DOUBLY TRANSITIVE BUT NOT DOUBLY PRIMITIVE
PERMUTATION GROUPS II

M. D. ATKINSON

1. Introduction

Many of the known doubly transitive permutation groups permute sets with some
geometric or combinatoric structure and these structures often turn out to be block
designs. For example, PSU (3, q) in its representation of degree ¢+ 1 preserves a
block design in which A =1 and k =g+1. Another example is PSL (n,q), n > 2,
which preserves a block design in which A = 1 and & = g+ 1. In these cases the blocks
are the lines of the corresponding unitary and projective spaces. It is easy to see that
no group of automorphisms of a block design in which A =1 can act doubly
primitively on the points. On the other hand the Suzuki groups Sz (¢) in their doubly
transitive representations of degree g + 1 provide examples of groups which are neither
doubly primitive nor groups of automorphisms of block designs in which 1 = 1.
The same is true of certain soluble groups. These examples suggest the following

CONJECTURE. A doubly transitive but not doubly primitive permutation group G on a
set Q has one of the following properties.

1. It is metacyclic of prime degree p and order p(p—1).

2. For some prime p it is of degree 2P and order 2°(2°—1) or 2°(2°—1) p.
3. It is a group of automorphisms of a block design on Q in which A = 1.
4. Sz(q) < G < Aut(Sz(g)).

The conjecture is known to be true if the stabiliser of a point has a set
of imprimitivity of sized = 2, 3 or 4 [1 and 2]. Although this supports the conjecture
it does not provide very strong evidence because, for these values of d, the Suzuki
groups do not arise. In Section 3 of this paper I verify the conjecture in the case
d = 8, the first case in which a Suzuki group can arise. In Section 2 I consider the
situation for a general value of d and obtain some partial results.

Throughout, G will denote a doubly transitive permutation group on a v-element
set Q. If o€ Q, a set of imprimitivity for G, will be called an a-block. The setwise
stabiliser of a set A will be denoted by G,. The term block design will always mean a
non-trivial block design on Q in which 4 = 1.

2. General Results
A result of Sims [9] which we use often is the following

Lemma 2.1. If T' < Q—{a, B} is an orbit of G,g then one of the following state-
ments is true. 1. Gis a group of automorphisms of a block design.
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2. Every composition factor of G,z is a composition factor of some subgroup of the
group induced by G,z inT.

LemMA 2.2, If Ais a proper subset of Q of size greater than 2, the group induced
in A is doubly transitive and, for «, f € A, G,; preserves A, then the images of A under G
form the blocks of a block design.

Proof. If k = |A| and b is the number of distinct images of A, the images of A
form a block design in our sense if A = bk(k—1)/(v(v—1)) = 1. Since b = [G: G,]
we have

A= ([G: Gopl/[Gy : Gapl) - klk—1)/(0(v—1))
_v=1) k(k-1)
T k(=1 vw—1)
= 1.

LemmA 2.3. If G has a regular normal subgroup of odd order then either G is a
metacyclic group of order p(p— 1) and prime degree p or G is a group of automorphisms
of ablock design.

Proof. If aeQ then G = G,N, N may be identified with Q and G may be
considered to be a group acting on the elementary Abelian p-group N in which the
elements of N act by multiplication and the elements of G, act by conjugation. If
IN] = p then G/N = Aut (N) is cyclic of order p—1 whereas, if |[N| > p, the cyclic
subgroups of N and their cosets which lie in N form the blocks of a block design
which is preserved by G.

LeEMMA 2.4. The conjecture is true for soluble groups.

Proof. The soluble doubly transitive groups have been classified by Huppert [6].
In view of his result and Lemma 2.3 we may confine our attention to groups G which
consist of semi-linear transformations of a field F of 2" elements, where 1. is not prime.
Let L be a subfield of order 2", 1 < m < n. The group induced on L is doubly
transitive since it contains the transformations « — aa+ b, a, b€ L, a # 0; moreover,
G,; preserves L. By Lemma 2.2, the images of L under G form the blocks of a block
design.

LemMA 2.5. If the smallest orbit, T', of G5 in Q—{a, B} is of length p, for some
prime p, and the group induced by G,gin T is regular then G has one of the following
properties:

1. G
10));

= | for all ye Q—{a, B} (and such groups have been classified in [5, 7 and

aBy

2. G is a group of automorphisms of a block design.

Proof. By Lemma 2.2 we may assume that G,; is a p-group. If yeT then
G,py is normal in G,z and G4, is maximal among p-groups which fix three or more
points. By an argument of Livingstone and Wagner [8; pp. 400-401, the proof of
Theorem 3, case II] N(G,;,) acts doubly transitively on the fixed point set, A, of G,4,;
moreover G,; preserves A since G,5 < N(G,5,). By Lemma 2.2 we may assume that
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G, = 1. Therefore |G,4| = |T'] and so, by the minimality of T', G, =1 for all
yeQ—{«, B}.

In the remainder of this section we study a fixed system of imprimitivity for G,
in which the a-blocks have size d. A term such as * §-block ” will now always refer
to a set of imprimitivity for G, which is an image of one of the members of the given
system for G,. If T is any set then T'*? denotes the set of unordered pairs from T
If X is any transitive permutation group and I is any union of orbits of some point
stabiliser then T'* denotes the union of the orbits paired with those in T

The following result is proved in [1].

Lemma 2.6, If «, feQ then T'{a, B} = {yl{a, B} < y-block} is a Gy, p-invariant
set of sized— 1. If, moreover, the group induced by G, in an a-block is doubly transitive,
then T{a, B} is an orbit of both G, gy and G,g.

Now G acts transitively on Q?! and, continuing with the notation of Lemma 2.6,
Gy, py Preserves I{«, B} = Q@ Thus © = I{w, B} is a union of orbits of Gy, .
In the next lemma we consider ®* and introduce some notation which we use for
the remainder of this section.

LemMA 2.7. (i) ©* = {{y,6}|{y, 6} < a-block and {y,d} = B-block}.
(i) If1,, ..., I, are the intersections of a-blocks and B-blocks which have size greater

than | and d; = |I;| then
2didi—1) = (d-1)(d-2).

(iii) There is a length-preserving correspondence between the orbits of G, 45 on ©
and the orbits of Gy, gyonl P U ... L2,

Proof. {y,8}e ©* if and only if {«, f} € I'{y,8}'* and this occurs if and only if
{y, 6} is contained in an a-block and in a f-block. This proves (i); (ii) and (iii) follow
since ©* = I,'? U ... U I,/ and the union is disjoint.

One consequence of the equation >d;(d;— 1) = (d—1)(d—2) is that the a-blocks
are distinct from the f-blocks. Mr. A. G. Williamson has pointed out that this gives a
simple proof of a theorem of Marggraaf, that a primitive group G of degree #n which
contains an m-cycle g is at least (r—m+ 1)-fold transitive. Since a proof of this
theorem is not easily accessible in the literature I give his proof below.

By a theorem of Jordan [11; p. 32] G is doubly transitive if #>m, and it is evident,
arguing by induction, that the theorem will follow if G can be shown to be doubly
primitive when n>m+ 1. This will follow from another theorem of Marggraaf [11; p. 34]
if m < n/2 and so we now assume that m > n/2.

Let o be a point fixed by g and let A be an a-block of size k, 1 < k < n—1, which
contains a point y not fixed by g. Then A contains no points which are fixed by g;
for if 8 were such a point then g € G,, would preserve A and A would contain yg' for all
i which, since m > n/2, is impossible. Hence A is a block for the action of {g) on the
points moved by g and so consists of the points yg™*, i = 1, 2, ..., k. If B is another
point fixed by g and A’ is a f-block of size k containing y the same argument
shows that A = A’ and this contradicts the distinctness of a-blocks and f-blocks.
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Returning to the general situation, the maximum possible size of intersection of an
a-block and f-block is d—1 and this case is considered in the following lemma.

LemMA 2.8. If k = 1 then either G is sharply doubly transitive or G is a group of
automorphisms of a block design.

Proof. There is a unique a-block A, and a unique f-block A, such that
|A; n A, =d—1. This unique intersection is preserved by G, . Hence G,
preserves A, and A, and thus fixes the unique point y of A, — A, N A, and the unique
pointd of A,—A; N A,. By Lemma 2.1 we may assume that G,; has no fixed points
other than « and fand soy = 8,0 = «. Thus A, is the a-block which contains f and
A —{f} = A, n A, is G, g-invariant. Hence, by Lemma 2 of [1], G is a group of
automorphisms of a block design.

In the next two lemmas we investigate situations where the equation Y'd;(d;—1) =
(d—1)(d—2) reduces to something simpler.

LemMA 2.9. If the permutation group induced in an a-block by G, is triply
transitive thend, =d, = ... = d,.

Proof. We use a result of Cameron [4] : if X is a transitive permutation group with a
suborbit ®(a) on which X, acts doubly transitively then X, also acts doubly transi-
tively on the paired suborbit ®*(«). We apply this result with X = G, acting transi-
tively on Q—{f}. Let ®(u) be the subset consisting of those points not equal to f
which belong to the u-block containing f. This is a suborbit of X because X, = G,
and, moreover, X, acts doubly transitively on it. Now

y € P*(x) <> x € ®(y) <>« belongs to the y-block containing f <y e I'{e, f}.

Thus ®*(«) = I'{a, B} and, by Cameron’s result, X, = G,; acts doubly transitively on
I{«, B}. Hence G, g is transitive on I'{«, B}'* and so transitive on I, U ... UL}
by Lemma 2.7. But the I? are obviously sets of imprimitivity for the action of
G.. 5 and so all have the same size. Consequently all the I; have the same size.

LemMMA 2.10. If the permutation group induced in an a-block by G, is alternating
or symmetric then the common value of the d; is 2, 3 or d—1. Furthermore, if either
3(d-1)(d—2) > v—2ord = 0(4) then G is a group of automorphisms of a block design.

Proof. Clearly G, acts as the alternating or symmetric group of degree d—1 on
Y —{pB} where ¥ is the a-block containing f. By another result of Cameron [4],
similar to the one above with the property  double transitivity ** replaced by “ contains
the alternating group ”, G, acts as A;_, or S;_; on I'{«, f}. In proving the first
part we may certainly assume that d > 5 and hence, by Lemma 2.9, kd,(d,—1) =
(d—1)(d—2), where d, is the size of each intersection of a-block and f-block of size
greater than 1. The k intersections are permuted transitively by G, 4 and so, if I is
any one of them, [G, 4 : G, 5] = k and hence [G,4: G,p/] < k.

Let A be the a-block containing I and H = {xe€ G,|Ax = A}; then [G,: H] =
(v—1)/d. Since [G,: Gup] < (v—1)k and G,p; < H it follows that

[H: Gyl < dk = d(d—1)(d—2)/(d,(dy—1)).
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Now H acts on A as A, or S,; and, for each of these permutation groups, the setwise

stabiliser of a set of size d, has index (j ) . Since G,py is contained in some such
1

stabiliser we have

dd= D=2/~ D) > s Gl > ( 3 ).
d-2 .
It follows that d—2 > (d1—2> and henced, = 2,3 ord—-1.

Ifd, = 2 ord, = 3 there are, respectively, (d — 1)(d —2) or4(d — 1)(d — 2) points not
equal to o or B which lie in intersections of a-blocks and B-blocks of size greater than
1. Hence 3(d—1)(d—2) > v—2 implies that d, =d—1 and, by Lemma 2.8, G is
then a group of automorphisms of a block design.

Now we assume that d = 0(4). Since both d—1 and $(d—1)(d—2) are odd, a
Sylow 2-subgroup T of G, 5 must fix a point y of I'{«, B} and one of the pairs
{u, v} of T{a, B}¥*. Then T preserves I'{y, v} and so fixes a point y, in the set.
However, T cannot have more than one fixed point (this fact is frequently used in the
next section) or it would be a 2-subgroup of a two point stabiliser which has smaller
2-component than G, 4; hence y = y;. Now «, B, ye I'{y, v} and Gy, ,; acts as the
alternating or symmetric group on I'{y, v}; so there is a permutation in G which
cyclically permutes a, f, y. Since y € I'{«, } we have ae I'{B, y}. Also, since G, is
transitive on I'{e, B} we have a e I'{f, 0} for all e I'{«, B}. Therefore, the a-block
containing B consists of f together with I'{a, 8} and the conclusion follows from
Lemma 2 of [1].

Finally in this section, we consider a particular case in which the equation
>di(d;—1) = (d—1)(d—2) can be solved explicitly.

LemMmA 2.11. If v = 2d+1 then the 4 intersections of a-blocks and B-blocks have
sizes¥(d—2),3d,3d,3d or3(d—1),3(d—1),%(d —1),3(d + 1) according asd is even or odd.

Proof. Let A (), A,(x) be the 2 a-blocks and A, (f), A,(f) the 2 S-blocks, the
notation being chosen sothata e A, (f)and fe A,(«). Suppose that |A,(x) N A,(B)| =
a, |A,(@) N A, (B)| = b, |A () N Ay(B) = ¢, |A (@) N Ay (B)] = ¢, the last two being
equal because an element interchanging « and f§ interchanges A,(«) and A,(f) and
interchanges A, (o) and A,(f). Then

a+c=d-1
b+c=d
a(@a—1)+b(b~1)+2c(c—1) = (d—1)(d-2).
Eliminating b and ¢ gives (2a—d +1)(2a—d +2) = 0, from which the result follows.

In [1] I considered insoluble doubly transitive groups of degree p =4q+1,
where p and g were prime, and showed that such a group, if not doubly primitive,
was isomorphic to PSL (3, 3). The arguments almost proved that a doubly transitive
but not doubly primitive group of degree 4g+ 1, where g is prime, is either sharply
doubly transitive or a group of automorphisms of a block design. I think it is worth

recording that Lemma 2.11 in conjunction with the arguments of [1] and a small
amount of calculation gives a complete proof of this result.
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3. The cased =8
THEOREM. If G is a doubly transitive permutation group in which G, has a set of
imprimitivity of size 8 then one of the following statements is true.

(1) G is sharply doubly transitive.
(2) G is a group of automorphisms of a block design.
(3) G @ Sz(8) or G = Aut(Sz(8)).

We shall continue to use the previous notation with d = 8 and, in addition, assume
that G is a group satisfying the conditions but not any of the conclusions of the
theorem. By the results mentioned in the first section, G, does not have a set of
imprimitivity of size 2 or 4. Hence the group induced in an a-block by G, is primitive,
therefore doubly transitive, and so, by Lemma 2.6, G, acts transitively on I'{«, f}.
Some of the possibilities for the action of G, s on I'{a, B} are easy to rule out. The
cyclic group of order 7 and the Frobenius group of order 21 are excluded because a
Sylow 2-subgroup of G, 4 would then have more than one fixed point in I'{a, f}.
Lemma 2.10 excludes 4, and S,; indeed, the argument of Lemma 2.10 excludes
PSL (3, 2) and shows also that if 8 € I'{a, §} then « ¢ I'{ 8, 0}. Accordingly, we havethe
following result.

LEMMA 3.1. G, g acts on I'{a, B} as a Frobenius group of order 14 or 42.
Moreover, for any 6 T'{a, B}, o ¢ I'{B, 6}.

Lemma 3.2, Let {u, v} be any unordered pair from Q and let a, Tt be distinct
elements of T{y, v}. Then I'{y, v} contains exactly one point of I'{o, 1}. Moreover, a
point ©t of T{y, v} belongs to T{c, t} if and only if the groupinducedin I'{y, v} by G,,
contains a permutation which fixes n and interchanges ¢ and t.

Proof. G, , acts on I'{y, v} as a Frobenius group of order 14 or 42. In both
of these cases there is a Sylow 2-subgroup U of G, ,, which preserves {g, t}. Then U
fixes a point m of I'{y, v} and a point in I'{, t}. However, since U cannot fix more
than one point, ne I'{s, 1}.

Let V < U be a Sylow 2-subgroup of G,,. Since V < Gy, , and fixes g, 7€ I'{y, v}
V fixes I'{y, v} pointwise. If I'{u, v} contained more than one point of I'{s, 7} then
V would fix at least 2 points of I'{s, 1} and so would fix I'{e, t} pointwise. Thus G,,
would act on I'{g, 1} as a group of odd order and, by Lemma 2.1, |G,,| would be odd.
Bender’s theorem [3] would now determine the structure of G and a check through
the possibilities reveals that G would not be a counterexample.

Any permutation of U—V will fix n and interchange o and . Conversely, let
ae Gy, ,and let afix p e I'{y, v} and interchange ¢ and t. Then nae I'{y, v} N I'{o, 7}
and so ma = n. But a has at most one fixed point in I'{, v} and so = = p.

Lemma 3.3. Let {0, 1} be any unordered pair from Q and let {u;,v;},i =1, 2, 3,
be 3 unordered pairs such that {c, 1} = T{u;, v;},i = 1,2, 3. Suppose there exists a point
n in each T{u;, v;} and also in T'{c, 1}. Then the three points p;e I'{o, n} n T{y;, v;}s
i=1,2,3, are equal.
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Proof. Let o, 1, m, py, X1, X2, X3 be the points of I'{y,, v;} and let X be the
permutation group (a Frobenius group of order 14 or 42) induced by G, ,,, in this
set. Since meI'{o, 7}, X contains a permutation which interchanges ¢ and 7 and
fixes n; we may take this to be a = =n(g, 1)(py, x1)(%2, x3)- Similarly, because
p, e {0, n}, X contains a permutation which interchanges ¢ and = and fixes p,;
- we may take this to be b = py(a, 1)(x1, X2)(¢3, 7). Thenababa = 1(x, x,)(x,, 1:)(ps, 0)
and therefore Te I'{p,,0}. Thus p, € Z, the set of 7 points not equal to ¢ of the
7-block containing c. Moreover, no other point { of I'{y,, v,} belongs to Z because this
would imply that Te I'{{, ¢} and X would contain a permutation fixing t and inter-
changing { and ¢ which it does not. Similarly, p, and p, are the unique points of
I'{y,, v} and I'{ys, v3} which belong to Z.

Let IT be the set of 21 pairs {£, n} for which o, e I'{¢, n}. By Lemma 2.7, G,  has
3 orbits of size 7 or is transitive on the 21 pairs of IT; since [G,, : G,.] = 2 the same
is true of G,,. Define an equivalence relation on IT by {&, n} ~ {&', '} if and only if
T'{¢, n} and T{&', '} contain the same point of I'{s, 7}. This is a G,,-invariant relation
and G,, is transitive on the set of 7 equivalence classes. Each equivalence class thus
consists of 3 pairs and the group induced by G,, in each class is either transitive or
trivial. Since {y;, v;}, i = 1, 2, 3, constitute one such class, the group induced by
G,, on these 3 pairs is either transitive or trivial.

Let K be the kernel of the action of G, on I'{o, t}. Since K fixes n, K permutes
the 3 pairs {y;, v;}, i = 1, 2, 3. If K acts transitively on them then it must also act
transitively on {p,, p,, p3}. But a normal subgroup of G,, can only have orbits of
length 1 or 7 on £ and so p, = p, = p;. Consequently we may assume that K
fixes each pair {g;, v;}. '

Let T, be a Sylow 2-subgroup of G,, which fixes {u,, v,}; then T, fixes I'{y,, v,}
pointwise. We now show that T, also fixes each of {u,, v,} and {u,, v;}. Let T,
be a Sylow 2-subgroup of G,, which fixes {u,, v,}. Then T, fixes I'{g,, v,} pointwise
and, because G,, as a group on I'{s, 7} has a unique Sylow 2-subgroup fixing =, we
have T, K = T, K. By Sylow’s theorem T, = T)*, k € K, and since k fixes {15, v,} so
also does T,. Similarly T, fixes {us, v3}.

Thus T, fixes {p,, p,, p3} pointwise. If py, p,, p; are not all equal then, since T,
is a Sylow 2-subgroup of G,, and p,, p,, p3 € I'{o, 7}, G,, acts on I'{o, n} as a group of
odd order. The same contradiction as was reached at the end of the proof of Lemma
3.2 can now be obtained.

The proof of the theorem can now be completed. If 8eI'{x, B} then, as a
consequence of Lemma 3.2, there are precisely 3 pairs {y,,0;},i = 1,2, 3, such
that a, B, 0eT{y;,0;}, i =1,2,3. Leta, B, 0, ¢, ¥, {, n be the points of I'{y,,d,}.
By Lemma 3.2 and an appropriate choice of notation we may assume that ¢ € I'{«, 6}
and that the group induced by Gy, 5, in I'{y,, 6,} contains permutations

a=0( )@ Y)¢m and b= 0)B )W, n).

Then, again by Lemma 3.2, consideration of a, aba, babab, abababa shows that

0eI'{g, ¥}y eT{B, 0}, ne I{0,y},{ e T{H, $}.
We now apply Lemma 3.3 four times each with {y;, ;} in the role of {y;, v;},

i=1,2,3. Firstly, with «, B, 8 =0, 1, © respectively, ¢ € I'{a, 8} implies that
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¢ eI{y;,d;},i=2,3. Secondly, with 8, «, 0 = o, 1, n respectively, Y € ['{f, 8} implies
thaty e I'{y;, ,},i = 2, 3. Thirdly, withy, ¢, 8 = g, 1, = respectively, n € I'{6, ¢} implies
that ne I'{y;, 0;}, i = 2, 3. Fourthly, with ¢, W, 8 = o, 7, 7 respectively, { € I'{6, ¢}
implies that { e I'{y;, 6,},i = 2, 3.

Hence I'{y,,d,} = I'{y,,6,} = I'{y;, 0} and this set is equal to no other I'{y, x'}.
Therefore G, 5,) has an invariant set {y,, 0,, 73,03} and Lemma 2.1 gives the final
contradiction.
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