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Each permutation (a~, a 2 . . . . .  a n ) of 1, 2 . . . . .  n determines a sequence o f "  < "' and " > "  relations determined by the relations 
holding between adjacent values (a i, a i+ ~). A new and elementary algorithm is given, which, for every such pattern of " < "  
" > "  relations, computes the number of permutations with that pattern. The algorithm enables one to calculate (in bits) the 
amount  of information gained by comparing all adjacent pairs of elements in a list. It also has a simple extension to circular 
patterns of relations. 
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1. Introduction 

Suppose that a l , . . . , a  n are n numerical values 
and we make the n - 1 comparisons of a~ against 
a~+l (i = 1, 2 . . . . .  n - 1). The results of the com- 
parisons may conveniently be represented by a 
zigzag diagram 

i/i 
/ 

where a link 

y b 

a 

represents a < b and a link 

b 

represents a >/b. Except in the special cases that 

all the links go in the same direction, the zigzag 
shape does not  completely determine the ordering 
of the values. It is therefore interesting to ask how 
many orderings of the n values could give a par- 
ticular zigzag diagram; the smaller this number  is, 
the more information is provided by the compari- 
son outcomes as represented by the diagram. 

Since only the relative sizes of the values are 
important  for this question, we may consider, 
without loss of generality, just the case that the n 
valules are the integers 1, 2 . . . . .  n. The question 
then becomes: given a zigzag diagram Pn, how 
many permutat ions (al . . . . .  an) of 1, 2 . . . .  ,n  are 
associated with the diagram. Let this number  be 
denoted by z(Pn); the number  of information bits 
given by Pn is then log n? - log Z(Pn). 

If the zigzag is of the simple ' u p - d o w n '  type 
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we may use an old result of Andr6  [1] which states 
that  

z ( A n ) X  n 
n! - sec x + tan x. 

A neat  p roof  of this striking result may  be found  
in [3]. Carlitz [2] gave a formula  for z(Pn) for 
zigzags Pn in which no two ' down '  links are con- 
secutive; he remarked that  " i t  is unfor tuna te ly  
ra ther  compl ica ted" .  Foulkes  [4] gave a formula  
for the general case but,  since it requires number s  
derived f rom the representa t ion theory of the sym- 
metr ic  group,  it is not  easy to use. Ins tead of a 
formula,  an a lgor i thm for calculat ing z(Pn) will be 
given. The  a lgor i thm requires about  ½n 2 addi t ions,  
is well suited for both  hand  and machine  calcu- 
lations, and  needs no auxiliary constants .  The  
algori thmic approach  also demons t ra tes  the intui- 
tively 'obvious '  fact that the u p - d o w n  pa t te rn  of 
Andr6  is the pa t te rn  associated with the mos t  
permuta t ions .  Finally, the n u m b e r  of pe rmuta t ions  
which are associated with arbi trary fixed circular 
zigzags (in which there is also an order  relat ion 
between a .  and a l )  will be discussed. 

2. The algorithm 

Any  zigzag pa t te rn  Pn on n nodes  is ob ta ined  by 
adding  an ' u p '  link or a ' d o w n '  link to a pa t te rn  
Pn-1 on n - 1 nodes.  Write z(P n, r) for the n u m b e r  
of pe rmuta t ions  associated with P, with last sym- 
bol equal to r ( that  is, a n = r). The  a lgor i thm is 
based on the following recurrence.  

Lemma.  (a) I f  the last link of Pn is an up link, then 

r - 1  

z(P, ,  r ) =  E z(Pn-1,  st. 
s = l  

any such s, (a~ . . . . .  a ,_~)  is a pe rmuta t ion  of 
1, 2 , . . . ,  r - 1, r + 1 . . . . .  n, and the cor respondence  

1 ~ 1 , 2 ~ , 2  . . . . .  r - l ~ r - 1 ,  

r ~ r + l  . . . . .  n - l ~ n  

maps  it bijectively to a pe rmuta t ion  ( b l , . . . ,  bn_l )  
of 1, 2 , . . . ,  n - 1 associated with Pn i and having 

bn-  1 = s. Thus  

r - I  

z(P, ,  r ) =  Y" z (P ,_ : ,  s). 
s = ]  

For  case (b), a ,_~ is a n u m b e r  s +  1 with 
r ~< s ~< n - 1, and a similar a rgument  applies, but  
h e r e a o _ ~ = s + l > r i m p l i e s b . _ ~ - - - s .  [] 

Since the total number  of pe rmuta t ions  z(Pn) 
associated with a pat tern  Po is }2 r z(P n, r), we 
obtain the following algori thm to calculate this 
number .  Const ruc t  a tr iangular array similar to 
Pascal's triangle in that  the first row is a single 1 
and each subsequent  row is formed f rom the par- 
tial sums of the previous row. However ,  if the i th 
link of Pn is an up link, one forms partial  sums in 
the forward direction, while if it is a down link, 
one forms partial sums in the backward  direction. 
The  final row is then summed  to give the result. It 
follows from the L e m m a  that  the rth element  of 
the nth row of the triangle is z(P~, r). The  partial  
summat ion  process can be expressed by the follow- 
ing recurrences: 

(z(Pn, r -  1) + z(Pn_ , , r -  1) 

if the final link of P, is up,  
z(P n, r) = ] z ( p , , r  + 1) +z (Pn_  1, r) 

if the final link of Pn i~ down.  

For  the simple u p - d o w n  pa t te rn  of Andr6  the 
tr iangular array is given in Fig. 1. Its row sums 

(b) I f  the last link of Pn is a down link, then 

n - 1  

z(Pn, r ) =  Y~ z (P ,_ l ,  s). 
S ~ I  - 

Proof.  Let ( a l , . . . , a n )  be any of the z(P n, r) per- 
muta t ions  associated with Pn in which a n = r. In 
case (a), an_ 1 is a n u m b e r  s with 1 ~< s < r. For  

1 
0 1 

1 1 0 
0 1 2 2 

5 5 4 2 0 
0 5 10 14 16 16 

61 61 56 46 32 16 0 

Fig. 1. 

188 



Volume 21, N u m b e r  4 I N F O R M A T I O N  P R O C E S S I N G  LETTERS 7 October  1985 

1 
0 1 

0 0 1 
1 1 1 0 

3 2 1 0 0 
0 3 5 6 6 6 

26 26 23 18 12 6 

Fig. 2. 

1, 1, 2, 5, 16, 61, 272 . . . .  are the interleaved 
tangent and secant numbers (and obviously the 
non-zero numbers on the arms of the triangle are, 
respectively, the tangent and secant numbers). For 
the less regular zigzag 

we would have the triangular array given in Fig. 2, 
whose final row sums to 111. 

3. Consequences 

Each row of a table formed by the rules above 
is an increasing sequence either when read from 
left to right or when read from right to left. The 
next row will also be increasing in one of these 
directions since it consists of the partial sums of 
the current row in either the increasing or decreas- 
ing directions. Notice that, for the up-down pat- 
tern of Andrr ,  the summations are always in the 
decreasing direction. Since partial summation in 
the decreasing direction produces a sequence with 
larger terms than partial summation in the increas- 
ing direction, it follows that, for any n, z(Pn) is 
largest for AndrCs pattern. 

The algorithm can be extended to circular zigzag 
patterns where the ordering between a n and al is 
prescribed. In any permutation of 1 . . . .  ,n associ- 
ated with a circular zigzag pattern the symbol n 
must be attached to one of the local maxima. 

Then, clearly, the number of permutations associ- 
ated with the pattern which have n attached to a 
certain local maximum will be equal to the number 
of permutations of 1 , . . . ,  n - 1 associated with the 
ordinary zigzag pattern obtained by deleting the 
two edges of the circular pattern incident with this 
local maximum. Hence, to find the number of 
permutations associated with a circular zigzag pat- 
tern it suffices to compute ~ z(Pn_l) (where the 
summation is over all patterns Pn-1 obtained by 
deleting a local maximum and its incident edges 
from the circular zigzag pattern). 

As an example, consider the permutations of 
1 , . . . ,  8 satisfying 

a 1 < a2  < a3  > a4  < a5  > a6  < a7  < a s  > a l  . 

This pattern has local maxima at a3, a 5, and a s 
and hence the numbers of permutations associated 
with the following three patterns must be calcu- 
lated: 

X l < X 2 > X 3 < X 4 < X 5 > X 6 < X7, 

X 1 < X 2 < X 3 > X 4 < X 5 < X 6 > X7, 

X 1 < X 2 < X 3 > X 4 < X 5 > X 6 < X 7. 

By following the algorithm in the previous section 
these numbers are easily computed as 169, 99, 155. 
Their sum, 423, is the number of permutations 
associated with the given circular pattern. 
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