recognises it. We now iterate over all the words W of length n that it accepts and
compute their effect on a “generic” state of M (a generic state is one where any
W does not cause exceptional behaviour to occur, such as removing an element
from an empty stack). Then we examine pairs of words that have duplicate
effects and test that even on non-generic states they also have duplicate effects.
Such a pair then becomes a rewriting rule of length n.

Having generated all such rules λ → ρ that our computational resources allow
we can be sure that each permutation is defined by an operation sequence that
has no subword λ. In fact we know rather more – these operation sequences
must have the property that they never attempt to remove an element from an
empty stack or deque; but we do not exploit this information.

Instead we again exploit the fact that the set of words that have no subword λ is
a regular language and construct a finite automaton that recognises such words.
From the state equations of this automaton we can derive the generating func-
tion that counts the words in this language and thereby obtain the growth rate
of the language. This will be an upper bound on the number of permutations.

Our results are summarised in tables 1, 2 and 3. In these tables we give the
upper bound on the growth rates for increasing numbers of relations up to
length 16. Naturally, the bounds improve the more relations we use and so the
final line (length 16) of these tables gives our best results. We have included
the results for lengths less than 16 because they give an indication about what
results might be expected if faster and larger computers were used. For the
same reason we give similar extra data in the tables in Section 4.

4 Lower bounds

4.1 General approach

To obtain lower bounds we build on the ideas that first appeared in [3] and
were refined in [1]. We impose a bound k on the capacity of the system we are
studying and estimate the number of permutations that can be generated using
this restricted system. This is equivalent to adding pattern constraints of the

6

Table 1: Deque upper bounds

Length Number of relations Growth upper bound
8 51 8.4925
9 85 8.459

10 175 8.428
11 321 8.410
12 756 8.392
13 1480 8.380
14 3806 8.368
15 7734 8.361
16 21029 8.352

Table 2: Two parallel stacks

Length Number of relations Growth upper bound
8 33 8.4606
9 43 8.4474

10 109 8.4087
11 143 8.4031
12 466 8.379
13 615 8.376
14 2366 8.3597
15 3131 8.3578
16 13263 8.3461

Table 3: Two serial stacks

Length Number of relations Growth upper bound
8 23 14.201
9 35 14.048

10 71 13.826
11 106 13.747
12 215 13.623
13 368 13.552
14 737 13.477
15 1270 13.433
16 2825 13.374

7

9
8
2
3

4
3
1
2

Figure 4: Equivalent dispositions in a deque

3

1
2

3
1
2 3

1
2

3

1
2

1
2 1

2 1

Figure 5: The states of a 3-bounded deque

form [k + 1, α] for all permutations α of length k. Under this restriction we
can describe the permutations generated by words over the alphabet {1, . . . , k}
using the encoding of permutations that encodes each σ = s1s2 · · · sn by e(σ) =
e1e2 · · · en where ei is the rank of si in the set {si, si+1, . . . , sn}. For example,
31524 encodes as 31311.

The operation of the system can be modelled by a finite automaton. A dis-
position of symbols is just a filling (partial or complete) of the locations in
the system and two dispositions are deemed equivalent if their filled positions
correspond in an order isomorphism. A state of the system is then an equiv-
alence class of dispositions which we can conveniently represent by the unique
disposition whose filled positions contain the values 1, 2, . . . , t for some t ≤ k.
For example the dispositions of a deque shown in Figure 4 are equivalent, and,
for k = 3, the states of a deque are given by the representative dispositions in
Figure 5.

Every operation of the system can now be modelled by a transition of the au-
tomaton with those operations that produce output causing the rank of the
output symbol to be output. The automaton can now be determinised and
minimised and, from its state equations, we can compute the growth rate of
such a k-bounded system which is, of course, a lower bound on the unrestricted

8

Table 4: Lower bounds for two serial stacks

k Non-det states Det States Min states Growth lower bound
5 196 171 148 4.99915
6 625 3407 3240 5.96892
7 2055 75411 73592 6.82949
8 6917 1730025 1698923 7.5535
9 23713 41211076 8.156

system. The major bottleneck in this approach is a state explosion in the deter-
minisation phase. This is so severe that we have only a marginal improvement
to the lower bound of 8 implied by [4] for the growth rate of the two serial
stacks system (see table 4); for k = 9 the computation required several days
and the deterministic automaton was not minimised. For both deques and for
two parallel stacks we have been able to take advantage of some special features
of these systems that allow us to take the computations considerably further.

4.2 Direct construction of the deterministic automaton

We shall discuss the automaton that accepts the (rank-encoded forms of) per-
mutations generated by two stacks in parallel. A similar approach applies to
a deque and we shall indicate the necessary modifications at the end of this
subsection.

There are many ways in which a pair of parallel stacks can generate a given per-
mutation. Every computation can be described by a sequence of state transitions
in the non-deterministic automaton given above. The deterministic version of
the automaton manages to keep track of all the ways in which a given permu-
tation can be generated and we shall show how it can be constructed directly.
The direct construction is more efficient than applying the usual determinising
procedure to the non-deterministic automaton because this procedure gener-
ates many more states than necessary and has to be followed up by a state
minimisation algorithm.

We shall refer to states in the non-deterministic automaton as N -states and
reserve the unqualified word “state” for a state in the deterministic automaton.
An N -state defines the contents of the two stacks and, implicitly, the order in
which the stacks have been filled

To illustrate the basic idea suppose the first symbol to be output by the parallel
stack system is symbol 4. After this symbol has been output the system must
be in one of 8 possible N -states (4 of them are shown in the box on the left of
Figure 6 and the other 4 have the stacks interchanged). We cannot distinguish
between these 8 possible N -states and have to incorporate all of them into a
single state of the deterministic automaton. But now, suppose the next symbol

9

1
2
3

1
2

3

1

2

3
1

2
3

1
2

1
2

Figure 6: Some N -states

to be output is symbol 1. That means that only some of these N -states were
possible and the system now passes into one of the two N -states in the box on
the right of Figure 6; the corresponding deterministic state can be described by
saying that the two symbols in the system belong to the same stack. In the
notation we are about to develop the prior state would be described as (L,L,L)
and the successor state as (LL).

In general, states of the deterministic automaton are denoted by sequences of
words over a two-letter alphabet {L,R} with each word beginning with L. The
start state and final state are each the empty sequence. A state (w1, . . . , wk)
denotes a set of possible N -states in the following way. The letters of w1 specify
which stack contains the symbols 1, 2, . . . , |w1| to within choice of stack name;
for example w1 = LRL would specify that, of the smallest three symbols, the
middle one was in a different stack to the first and third. The letters of w2 then
specify similar information about the next |w2| smallest set of symbols, and so
on.

The essential property of this notation for states is that it enables us to tell
which possible rank-encoded symbols can be output next and the state that
each output produces. We now give the the transition rules for the deterministic
automaton (and some commentary to explain them). The height of a state
(w1, . . . wk) is defined as

∑k
i=1 |wi|.

• From the start state, output r where 1 ≤ r ≤ k and go to state (L,L, . . . , L)
where there are r−1 Ls. This corresponds to inserting the first r symbols
in the the two stacks (after which symbol r will be on top of one of the
stacks) and then outputting symbol r. The resulting state represents all
possible ways in which the first r − 1 symbols can reside in the stacks.

• From a state (w1, . . . wk) of height h output s where h + 1 ≤ s ≤ k and
go to a state (w1, . . . , wk, L, . . . L) with s − h − 1 new Ls at the end (of
height s− 1). This corresponds to having to insert new symbols into the
stacks (in any way at all) up to and including the one (the symbol of rank
s) that is to be output, and then outputting it.

10

• From a state (w1, . . . wk) of height h we need to determine whether it is
possible to output a symbol s with 1 ≤ s ≤ h. The condition 1 ≤ s ≤ h
is the condition that s already resides in one of the two stacks. Such a
symbol can be output only if it is at the top of a stack and so we have to
examine (w1, . . . , wk) to see whether any of the N -states associated with
it have this property.

To do this let b be such that wb contains the sth symbol in w1, . . . , wk. In
fact, let wb = uxv where x is the sth symbol (u, v or both may be empty).

If v contains any occurrence of the symbol x then this output is forbidden,
or leads to the fail state (since, among the symbols represented by v, one is
above the sth symbol in its stack). If any of wb+1 . . . wk (wc say) contains
an R then this output is also forbidden (because wc would contain both
an L and an R one of which would represent a symbol on top of the sth
symbol).

Otherwise it is possible to output s. The new state that the automaton
passes to reflects the fact that all the symbols that were inserted after s
was inserted lie in the stack that did not contain s. This new state is
represented by the sequence (w1, . . . , wb−1, w) where w is a word of length
|wb|+ |wb+1|+ · · ·+ |wk| and

– If u is non-empty (so contains some L) and xv = LRR · · ·R then
w = uRR · · ·R

– If u is empty and xv = LRR · · ·R then w = LL · · ·L
– If xv = RLL · · ·L then w = uLL · · ·L

If w is empty then the new state is simply given by (w1, . . . wb−1)

For the deque system we proceed along the same general lines. Here the symbols
L,R indicate which end of the deque (rather than which stack) has received
an input symbol. When the deque is non-empty we can distinguish whether
subsequent symbols are being added to different ends or not using the smallest
symbol in the deque as a divider. But we do not encode the smallest symbol in
the deque (initially placed there when the deque was empty) as part of a state.
Instead we differentiate the situation of the deque being empty (as final and
start start) from the situation where it has one symbol only in it (encoding the
latter situation as the empty sequence). This adds a little complexity to the
state transition rules as we have to make special provision for the start state
and we have to amend the transition rules a little so that the presence of the
smallest symbol in the deque is not explicitly encoded.

4.3 A quotient automaton

The explicit description of the deterministic automaton (for either two parallel
stacks or deques) allows a further optimisation technique.

11

Let Γ be the state graph of the automaton and let g be its number of vertices
(states in the automaton). Let A = (apq) be the g × g (weighted) adjacency
matrix of Γ; so apq is the number of transitions from state p into state q.

The states are encoded as sequences of words over the alphabet {L,R}. We
define the shape of such a word w as the pair Sh(w) = (a, b) where a is the
number of occurrences of L in w and b is the number of occurrences of R. We also
define the signature of a state (w1, . . . wk) as the sequence (Sh(w1), . . .Sh(wk)).
We then partition the set of states according to their signatures. Let h be the
number of signature classes. Denote the class of a state p by [p]. Furthermore
define a g × h matrix C with rows indexed by states and columns indexed by
signatures where

cp,[q] = 1 if p ∈ [q]
cp,[q] = 0 otherwise

A routine check from the state transition rules establishes that the number of
transitions from a state p to states of some given signature class [q] depends
only on the signature of p. This means that there is a well-defined h×h matrix
B with rows and columns indexed by signature classes where

b[p][q]

is the number of edges from vertex p to vertices in the signature class [q]. This
matrix is the adjacency matrix of a graph Θ whose vertices are signature classes
with b[p][q] edges from [p] to [q].

Lemma 1 AC = CB

Proof: The (p, [q]) entry of the LHS is∑
r

aprcr,[q] =
∑
r∈[q]

apr = b[p][q]

The (p, [q]) entry of the RHS is∑
[r]

cp,[r]b[r][q] = b[p][q]

Therefore, for all n ≥ 0,
AnC = CBn

This equation can be interpreted in terms of paths. The (p, [q]) entry of the LHS
is the number of paths of length n in Γ from vertex p that end in class [q]. The
RHS is the number of paths in the graph Θ from the class [p] to the class [q].

12

Table 5: Lower bounds for two parallel stacks

k States Signatures Growth lower bound
12 49209 11128 6.934
13 147624 27608 7.076
14 442869 68504 7.196
15 1328604 169968 7.300
16 3985809 421728 7.389
17 11957424 1046384 7.467
18 35872269 2596288 7.535

Table 6: Lower bounds for a deque

k States Signatures Growth lower bound
12 16405 3031 7.28261
13 49210 7515 7.40386
14 147625 18643 7.50414
15 442870 46251 7.58801
16 1328605 114755 7.65886
17 3985810 284723 7.7192
18 11957425 706450 7.77117
19 35872270 1752834 7.81612
20 107616805 4349122 7.8553
21 322850410 8368833 7.890

In the case that p is the initial state of Γ and q is the final state (both unique in
their signature classes) we can infer that the number of paths of length n from
p to q in Γ is the same as the number of paths of length n from [p] to [q] in Θ.

This means that we can determine the growth rate of the restricted system by
working within the automaton whose state graph is Θ rather than Γ and this
great reduction in the number of states allows us to carry out the computations
whose results are summarised in Tables 5 and 6.

5 Conclusions and open questions

We have given upper and lower bounds on growth rates for three natural per-
muting machines as summarised in Table 7.

Our upper bound techniques would apply to any permuting machines whose

13

Table 7: Growth rate bounds

Lower bound Upper bound
Two stacks in series 8.156 13.374
Two stacks in parallel 7.535 8.3461
Deque 7.890 8.352

effect is achieved by sequences of operations from a finite set of possible opera-
tions. In principle the techniques for lower bounds could also be applied to other
systems although their utility is limited by storage considerations. In both cases
the technology of finite automata and regular languages is used and we obtain
better approximations to the growth rate the better the automata approximate
the permuting machines.

There is a great similarity between two stacks in parallel and a deque. Indeed,
any permutation that two parallel stacks can generate can also be generated by
a deque since the two ends of the deque can represent the stacks. Our bounds
show that the growth rates for these two systems cannot be very different and
we suspect that they may be equal. An even more optimistic hope is that the
common growth rate is equal to 8.

By contrast we seem to understand two stacks in series rather less. It is possible
that this system is intrinsically more complex than either a deque or two parallel
stacks. One reason for believing this is that we have no efficient test for whether
a given permutation can be generated by two stacks in series, whereas the
membership problem for deques and two parallel stacks is in the complexity
class P (see [11, 5]). It is possible that the problem of deciding whether a given
permutation is the product of two stack permutations (which is exactly the same
as being generated by two serial stacks) is NP -complete.

References

[1] M. H. Albert, M. D. Atkinson, N. Ruškuc: Regular closed sets of permu-
tations, Theoretical Computer Science 306 (2003), 85–100.

[2] R. Arratia: On the Stanley-Wilf Conjecture for the Number of Permuta-
tions Avoiding a Given Pattern. Electronic J. Combinatorics 6, No.1, N1,
1–4, 1999.

[3] M. D. Atkinson, D. Tulley, M. J. Livesey: Permutations generated by token
passing in graphs, Theoretical Computer Science 178 (1997), 103–118.

[4] M. D. Atkinson, M. M. Murphy, N. Ruškuc: Sorting with two ordered
stacks in series, Theoretical Computer Science 289 (2002), 205–223.

14

[5] S. Even and A. Itai: Queues, stacks and graphs, in Z. Kohavi and A. Paz,
eds., Theory of Machines and Computations, Proc. Internat. Symp. on the
Theory of Machines and Computations, Technion – Israel Inst. of Technol.,
Haifa, Israel, August 1971 (Academic Press, New York, 1971) 71–86.

[6] D.E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (First Edition), Addison-Wesley, Reading, Mass. (1968).

[7] D.E. Knuth: Sorting and Searching, The Art of Computer Programming
Vol. 3 (First Edition), Addison-Wesley, Reading, Mass. (1973).

[8] A. Marcus, G. Tardos: Excluded Permutation Matrices and the Stanley-
Wilf Conjecture, J. Combin. Theory Ser. A 107 (2004), no. 1, 153–160.

[9] V.R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268–277.

[10] R. Simion, F.W. Schmidt: Restricted permutations, Europ. J. Combina-
torics 6 (1985), 383–406.

[11] P. Rosenstiehl, R. E. Tarjan: Gauss Codes, Planar Hamiltonian Graphs,
and Stack-Sortable Permutations, J. Algorithms 5 (1984), 375–390.

[12] R.E. Tarjan: Sorting using networks of queues and stacks, Journal of the
ACM 19 (1972), 341–346.

15

