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Abstract. In this paper we study the computation of a set of bilinear forms associated with a finite 
group. In the case of a cyclic group these bilinear forms represent the well-knowrl circular 
convolution of two sequences and can be evaluated efficiently using the fast finite Fourier 
transform. WC shall use a similar technique in the case of a general finite group and will apply it to 
calculate gror;p algebra products. 

Let G den&e a finite group of order y1 and let A denote an assot:iative algebra 

defined over the complex field C. T!le group algebra AG consists of the set of 

formal sums C g&+g where the coeficients ug belong to A. and in which addition, 

scalar multiplication and multiplication of elements are defined in the following 

natural way: 

c agg-t c b,g= c be+h-k, (1) 

c agg c b,,h = c c,g, where c, = c a,b,-1,. 
f3EG h EG gEG XEG 

(2) 

(3) 

In these formulae ag, bg E A a The formula for the sequence {c,}~~~ in 

(3) is called the convolution of sequences {6Zg}pEG and {b&G. 

We are concerned with eficient computations within AG. Of the three oplera- 

tions above (I) and (2) can clearly be accomplished in time O(n) whereas (3) 

apparently requires time O(n’). e therefore kVestigate faster ways of corny;. :.3ng 

the convolution. Our techniqu are likely to have mos ication in gro 

putatiorls where a large number cf group al ra elements ar 

computed from an initial small number of elemen 

such as those defined by the c,: 

g a set of bilinear forms 

205 
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(i) the total number of arithmetic operations, 
(ii) the total number of active multiplications (we recall that an active inuBtiplica- 

‘tion is one in which neither factor is a scalar constant). 
It is clear that the sequence {c,) could be evaluated with precisely ;n2 active 

multiplications (of the form agbh for all g, h E G) and with 0(n2) arithmetic 
operations. We shall show that the number of active multiplications can certainly be 
reduced to Iess th7.n g1’*’ and that in some cases the total number of arithmetic 
operations can be reduced. In particular, our results are of interest from the point 
of view of bilinear complexity. 

From now on K will denote a complete set of inequivalent irreducible matrix 
representations of G over C. A typical member of K will be denoted by p, p(g) will 
denote the image of some group element g under p, and fb will denote the 
dimension of such a matrix. 

For any sequence {a,},Eo of n elements of A we define its Fourier transform 
(with respect to G) to be the sequence (bp}pEK where 

is a matrix of dimension j’,‘, with entries in A. I am indebted to the referee for 
pointing out that this definition and the inversion formula of the following lemma 
are special cases of more general formulae valid ,in compact groups 141. 

Lemma 1. The sequence {a } g gEG can be recovc,red from the sequence {bp}pEK by the 
inversion formula 

ag = i pzK fP fr(Bpl-w’))* 

Proof. Consider the block diagonal matrix M whose blocks consist of b,p(g-‘) 
repeated fp times for each p E K. A typical block &,p(g-‘) is equal to 
&Gaxp(~g-‘) so M has the form x xEG aiR(xg-*) where I? (xg-‘) is a block 
diagonal matrix in which a typical block p&g-‘) occurs fp times. Thus R(xg-‘) is b 
matrix which is equivalent to the image of xg-’ in the regular representation. I-Ience 
tr(R (x,g-‘)) = 0 if x # g and tr(W (xg-I)) = n if n = g. Therefore 

a9 = + xzG ax tr( R (xg 9 = i pzK fp Wbbp (g W Cl 

h-rem 2. The convolution {cg}gEG of two sequences {ag}gECS and {bg}gEG can be 
computed in at most c pE K f i active m dti~katiom 

Consider the following program: 
coipute the transform {dp}pEK of {ag}gEG; 
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compute the transform (eP)pEK of {bg}gEG; 
form the matrix products d,e, for each p E K; 
invert the sequence { $e,,}pEK. 

Active multiplications only occur when computing the products d,e, ; hence at most 
&,,f: actikfe multiplications are performed in all. We complete the proof by 
showing that {cglgEC is the sequence resulting from inverting {dpep}pEK; equiva- 
lently, that {dpe,,}pEK is the sequence resulting from transforming {c~}~~~. This 
follows because 

Ed = c a,Pk) c bdh) = 2 abdgh) 
gEG hEG g,hEG 

= axbx-k > LFEG 

Corollary 3. The convolution can be evaluated in at most n ‘S active multiplications. 

Proof. The integers fP satisfy &,f3= n and from this it follows that 

ZpEKfiS n’*‘. 0 

Notice that the bound n ‘-’ is fairly crude. Two examples should make this clear: 

(i) for any abelian group fP = 1 for all p E K and 1 K I= n ; so 2 fs = n, 
(ii) for kEie simple group of order 60 we have c fz = 1 + 27 + 27 + 64 + 125 = 244 

whereas 60’.” = 465. 
Notice also that the bound 2 f’p could be improved by using Strassen’s [5] matrix 

multiplication method. 
The technique of the theorem allows two group algebra elements to be multiplied 

in at most n’*’ active multiplications. However, because of the computation of the 
transforms and the inverse the total number of arithmetic operations is still O(m’). 
Nonetheless we may justify the transform technique in two respects. Firstly, for 
certain algebras A (for example, matrix algebras of moderately large degree) active 
multiplications take substantially longer than other operations and may dominate 
the execution time. Secondly, it is likely that when the technique is used in practice 
there will be many group algebra computations to perform, the results of some 
operations being operands to further operations. In such a case great advantage is 
obtained by working throughout in transform space (where additions and multipli- 
cations can also be performed); the Fourier transform is applied to the initial group 
algebra elements and the inverse transform is applied at the end to get the 
results. 

In spite of these remarks it would obviously be advantageous if the transform and 
its inverse l:ould be computed more rapidly. This would make the technique more 
useful for short calculations where active multiplications did not dominate the 
execution time. We observe that in the case that 6 is a cyclic group of order rt ?I 

transform is just the ordinary finite Fourier transform and for this it is well-known 
[2] that both it and its inverse can be evaluated in time r)(n(rl -I- l l l + L)) if 
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n = Y1 l l l I;~, A similar result has been proved by cairns [I] for any finite abelian 
group. We shall consider the case that G is a direct product of groups and prove the 
following result. 

. If @ =GIx- x Gk in a direct product of t groups G,, . . . , Gk then 

urier transform and its inverse can be computed in (I G 125 1 Gi I) arithmetic 
operations. 

Suppose first that G - pi x L. We shall give a method in which the time tc 

for computing the transform has the form 

and a method in which a similar inequality holds for the inverse transform (C here 
is some constant independent of G). The result then follows by induction on the 
number of direct factors. 

The Trasic fact which we use is that if o, T are irreducible representations of H, L 
then the matrices o(h)gm(E), h E H, I E L, form an irreducible representation of 
G, and, conversely, every irreducible representation of G has this form. We recall 
that the tensor product of the g-dimensional matrix A = [a,] with the q- 
dimensional matrix B is the pq-dimensional matrix A qpB which has the form 

i I. 1 
The relevant theoretical background may be found in [3]. 

Consider first the computation of the transform of a sequence {a,}grG. We have 

where a, 7 run through the irreducible representations of H, L respectively. The 
computation of ihe sums z hEHahra(h) for ah v and a fixed l is just a computation 

of the sequence {a,,,}kEIH; thus the computation 
equires the computa+n of I I transforms with 

uires a further time proportional to 1 .E 1 

t now follows that 
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{&& where a; r range over the irreducible representations of H, L. e need to 
compute expressions of the form 

for all h E H, e E L. Tcr do this we partition baB7 into fi square blocks each 
containing fS elements: 

b a@3+ = [Bij (0. r)] 

3&ere 1 G i, j =Z fm and each ii (or, T) is a square matrix of dimension f7. We also 
write a(h)@T(l) in a similar blocked form as [~ii(h)~(l)] where, again, 1 s i, j c fw 
and I=(Z) is of dimension fT. Then because 

tr(b,6+~(h)@ 7(l)) = tr(& (0, T)gji (h)T(l)) 
i, j 

(where, here and subsequently, i, j run from 1 to fo), (5) becomes 

We shall write this as 

where X(7, h) = C,;Fj, Ci,j Rij (a, T)cji (h ). For fixed 7 and h the computation of 
X(7=, h) requires a time propertional to x,fLf’+ = 1 N If:. So to compute all the 
X(7, h) requires a time proportional to 1 (=(HI~I=,fZT=IIII~IfrI*iLI= 
IHI*IGI* 

Then the compu”,tion of the expressions (5) for all 7 and fixed h amounts to the 
computation of thz inverse transfc).m with respec to L of the sequence ! 
So computatir3n all the expressions (5) can be d ne in a further time pr 
to performing I 1 inversions with respect to L. 

We therefore have a relation similar to (4) and this again yields the required 
result. Iz1; 

T.W. Cairns, On the fast Fourier transform on finite abeliar groups. 
(1971) S-59-571. 
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