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Abstract. In this paper we study the computation of a set of bilinear forms associated with a finite
group. In the case of a cyclic group these bilinear forms represent the well-known circular
convolution of two sequences and can be evaluated efficiently using the fast finite Fourier
transform. We shall use a similar technique in the case of a general finite group and wili apply it to
calculate group zlgebra products.

Let G denote a finite group of order n and let A denote an asscciative algebra
defined over the complex field C. The group algebra AG consists of the set of
formal sums 2,cc a,g where the coefficients a, belong to A. and in which addition,
scalar multiplication and multiplication of elements are defined in the following
natural way:

> ag+ > bg =2 (a+b)g (1)
gEG 3EG gEG
A2 ag =2 (Aa)g, 2)
gEGC gEG
a.g O bh =D cg, wherec, =D a.b.,. (3)
gEG hed gE€EG x€G

In these formulae a,, b, € A and A € C. The formula for the sequence {¢;};cc in
(3) is called the convolution of the sequences {a;};cc and {b,};cc-

We are concerned with efficient computations within AG. Of the three opera-
tions above (1) and (2) can clearly be accomplished in time O(n) whereas (3)
apparently rerjuires time O(n®). We therefore in estigate faster ways of comp. ting
the convolution. Qur techniques are likely to have most application in group
algebra computations where a large numver cf group algebra elements are
computed from an initial small number of elements. For example, searcnes for units
and zero-diviscrs in AG may well have this form.

It is usual to cmploy two measures of the cost of computing a set of bilinear forms
such as those defined by the ¢;:
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(i) the total number of arithmetic operations,

(ii) the total number of active multiplications (we recall that an active :nultiplica-
tion is one in which neither factor is a scalar constant).

It is clear that the sequence {c,} could be evaluated with precisely n® active
multiplications (of the form a.b. for all g,h € G) and with O(n?) arithmetic
operations. We shall show that the number of active multiplications can certainly be
reduced to less th>n n'® and that in some cases the total number of arithmetic
operations can be reduced. In particular, our results are of interest from the point
of view of bilinear complexity.

From now on K will denote a complete set of inequivalent irreducible matrix
representations of G over C. A typical member of K will be denoted by p, p(g) will
denote the image of some group element g under p, and f, will denote the
dimension of such a matrix.

For any sequence {a,},cc of n elements of A we define its Fourier transform
(with respect to G) to be the sequence {b,},ex where

b, = EG ap(g)

gE

is a matrix of dimension f, with entries in A. I am indebted to the referee for
pointing out that this definition and the inversion formula of the following lemma
are special cases of more general formulae valid in compact groups [4].

Lemma 1. The sequence {a;}.cc can be recovered from the sequence {b,},<x by the
inversion formula

0 = 3 hulbe™)

Proof. Consider the block diagonal matrix M whose blocks consist of bp(g™")
repeated fo times for each p&€ K. A typical block bp(g™') is equal to
2.ccap(xg™") so M has the form 2.cca:R(xg™") where R(xg™") is a block
diagonal matrix in which a typical block p(xg ") occurs £, times. Thus R(xg ") is a
matrix which is equivalent to the image of xg ™' in the regular representation. Hence
tr(R(xg™")) =0 if x# g and tr(R(xg™"))=n if n = g. Therefore

=|r-—

fotr(bp(g™). O

pEK

a, = % x;G a. tr(R (xg_‘»

Theorem 2. The convolution {c,};cc of two sequences {a,}sec: and {b,};<c can be
computed in at most 2, f; active multiplications.

Proof. Consider the following program:
compute the transform {d,},cx of {a;};ec;
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compute the transform {e,},cx of {b;}sec;

form the matrix products d,e, for each p € K;;

invert the sequence {d,e,},ex.
Active multiplications only occur when computing the products d,e, ; hence at most
2,<xf3 active multiplications are performed in all. We complete the proof by
showing that {c,},=c is the sequence resulting from inverting {d,e,},«x; equiva-
lently, that {d,e,},cx is the sequence resulting from transforming {c,},cc. This
follows because

dee, = Y, ap(g) 2, bip(h) = X abp(gh)
gEG hEG 2 heEG

I

3 (2, abes)pie)= T cpte). O

xEG 8EG
Corollary 3. The convolution can be evaluated in at most n'* active multiplications.

Proof. The integers f, satisfy 2,cxf2=n and from this it follows that
2eexfosn'. O

Notice that the bound n'? is fairly crude. Two examples should make this clear:
(i) for any abelian group f, =1for all p €K and |[K|=n; so Zfi=n,

(i) for the simple group of order 60 we have Z fi =1+ 27+ 27+ 64 + 125 = 244
whereas 60'° = 465.

Notice also that the bound X f3 could be improved by using Strassen’s [5] matrix
multiplication method.

The technique of the theorem allows two group algebra elements to be multiplied
in at most n'® active multiplications. However, because of the computation of the
transforms and the inverse the total number of arithmetic operations is still O(n°).
Nonetheless we may justify the transform technique in two respects. Firstly, for
certain algebras A (for example, matrix algebras of moderately large degree) active

“multiplications take substantially longer than other operations and may dominate
the execution time. Secondly, it is likely that when the technique is used in praciice
there will be many group algebra computations to perform, the results of some
operations being operands to further operations. In such a case great advantage is
obtained by working throughout in transform space (where additions and multipli-
cations can also be performed); the Fourier transform is applied to the initial group
algebra elements and the inverse transform is applied at the end to get the
results.

In spite of these remarks it would obviously be advantageous if the transform and
its inverse -ould be computed more rapidly. This would make the technique more
useful for short calculations where active multiplications did not dominate the
execution time. We observe that in the case that G is a cyclic group of order n the
transform is just the ordinary finite Fourier transform and for this it is well-known
[2] that both it and its inverse can be evaluated in time O(n(r,+---+r.)) if



208 . M.D. Atkinson

n=r, - r, A similar result has been proved by Cairns [1] for any finite abelian
group. We shall consider the case that G is a direct product of groups and prove the
following result.

Theorem 4. If G = G, X --- X Gy is a direct product of the groups G,, ..., G, then
the Fourier transform and its inverse can be computed in O(|G|% | G. l) anthmenc
operations.

Proof. Suppose first that G = H X L. We shall give a method in which the time 15
for computing the transform has the form

to <C(|G|-|Li+]L|"tu),

and a method in which a similar inequality holds for the inverse transform (C here
is some constant independent of G). The result then follows by induction on the
number of direct factors.

Tae Uasic fact which we use is that if o, 7 are irreducible representations of H, L
then the matrices o(h)Q7(l), h € H, | € L, form an irreducible representation of
G, and, conversely, every irreducible representation of G has this form. We recall
that the tensor product of the p-dimensional matrix A =[a;] with the gq-
dimensional matrix B is the pq-dimensional matrix A ® B which has the form

(’,;IB cee a1pB
[a,','B] = : : .
aplB e ap,,B

The relevant theoretical background may be found in [3].
Consider first the computation of the transform of a sequence {a, },~c. We have

boo= 3, Ao )@ 7()= 3 (3, awwt) @ 700

where o, 7 run through the irreducible representations of H, L respectively. The
computation of the sums Z,cyano(h) for all ¢ and a fixed [ is just a computation
of the transform with respect to H of the sequence {au }se:x; thus the computation
of all sums s(0, /) = Z,cnano (h) requires the computation of | L | transforms with
respect io H. Then to compute all expressions

b,g. = Z s(o, H@7(l)

for each 0,7 requires a further time proportional to |L|Z, . f2f:=|L|*-|H|=
|G|-|L]. It now follows that

te <C(|G|-|L|+]|L]|:tn). (4)

Now we consider the computation of the inverse transform of the sequence
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{b.=-} Where o, t range over the irreducible representations of H, L. We need to
compute expressions of the form

2, fof: tr(boo.o ()@ (1) (5)

for all h € H, 1€ L. Tu do this we partition b,g. into f2 square blocks each
containing f? elements:

bog.=[Bi(o 7))

where 1 =i, j <f, and each B, (o, 7) is a square matrix of dimension f,. We also
write o(h)® 7(l) in a similar blocked form as [o;; (h )7 ()] where, again, 1< i, j <,
and 7(l) is of dimension f,. Then because

tr(boe.0(R)@7(1)) = ZJ tr(B; (o, 7)aii (h)7(1))

(where, here and subsequently, i,j run from 1 to f,), (5) becomes

3 far {@ £ B o (h)) r(l)] .

We shall write this as

2 fuX (s h)r() 6)

where X (7, h)=2.,f, 2.,B;(0o,7)o;(h). For fixed + and h the computation of
X(7, h) requires a time propertional to Z,f2f2=|H|f2. So to compute all the
X(7,h) requires 2 time proportional to |H|-|H|-Z.f?=|H|-|H|-|L|=
|H|-|G|. ‘

Then the compu‘_tion of the expressions (5) for all 7 and fixed h amounts to the
computation of th inverse transf.-m with respect to L of the sequence {X (7, h)}..
So computatinn of all the expressions (5) can be done in a further time proportional
to performing | H| inversions with respect to L.

We therefore have a relation simiiar to (4) and this again yields the required
result. [
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