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The connection between doubly transitive permutation groups G on a finite set Cl
which are not doubly primitive and automorphism groups of block designs in which
X = 1 has been investigated by Sims [2] and Atkinson [1]. If, for a e Q, Ga has a set of
imprimitivity of size 2 then it is easy to show that G is either sharply doubly transitive
or is a group of automorphisms of a non-trivial block design on Q in which X = 1.
In [1], in the proof of Theorem B, a simple argument due to G. Higman was used
to establish the same conclusion if Ga has a set of imprimitivity of size 3. We shall
continue the same investigation by proving the following theorem.

THEOREM. Let G be a doubty transitive permutation group of degree nona set Cl.
Suppose that, for a e fi, Ga has a set of imprimitivity, A, of size 4; then G is either sharply
doubly transitive or a group of automorphisms of a non-trivial block design on Q. in
which X — 1.

We begin with a lemma which applies to any doubly transitive group.

LEMMA. / / 9 and 4> are distinct points of Cl, G{Oi ^ has at most one orbit of odd
length on Q.

Proof Suppose that I \ and r 2 are distinct orbits of G(0> ̂  of odd length. If
H e Tt then G{0> ̂  „ has odd index in G{0> ̂ . Under the action of G R ̂  „ T2 is a union
of orbits not all of which have even length and so there is a point ve T2 such that
G{0> ,p)liv has odd index in G{0> ̂ ^. Thus G{Qi ^ has index $n(n— 1) u in G, where u is
odd. But then G{0> ̂ }/JV has index \u in G v̂ which is evidently absurd.

Of course, the same argument shows that if T is an orbit of odd length of G[Bt ^
then, if y e T, all the orbits of G{Oi ̂ y on Q have even length. The lemma is similar to
Lemma 4 of Wagner [3] and, as in that paper, can be extended to the following: if
G is A>fold transitive on Q, H is the subgroup which preserves the fc-element subset
S of Q and p is any prime not exceeding k, then H has at most p — 1 orbits of size
coprime to p on fi — 2.

Proof of Theorem. Let Si = {(a^, Ag)\geG} and S2 = {Ag\geG}. Then
|ZJ = n{n—1)/4 and, if t is the number of elements of Ex with a fixed second com-
ponent, |Z2| = n(n — l)/(4f). In the block design on Q whose block set is Z2

 t n e

incidence equations give that X = 3/t. For the rest of the proof we may, therefore,
assume that t = 1.
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We construct a graph whose vertices are the 2-element subsets of Q. Two vertices
{p\ y} and {5, e} are joined by an edge labelled ocg if {p\ y, S, e} = Ag. Then, since t — 1,
each edge has a unique label and each vertex has valency 3. It is clear that G is a
group of automorphisms of the labelled graph, transitive on vertices.

Let {fi, v} be any vertex and let p, a, x be the labels on the edges out of {fi, v}. We
may assume that {p, a, x) is an orbit of G{llf v}; for {p, a, x} is certainly invariant under
G{/1> v} and if this group fixes one of these points we have that G is either sharply doubly
transitive or the fixed point set of GMV together with its images under G form the blocks
of a non-trivial design on Cl in which X = 1.

An obvious counting argument demonstrates that there are precisely 3 vertices
where an edge labelled n meets an edge labelled v.

Clearly {p, 5, f} is invariant under G{ll> v} and, as above, we may assume that it is an
orbit of G{M V). By the lemma, {p, a, x) = {p, a, x} and we have the configurations

It follows that the stabiliser of vertex A is transitive on {p, ju, v}, and similarly for B
and C. Hence an edge labelled v is going out from {p, n) and from {or, fi}. So one of
the edges going out from {p, a) must be labelled v. Similarly one of the edges from
{p, a) must be labelled ju. Since edges fi, v meet only with edges p, a, T, we must have
the situation

Now G{M> V} has an orbit {p, a, x) and G{p< a) has an orbit {fi, v, T}. Therefore the set
stabiliser Gr of T = {p, a, x, fi, v} acts doubly transitively on T. In the block design
whose blocks are the images under G of F we have

M « - l ) / ( 5 . 4 ) = b = [G : Gr] = [G : GM,]/[Gr : GMV] = »(»-l) / (5.4)

and hence X = 1.
I thank the referee for noticing an error in my original proof and for suggesting

the argument of the last two paragraphs.
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