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ABSTRACT

Starting from a non-standard definition, the descent algebra of the symmetric group is investigated.
Homomorphisms into the tensor product of smaller descent algebras are defined. They are used to
construct the irreducible representations and to obtain the nilpotency index of the radical.

1. Introduction

In [7] Solomon introduced a remarkable family of algebras associated with
Coxeter groups. For the special case of symmetric groups, these algebras have the
following combinatorial description.

Let a be any permutation of the symmetric group Sn. The signature of a is the
sequence of signs of the expressions (i+\)a—ia, 1 < / < « —1. For example, the
permutation [3 12 4] (in cycle notation (1 3 2)(4)) has signature e = [—h +] . The n\
permutations of Sn fall into 2""1 disjoint signature classes. For each signature class £
we let Ae denote the sum (in the group algebra of Sn over some field K) of all elements
in this signature class. Solomon's theorem states that, for any two signatures e,rj,
AeAn is a linear combination (with non-negative integer coefficients) of signature
class sums. Thus the signature class sums span a subalgebra of the group algebra of
dimension 2n - 1. Other proofs of this theorem were given in [3, 6,1]. Following [5], we
call this the descent algebra Zn.

Solomon also proved some results about the radical of Zn, but despite the
intriguing definition of Zn nothing further appeared until the detailed study by Garsia
and Reutenauer[5]. They found some other natural bases for Sn and used them to
derive the indecomposable modules for Sn and the Cartan invariants. Very recently
[2], some homomorphisms were defined between the descent algebras.

In this paper we take a different approach, determining some properties of
Xn from an alternative definition. Our results can be understood without most of
the ingenious theory developed in [5]. Indeed, the reader who is willing to accept
our definition of £n will find the exposition independent of both [5] and [7].
Specifically, we shall define homomorphisms from Sn into the algebra tensor product
Sa ® £6 ® ... ® Sfc, where [a, b,..., k] is any composition of n (an ordered collection of
positive integers whose sum is n). From these homomorphisms we can give explicitly
a full set of irreducible representations of En. As a byproduct of this construction we
identify the radical of ZB, giving a new proof of Theorem 3 of [7], and we prove a new
result about the radical which generalises Theorem 5.7 of [5]. Special cases of our
homomorphisms yield some of the homomorphisms defined in [2].
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For any composition/? of n we let/?* denote the associated partition of n. We write
p « q for any two compositions with p* = q*. This equivalence relation clearly has
p(ri) equivalence classes, one for each partition of n.

The set of partitions and the set of compositions of n each admit a refinement
partial order. For partitions it is defined by n1 < n2 if the set of parts of the partition
n2 can be obtained from the set of parts of n1 by repeatedly replacing a pair of parts
by their sum. For two compositions p, q, we define p ^ q if the components of q can
be obtained from the components of/? by repeatedly replacing adjacent components
by their sum.

Let p = [av a2,..., ar] and q = [b1} b2,..., bs] be any two of the 2n - 1 compositions of
n. Let S(p,q) denote the set of all r x s matrices Z = (zi}) with non-negative integer
entries such that

(i) Yjzij = ai> for each /= 1,2, ...,r, and

(«) E zv = bp f o r e a c h - / = 1,2,..., J.
i

Our definition of Xn is as follows. It is the vector space spanned by a basis of
elements Bp, one basis element for every composition p of n, with multiplication
defined by

ZeS(p,q)

One small remark on this definition is necessary. Strictly,

may not be a composition of n because some of the components may be zero.
However, we can identify it with the composition obtained by omitting the zero
components. Because of this, some basis elements Br can occur with multiplicity
greater than 1 on the right-hand side of the expression for Bp BQ.

EXAMPLE. If n = 5, p = [2,3] and q = [2,1,2], then S(p, q) is the set of matrices

o o 2\ /o i n n o n /i i o\ n o o
2 1 0/ 1,2 0 1/ \1 1 1/ \1 0 If V0 1 2

a n d BvBq = B[2 2 l i ] + - ^ [ i , i . 2 , i ] + ^ [ i , i , i , i , i ] + Blhi,i,2] + B[2 h2].

It is a routine calculation to verify that this definition of multiplication is
associative and that B[n] is a multiplicative identity. It follows from results in [4] (see
also Proposition 1.1 of [5]) that this is indeed the same algebra as Solomon's descent
algebra but, as mentioned already, we shall develop our results directly from the
definition above, to make our paper self-contained. We begin with an easy
consequence of the definition of multiplication.

LEMMA 1.1. IfBc occurs in Bp Bq with non-zero multiplicity, then c ^ /?. Moreover,
if p ^ q, then Bp occurs in BpBq with non-zero multiplicity.

Proof. Let p = [a1}a2, ...,ar] and q = [b1,b2, ...,bs]. If Bc occurs in BpBg with
non-zero multiplicity, there exists a matrix ZeS(p,q) such that the removal of the
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z e r o c o m p o n e n t s o f [zn,z12, ...,zu,z21, ...,z2s, ...,zrl, ...,zrs] g ives t h e c o m p o s i t i o n c.

But Yjjzij = ai anc* s o c ^P- If P ^ Q t n e n P m a v ^ e decomposed into segments
(a1,...,au),(au+1, ...,av),..., which sum to bvb2,... respectively. The matrix

ax 0 ... 0 \
a2 0 ... 0

au 0 ... 0
0 au+1 ... 0

0 av ... 0

\ 0 0 ... ;/

is a member of S(p, q) and so Bp occurs as a summand of Bp BQ.

2. Homomorphisms

For any composition /? = \ax,a2, ...,ar] of n we define a linear map

= E
by

(and the usual understanding about omitting any zero ztf applies). From the definition
of S(p, q), the right-hand side does indeed lie in I a ® I a ® ... ® Za .

EXAMPLE. e[2i 3](5[2> lf 2]) = B
m

+ B[X X]® j5t2> „ + B{1 „ ® 5 t l i lt „ + 5 t l i „

THEOREM 2.1. ep w a« algebra homomorphism.

Proof. Let /> = [ava2, ...,ar] and let M = [61S&2, . . . , ^ J , u = [c1}c2, . . . , c j . Then
BuBv = 'LyBly y v „ „ „ „ 15 where the summation is over all

u " r tj/n. y12 J/i(.i/2i y2( 2/JI VjtJ'

^fc ^ 0 such that Sfc^fc = bp l^y^ = cfc. Thus

ep\^u^v) — 2j£pV-O[j/n,j/12 ! / u , ! / 2 l V2t ysl Vst])>
Y

and this is equal to

where the summation is over all ytj and zijk such that I , fc zyfc = a(, L< zy t = 3;^ and
this is the same as a summation over all zm such that

2-/ Ztffc = ai> 2-i Zijk = Dp 2-i Zijk = Cfc*

19-2
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On the other hand,

and

and so

ev(BJeP(BJ =

E
XeS(,p,

E
YeS(p,

X,Y
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«)

«)

c l l , z 1 2 xls] [ylvyl2, •••,Vu xrsAvrl «rtr

Now the rth tensor component in a typical summand of this expression has the
form Blx _ r i-fifu „ u 1 = SjBr. , , , , , 1S the summation
being over all zm with T.kzt}lc = xtj and I,}zm = yilc. It now follows easily that
ep(Bu)ep(Bv) = ep(BuBv), and so ep is an algebra homomorphism.

LEMMA 2.2. The dimension of the right ideal Bp Zn and the dimension of the image
of ev are equal.

Proof Let p = [a1} a2,..., ar]. By one of the fundamental properties of the tensor
product there is a linear mapping { from ZOi ® S (g)... ® ZOr to Sn which maps each
basis element B,, , ,, ® B[z ,, ® ... ® 5 r , . , to A. . , , , „ and

l 2 i > 2 « ? jJ Lza+i 2«J w ^ ^ l 2 u ' • • • • 2 « J U i . Z j . •••<zs'zi+i zv>

the mapping {is evidently one-to-one (it is, however, not an algebra homomorphism).
Since £(ep(Bg)) = BpBg we have ((ep(£n)) = 2?pIn. The lemma follows since £ is one-
to-one.

In fact, rather more than this lemma is true. Let Kp denote the kernel of ep (a two-
sided ideal). Then we have the following.

THEOREM 2.3. Sn = Kp 0 Bp!n.

Proof. By the previous lemma it suffices to prove that Kp(]Bp'Ln = 0,
equivalently that ep maps 5 p S n monomorphically. The argument of the previous
lemma shows that dim (ep(Bp 2n)) = dim (BP En), and so it is enough to prove that
i?p£n = BpI,n. To do this we consider the action of right multiplication by Bp on
the subspace Tp = (Bg\q </?> which, by Lemma 1.1, is a right ideal. If we list the
compositions of n in a linear order that extends the refinement order, Lemma 1.1
shows that the action of Bp has a triangular matrix with non-zero diagonal entries and
so is a non-singular action; therefore the linear transformation on Tp induced by Bp

satisfies an equation f(X) = 0 with non-zero constant coefficient. It follows that
Bpf(Bp) = 0 in I n and so Bp is in the right ideal generated by Bp, from which the
result follows.

Suppose that V1,...,Vr is a family of algebras, that p = [ava2, ...,ar] is a
composition of n, and that there are algebra homomorphisms 0t: Zaj -* V{. Then the
composite mapping ep followed by <f)x (g) <p2 ® ... ® 0r is an algebra homomorphism
from £n into Vx % V2 ® ... (g) Vr. We shall use this fact in two ways: to give a simple
description of some of the homomorphisms defined in [2] and, in the next section, to
derive a full set of irreducible representations for £n.
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Let Tn be the subspace of I n spanned by all Bp with p # [«]. By Lemma 1.1, 7^
is closed under multiplication, and since it is invariant under left and right multipli-
cation by B[n], the identity element of I n , it is also a two-sided ideal. Hence
there is a homomorphism 0[n]: SM -» K which maps 2?[n] to 1 and all other Bp to 0.
For any composition [a,b] of n, consider the composite mapping e[a b] followed by
1E ®(/>[b] which maps I n to I,a®K = 'Za. The image under this map of Bg,
where q = [cly...,ct], is E5[0i i f l> Bf](g)0[b](£[6i,&J 6j]), where the summation is
over all av...,as,b1,...,bs with S a ^ a , L6( = 6 and ^ + 6, = ^ for each i. By
definition of 0[6] this is equal to £2?[0 0 0 ] summed over all flls...,as in which
at = ct for all but one value of / and at = ct — b for the remaining value of i. This is
precisely the definition of the homomorphism denoted by A6 in [2].

3. Irreducible representations

If p = [a1,a2,...,ar] is a composition of n, let Sp be the composite mapping
£p followed by 0[a 3 ® 0[a j ® ... ® 0[o ]5 a homomorphism from I n into

1

LEMMA 3.1. (i) dp(Bg) = 0 unless p* ^q*.
(ii) //"/? « ^ f/ien <5p(59) = rx! f2!... /n!, w/iere ^ w r/ie number of components of p

which are equal to i.

Proof. Let p = [av a2,..., ar]. A term on the right-hand side of

W = E A-J^W.,, J ® Aa2](̂ 81 . J ® - ® ^ar](^rl ,ffl)

can be non-zero only if, for each 1 ̂  / ^ r, the only non-zero integer among
z(1, zi2,..., zis is <24. In addition, each component of the composition q is a column sum
of the matrix Z and so is a sum of components of/?. This proves (i). For the second
part, observe that if p « q then each such matrix Z will have exactly one non-zero
entry in each row and column. The total number of such matrices is tx\t2\... tn\,
and each contributes 1 to Sp(Bg).

LEMMA 3.2. Ifp « q then 8P = Sg and the set ofp{n) 3P (one for each equivalence
class) is a linearly independent set.

Proof, (i) Ifp « q then, for any composition c, the matrices of S(p, c) are related
to those of S(q, c) by applying a fixed permutation of their rows. Thus the summands
on the right-hand side of

£ » W = E Blz z z l®£rZ , 1 ® " - ® ^ t]
pv C/ ^_i Lzn. z i2 zi«J Lz8l Z2»J l2rl- — ' zr*J

ZeS(p,c)

are related to the summands on the right-hand side of the corresponding expression
for eg(Bc) in that the tensor components are permuted by a fixed permutation. But K
is commutative, so

W = E *.,(*[.„..„ .„])»*..(*[.„ z J ® - ® K ( B « « « J = ^ c ) -
zeS(p.c)

To prove (ii), let ^geQagdg = 0 be a linear dependence relation where Q is a set
of inequivalent compositions with all aQ ^ 0. If the dependence relation is non-trivial,
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we can select some r e Q with r* minimal among the set of partitions {q* \ qe Q}. Then,
for all qe Q, q # r, we have dq{Br) = 0 (otherwise q* ^ r* by Lemma 3.1 and r* would
not be minimal), and therefore arSr(Br) = 0, contradicting Lemma 3.1.

LEMMA 3.3. (Bp-Bg\p « q) = f| ker<5c.

Proo/. The two sides of the equation each have codimension p(n) in Zn, and
so it is sufficient to prove that the left-hand side is contained in the right-hand side,
and for this it is enough to prove that dc(Bp) = dc(Bq) for any c, and any p « q. If
c = [fl15a2, ...,ar] and /? has s components, then

<*c(£J= E 0a (Ae * * ])®0a(£fc z ]) ® • • • ® 0a (5[* «])•
c \ v' i—i r O j V L 2 U , 2 1 2 , , . . . , z , s j / r o 2 v i z 2 1 , . . . , z 2 J j / v ^ ^ ' V l z n zr«J /

c, p)

In this sum, the only matrices Z which give a non-zero contribution are those with
a single non-zero entry ai in the /th row (and column sums giving the components of
p), and for each such matrix the contribution is 1. But the matrices in S(c, q) of this
form are obtained from those in S(c,p) by applying a fixed column permutation.
Therefore Sc{Bp) = Sc(Bg), as required.

THEOREM 3.4. (i) (Bp-Bg\p « q) = Rn, the radical o /I n , and
(ii) ^ = 0.

Proof. Temporarily denote the left-hand side of (i) by Ln. By the previous
lemma, Y*JLn is semi-simple so Rn ^ Ln. We shall prove the reverse inclusion by
proving that Ln is nilpotent of index at most n — 1, and this will prove both parts of
the theorem.

Let/? = [ax,a2, ...,ar], q = [bx,b2, ...,bs]. By Lemma 1.1, the only terms Bc that can
occur in the product BpBQ are terms Bp and terms Bc where c has more components
than p. Consider the coefficient of Bp in Bp Bg. By definition it is equal to the number
of matrices ZeS(p,q) in which [zn,z12, ...,zls,z21, ...,z2s, . . . ,zr l , . . . ,z r j reduces to
[ava2, ...,ar] when zero components are deleted. Such matrices are precisely those
with a single non-zero entry in the /th row equal to at and whose column sums give the
components of q. There is an obvious one-to-one correspondence between this subset
of S(p, q) and the analogous subset ofBpBt if / « q (given by permuting the columns).
It follows that, if / « q, Bp(BQ — Bt) is a linear combination of elements Bc where each
composition c has strictly more components than p. But now an obvious induction
shows that if x15 ...,xk are all of the form Bg—Bt, t« q, that is they are members of
the spanning set of Ln, then Bpx1... xk is a linear combination of elements Bc where
each composition c has at least r + k components. In particular, since B[n] is the
identity element and [n] has one component, x1 x2... xn = 0. This already proves that
L" = 0. However, we also know that L""1 is contained in the 1-dimensional space
generated by B{1 x 1]5 as [1,1, . . . , 1] is the only composition with one part; but
5 [ U X] is not nilpotent, and so L£~x = 0, as required.

REMARKS. 1. It was proved in [5] that every element x of Rn satisfies x""1 = 0.
2. Part (i) of the theorem was proved in [7] for general Coxeter groups; by

somewhat similar methods, part (ii) may also be proved in this more general setting.

COROLLARY 3.5. The nilpotency index of Rn is n— 1.
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Proof. By the previous theorem, it suffices to show that i^~2 # 0. Let
w = Bn,„._!] — 5[n_1 X] and let £>(a, 6) = Bna t ^ where a + 6 + f = «. Clearly,
{D(a,b)\a + b <n— 1} is a linearly independent set. From the rule for multiplication
it follows directly that D(a,b)w = D(a+ l,b) — D(a,b + 1). Then an easy induction
shows that

Thus wn 2 # 0, and the proof is complete.

Since £n//?n is of dimension p(n) and we have identified p(n) linear (therefore
irreducible) representations of Zn, we have the following result.

THEOREM 3.6. Thep{n) distinct linear representations 8p are a full set of irreducible
representations for Zn.
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