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Abstract

Stacks which allow elements to be pushed into any of the top r posi-
tions and popped from any of the top s positions are studied. An asymp-
totic formula for the number u, of permutations of length n sortable by
such a stack is found in the cases r = 1 or s = 1. This formula is found
from the generating function of u,. The sortable permutations are char-
acterised if r = 1 or s =1 or r = s = 2 by a forbidden subsequence
condition.

1 Introduction

Let o = [01,09,...,0,] be a permutation of 1,2...,n appearing as the input
stream to a stack. If, through an appropriate series of push and pop operations,
the stack can discharge the input elements in the order 1,2...,n then o is
said to be a stack sortable permutation. Stack sortable permutations were first
investigated by Knuth in [4], section 2.2.1, and it was proved that there are
(2:)/(71 + 1) (the nth Catalan number) stack sortable permutations of length
n. It was also proved that o is stack sortable if and only if there are no indices
1 < j < k with o < 0; < 0;. The latter fact is nowadays described in the
terminology of “permutation avoidance”.

Two numerical sequences © = [m1,72,...] and p = [p1, p2,...] of the same
length are said to be order isomorphic if, for all 7,5, m; < m; if and only if
pi < p;. If m and o are permutations then 7 is said to be involved in o if w
is order isomorphic to a subsequence p of ¢. If 7 is not involved in ¢ then
we say that o avoids 7. In these terms, a permutation is stack sortable if and
only if it avoids the permutation [2, 3, 1]. Many other results about permutation
avoidance have been obtained recently [6, 10, 8, 3, 2].

In this paper we use avoidance arguments to generalise Knuth’s original
results to stacks where the push and pop operations are not confined to a single
‘top’ position.

Definition An (r, s)-stack is a container for a sequence admitting an extended
push operation and an extended pop operation. The push operation can insert
a new element anywhere among the first r places of the current sequence. The
pop operation can remove any of the first s elements of the sequence.



If a sequence of push and pop operations on an (r, s)-stack is run ‘backwards’
it has essentially the same effect as an (s, r)-stack with input and output streams
interchanged. From this observation it easily follows that:

LEMMA A There is a one-to-one correspondence between (v, s)-stack sortable
permutations and (s, r)-stack sortable permutations.

In particular, a (1, 1)-stack is just an ordinary stack, the top element being
the first element of the sequence. Modern computers often have a system stack
which permits direct access to a small number of elements near the top of
the stack. We shall consider the case s = 1, use an avoidance criterion to
characterise the (r, 1)-stack sortable permutations, and give some enumeration
results. These results give an indication of the extra power possessed by stacks
with 7 or s greater than 1. Finally we make a few remarks about the case
r = s = 2 and indicate that it appears to be significantly harder.

2 Avoidance

THEOREM 1 A permutation is (r,1)-stack sortable if and only if it avoids
all r! permutations of the form [a1,as,...,ar, 7+ 2,1].

Proof. For convenience we refer, temporarily, to the permutations defined in the
statement of the theorem as impeding permutations. Let a = [ay, a3, ..., ar, 7+
2,1] be any impeding permutation. If it can be sorted then all its elements
must be pushed onto the stack before any are popped. The result of pushing
ai,ds,...,a, results in a stack content which can be any reordering of these
elements; let = a; be the bottom element. When the element r + 2 is pushed
onto the stack z remains the bottom element. At this point the final element 1
can be pushed and then popped; but it is then impossible to pop the element
x at its appropriate point because r + 2 lies above x in the stack. Thus «
is not (r, 1)-stack sortable, and therefore no permutation involving « can be
(r, 1)-stack sortable either.

To prove the converse — that a permutation o which is not (r, 1)-stack
sortable must involve one of the impeding permutations — we consider how «
can fail to be (r, 1)-stack sortable. Obviously, if & can be sorted at all, the stack
elements must remain sorted decreasingly from top to bottom. Thus, when a
push operation is carried out there will be at most one stack position into which
the new element can be inserted. It is evident that, if a can be sorted, it can
be sorted by a sequence of pushes and pops in which, if 1,2,...,7— 1 have been
output already and ¢ is at the top of the stack, then i should be popped before
any further pushes. Such a sequence of pushes and pops is called canonical.

If the canonical sequence of pushes and pops is incapable of sorting « it
must first fail on a push operation. Specifically, the next element z to output
is not in the stack and the element y being pushed (which precedes z in the
input stream) must be greater than the top r elements z1,zs,...,2, of the
stack. Therefore the input stream must originally have had a subsequence Xyz,



where X is some arrangement of z1, x5, ..., z,, and this i1s order isomorphic to
an impeding permutation.

Note: By using a similar argument, or the implied correspondence of Lemma A,
one can show that a permutation is (1, s)-stack sortable if and only if it avoids
all permutations of length s + 2 of the form [2,ay, ..., a5, 1].

3 Enumeration

The main aim of this section is to give enumeration results for the number u,
of (r,1)-stack sortable permutations. Of course, u,, depends on r but, since r
will be fixed throughout the section, we suppress a notational reference to it.

LEMMA B u, is the number of permutations of length n which avoid all r!
permutations of the form [r 4+ 2,a1,...,a,, 7+ 1].

1

Proof. It is easy to see that if a avoids 3 then a~! avoids #~!. Consequently, a

permutation avoids all the permutations in the set R = {[ay, as,...,ar,7+2,1]}
if and only if its inverse avoids every permutation in the set R=! = {[r +
2,a1,...,ar, 7+ 1]}. The lemma now follows from Theorem 1.

We define a permutation to be r-mazimal if it avoids all r! permutations
of length r 4+ 1 of the form [a1,...,a,,7 + 1]. We also define tail(o) for any
permutation ¢ to be the longest r-maximal suffix of ¢. From the definition of
r-maximal it follows that:

LEMMA C A permutation o of length m s r-maximal if and only if the fol-
lowing conditions hold:

1. The largest element m occurs among positions 1,2,...,r of o, and

2. If m 1s deleted from o the resulting sequence is an r-mazimal permutation
of length m — 1.

Let U, be the set of permutations of length n which avoid all the permuta-
tions of the form [r+2,ay,...,a,,7+ 1] (i.e. those given in Lemma B). Let Up;
be the set of permutations ¢ in U, with |tail(c)| = 1, and let un; = |Upil.

LEMMA D The numbers uy,; satisfy the conditions:
D1. Ifn <7 then upi =0 if n 14 and up, = Up, = n!
D2. Ifn>r then uy,; =0 ifi < 7, and

D3 Ifn > r then up; = run_1,-1 +Zj2iuﬂ—1,j ifi>r

These conditions determine the numbers uy,; uniquely.



Proof. An (r, 1)-stack is obviously capable of sorting every permutation of length
r or less. Moreover, for such permutations their longest r-maximal suffix is
themselves. This proves D1. For permutations of length r or more the longest
r-maximal suffix is of length at least r and so D2 holds.

For D3 we begin by noting that every permutation of U,,; arises from insert-
ing n into a permutation of U,_; ; for some j. Consider any o € U,_; ; and
write it as 0 = az where § = tail(c). If n were to be inserted in o before
the element z the result could not be in U, since 23 has a subsequence order
isomorphic to a permutation of the form [ay, ..., a,, 7+ 1] and nz8 would have
a subsequence order isomorphic to [r + 2,a1,...,ar,7+ 1]. On the other hand,
if n is inserted after element z the resulting permutation is certainly in U, .

If n were to be inserted in one of the r places after z and before the rth
element of @ we would obtain a permutation of U, ;41 by Lemma C. On the
other hand, if n were to be inserted immediately after the (r 4+ p)th element of
B, for any p > 0, we would obtain a permutation of U, j_, (since, by Lemma
C, the longest r-maximal suffix would begin r — 1 places before n).

Thus an element of U,; can arise in r different ways from inserting n into
a permutation of U,_1 ;-1 and, for each j > i, can arise in one way only from
inserting » into a permutation of U,_; ;. This proves D3.

LEMMA E The conditions of Lemma D are equivalent to:

El. Ifn>r then un; =0 tf n £ 1 and uy = Upn = n!

E2. Ifn>r thenu,; =0 ifi<r

E3. u,; =0 for alln < i, and

E4. Ifn > r then upi = upi—1+ (r— Dup_1i-1 — PUp_1,i—2 if 1> 7

Proof. E3 follows easily from D2 and D3 by induction. E4 follows by differencing
the two equations (from D3)

Up; = PUp_1,i-1+ g Up—1; and Up ;1 = PUp_1-2+ E Up_1j
i>i i>i-1

Conversely D3 follows from E3 and E4 by summing, from j = ¢+ 1 to n + 1,
the rewritten equations wun; — Up j—1 = TUn_1 -1 — TUn_1,j—2— Un—_1 ;-1 of E4.

LEMMA F #,_1,,Urr, Ury1,r, ... are the coefficients vy, vi, va, ... in

(r—1!

5 (1+(r—1);13—\/(r—1)2x2—2(r+1)a}+1):Zvnx”

Proof. We make the substitution ¢,; = %p4r—1,i4r—1 and translate the condi-
tions of Lemma E. We find

F1. tOO:(r—l)!andtn():Oifn>0



F2. t5; =0if 1> 0
F3. t,; =0foralln <1
Fa. t,; =ty i1+ (r—tp_1 i1 —rty_1 s foralli>2andn>1

If weput v(z) =3, a2 =Y. _otp12™ and T(z,y) = Y t,i2"y* conditions
F1,F2, and F4 give rise to an equation satisfied by v(z) and T'(z,y) whose
solution is

(r—= 1 4yv(z) —ylr— D) —2zy(r —D(r—1)
1= (r—1zy—y+rzy?

y(v(z) —rlzy)
1= (r—1zy—y+rzy?

T(x,y) =

= (r=D'+

In order to satisfy condition F3 also we must choose the power series v(z)
appropriately. We factor the denominator of T'(z,y) as

1= (r=Day—y+rzy’ = (1 - p()y)(1 - o(z)y)

where p(z)o(z) = rz and

pl)=-(1+(r—Dz+/(r—1)222=2(r+ Dz +1

N | —

o) =14+ —-Dz—/(r—1)22-2(r+1)z+1

N | —

Note that o(z) is a power series with ¢(0) = 0. In fact, (r — 1)lo(z) is the
sought for power series for v(z) since, when (r — 1)l () is substituted for v(z),
T(z,y) becomes

y((r — Dlo(z) — rlzy)

r— 1)+ e g A D) = (= D)o y)

(1= p(@)y)(1 = o(=)y) (1= p(@)y)(1 = o(=)y)
B y(r — Dlo(z)
= (r=DI+ W
= (r=D'4yl—-1Dlo(z) o(z)my™

which has a power series expansion satisfying condition F3.
THEOREM 2 1. Ifn<r, u, =n!
2. If n>r, u, is the coefficient of x"~"t2 in

o(z)= - ~ S N/ P % T P P




Proof. Part 1 is clear. For part 2 note that ¢(z) and v(z) differ only in their
linear terms and so it is sufficient to prove that u,41,, = u, if n > r (since, by
Lemma F, u, 11, is the coefficient of 2" ~"+2 in ¢(z)). So let 0 € Uy 41,,. Since
tail(o) has length 7 the final » 4+ 1 symbols of & must be order isomorphic to
a permutation [a1,...,a,, 7+ 1]. If the last symbol of ¢ was not n + 1 itself
then n 4+ 1 would occur before the last » + 1 symbols of ¢ and, with them,
produce a subsequence which was order isomorphic to [r+2,a1,...,a,,7+1], a
contradiction. Thus o is the result of appending n + 1 to a permutation in U,
and so Up41,» and Uy, are in one-to-one correspondence.

The asymptotic behaviour of u, can be found from Theorem 2 using an

observation in [4], p.534: the coefficient of w” in /1 — wy/1 — aw (with 0 <
a < 1) is asymptotic to —2/(1 — a)/mn=3/% | We can write

VD22 —20r+ Dz +1 = \/(1 — (Vr+1)22)(1 — (V7 — 1)22)
V1—(r+1)2 fﬂ (f+1)

Putting w = (/7 + 1)?2 and a = (/7 — 1)?/(y/r + 1)? we can therefore de-
duce that the coefficient of 2 in \/(r — 1)222 — 2(r + 1)z + 1 is asymptotic to

—+/r2/(7n3)(1 4+ \/7)*"~1. Theorem 2 now gives
THEOREM 3 u, is asymptotic to %(r — )I/r2/(an3) (1 4 /r) =243,

Note that the coefficients of \/(r — 1)222 — 2(r + 1)z + 1 can be calculated
rapidly by the following method.

If p(z) = (r—1)?22=2(r+1)z+1 and \/p(z) = 3 gna" then p/(z) Y gnz" =
2p(z) Y gnna™ !

By equating coefficients of z we find go = 1,91 = —(r + 1), and
ngn = (r+1)(2n — 3)gn_1 — (r — 1)*(n — 3)gn_» for all n > 2

It is interesting to compare the case » = 2 of our results with the anal-
ogous results for restricted output deques in [4] (another structure that per-
mits two possible input operations and one output operation). The numbers of
sortable permutations are the same (the Schroder numbers, see [10]), both sets
of permutations are characterised by avoiding a pair of permutations of length
4 ([2,3,4,1] and [3,2,4,1] for the (2,1)-stack and [2,4,3,1],[4,2,3,1] for the
restricted deque [5]), yet there appears to be no elementary connection between
these two situations.

4 (2,2)-stacks

In this section we give an avoidance criterion for (2, 2)-stack sortable permuta-
tions. It 1s somewhat more complicated than those for r = 1 or s = 1 and this,
together with the numerical evidence, indicates that generalising the results of
the previous sections will not be straightforward.



THEOREM 4 A permutation is (2, 2)-stack sortable if and only if it avoids all
of the following 8 permutations: [2,3,4,5,1],[2,3,5,4,1], [3,2,4,5,1],[3,2,5,4, 1],
(2,4,5,1,6,3], [2,4,6,1,5,3], [4,2,5,1,6,3], [4,2,6,1,5,3].

Proof. It is easy to check that none of the permutations in the statement
of the lemma can be sorted by a (2,2)-stack and so any (2,2)-stack sortable
permutation must avoid them. For the converse we need to extend the idea of
a canonical sequence of pushes and pops appearing in Theorem 1. In this case,
a canonical sequence of pushes and pops is one which respects the following
principles:

1.i1f1,2,...,7— 1 have been output already and ¢ is at the top of the stack
or immediately below the top then 7 should be popped before any further
pushes

2. if an element i has to be pushed into one of the top 2 positions of the
stack then it should be pushed so that the top two elements of the stack
are sorted in decreasing order.

We argue that, if a permutation is (2, 2)-stack sortable, then it can be sorted
by a canonical sequence of pushes and pops. It is immediately evident that
the application of the first principle can never be disadvantageous. To see that
the second principle can always be applied without loss, consider a permutation
that is sortable by way of a sequence of pushes and pops which, at some point,
pushes an element onto the stack so that the top element y and its neighbour
z satisfy z < y (in violation of the second principle). After this step there will
be further pushes and pops and eventually x will be removed from the stack.
However, during this part of the algorithm, y must remain on the stack so no
element may be pushed below z; moreover only elements less than x will be
encountered in the input permutation. It follows that we could have achieved
the same result by applying the second principle.

(Note: this argument is more subtle than might at first sight appear. Tt is
not valid for (2, 3)-stacks, for example; [2,4,5,1,6,7, 3] is sortable by a (2,3)-
stack but the sorting method must not begin by pushing the elements 2 and 4
with the top element being 2.)

We can now complete the proof of Lemma G. Let ¢ be a permutation that
cannot be sorted by the canonical sequence of pushes and pops (i.e. any un-
sortable permutation). Then the canonical sequence must reach a point where
it needs to output an element p but, although p is in the stack, there are two
elements z,y above p in the stack (and greater than p). When z was placed in
the stack there must have been an element ¢ already on top of p (or z could
have been placed below p). Moreover, neither p nor ¢ can be ready to be output
and so there must be an element j, after z, less than both of them. In other
words the permutation o must contain either a subsequence pqzj or a subse-
quence gpzj order isomorphic to one of [2,3,4,1] or [3,2,4, 1]. In the same way
o must contain a subsequence pq’'yj’ or ¢'pyj’ order isomorphic to [2, 3,4, 1] or

3,2, 4, 1].



Thus, because ¢ is unsortable, 1t must contain a subsequence on the symbols
p,4,9,2,y,j,j (not necessarily in this order, nor necessarily distinct) with the
properties just described. This already shows that ¢ must contain a subsequence
on at most 7 elements ordered in one of a certain number of ways. In fact, an
exhaustive search of all the possibilities shows that all of these subsequences
involve at least one of the 8 permutations listed in the lemma, thus completing
the proof.

At this point one might hope that an enumeration result for (2,2)-stack
sortable permutations might be possible. In fact, all we have succeeded in doing
is computing the values of y, (the number of (2,2)-stack sortable permutations
of length n) for n up to 10. These values are:

n | 12 3 4 5 6 7 8 9 10
Yn | 1 2 6 24 116 628 3636 21956 136428 865700

We have no satisfactory explanation of these numbers but, tantalisingly, the
Sloane Superseeker program [7] guesses that the ordinary generating function
y = y(z) of the sequence satisfies the equation

yBy —1)
(y+ 1)(2y2 + 2y - 1)

References

[1] M.D. Atkinson: Sorting permutations with networks of stacks, Technical
Report TR-210 (August 1992), School of Computer Science, Carleton Uni-
versity, Ottawa, Canada.

[2] P. Bose, J.F. Buss, A. Lubiw: Pattern matching for permutations, WADS
93, Lecture Notes in Computer Science 709, 200-209, Springer-Verlag
(Berlin - Heidelberg) 1993.

[3] A.E.Kézdy, H.S. Snevily, C. Wang: Partitioning permutations into increas-
ing and decreasing subsequences, J. Combinatorial Theory A 74 (1996),
353-359.

[4] D.E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (Second Edition), Addison-Wesley, Reading, Mass. (1973).

[6] V.R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268-277

[6] R. Simion, F.W. Schmidt: Restricted permutations, Europ. J. Combina-
torics 6 (1985), 383-406.

[7] N.J.A. Sloane: Superseeker, superseeker@research.att.acom

[8] Z. E. Stankova: Forbidden subsequences, Discrete Math. 132 (1994), 291-
316



[9] R.E. Tarjan: Sorting using networks of queues and stacks, Journal of the

ACM 19 (1972), 341-346.

[10] J. West: Generating trees and the Catalan and Schréder numbers, Discrete
Math. 146 (1995), 247-262.



