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Computational methods for finding the character table of a finite group require a stock of 
reducible characters and techniques for decomposing these characters into irreducible 
characters. A method for generating reducible characters from a representation of a group is 
proposed. Several new techniques for computing the irreducible decompositions of a set of 
characters are given; these techniques extend earlier results of Conway and M. Guy. 

1. Introduction 

For several years the most successful computational systems for calculating the character 
table of  a large finite group have operated in two stages. In the first stage a set of (in 
general, reducible) characters is generated from a stock of one or more initially given 
characters. In the second stage, irreducible characters are found by decomposing these 
irreducible characters. These two stages are iterated with a user providing fine tuning 
interactively. Many techniques and examples are given in Conway (1984) and Neubfiser 
et al. (1984). The purpose of this paper is to present some extensions and variations of 
these techniques. In section 2 we make some comments, additional to those of Neubfiser 
et al. (1984), on character generation. In section 3 we propose extensions to the reduction 
techniques discussed in Conway (1984). 

2. Character Generation 

A frequently used method for obtaining characters is to form the various symmetrised 
powers of a character. This requires a knowledge of "power maps". If a matrix 
representation of the group is available some of these characters can be found without 
knowing the power maps as the following result shows. 

THEOREM. Let R be a t-dimensional representation of a group G afforded by the action of G 
on a vector space V. Let R Is) be the natural action of G on the sth exterior power of  V and 
let ~ptS) be the associated character. Then, for every 9 ~ G, 

t 

• ~o q/~)(g)2s = det (I + 2R(9)). 

PRoof. Let 9 E G be fixed, and let vl, v~ . . . . .  v, be a basis of V consisting of eigenvectors of 
R(9). Then R(9) is diagonal with eigenvalues wl, w2 . . . . .  w~, say. From the definition of 
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R~)(g)  this matrix is also diagonal with diagonal entries which are products 
w~(l~ wi~) . . . w~)  and therefore 

(summed over all s-tuples with i(1) < i(2) < . . .  < i(s)). Hence 

s = O  S ~ 0  

= (1 + wl ~)(1 + w2 ;~) . . .  (1 + w~2) 

= det (I + ;tR(g)). 

In the case of a permutation group the generating function takes the form 

(1 + )3°'(1 -- ;t~)°~ 0 +2~)°~(1 - ; t* )  °~ . . . .  

where the cycle structure of the permutation g is 1 ~' 2 °~ 3 "3 . . . .  Curiously, the polynomial 
obtained from this one by replacing all minus signs by plus signs is also the generating 
function of a set of character values at g. In fact, more generally, the multivariate 
polynomial 

( 2  xt) ~' ( 2  x~) "~ (~  x~) "~ . . .  (summations over a fixed range 1 . . . .  , k) 

is also the generating function of a set of character values at ft. This follows from the 
Polya-Redfield theory of enumeration. 

3. Character Reduction 

In this section we shall suppose that we are given a set S of characters ~Pt . . . . .  ~p,, of a 
group G from which we wish to obtain some or all of the set )h . . . . .  )~, of s irreducible 
characters by forming appropriate linear combinations of (Pl, • •., CP,,. At our disposal we 
have the matrix of inner products rn~ = (q~, ~o~). In many cases rather more information 
might be available, in particular the Schur indicators of ~01 . . . . .  ~0,,, but we intend here 
mainly to consider how inner product information is used. 

It is elementary to prove that, if n = s and det M = 1, every irreducible character can be 
realised as an integral combination of (01 . . . . .  ~0,,. When det M = 1 or is moderately small 
it is probably worth investing a lot of effort searching for the correct integral 
combinations. Of  course, one does not try integral combinations at random. A simple 
strategy (Eucl idean reduction) was suggested by Conway (1984). One takes the characters 
in pairs (0~, @j; if their inner product matrix 

has Ihj > a/2 or Ihl > b/2, then there is a generalised character in the integral span of ~0i, q~j 
which has smaller norm than one of them; then one of opt and q~j can be replaced by this 
generalised character. This is repeated until no further norm reduction is possible. 
Euclidean reduction is effective in many cases for producing characters of norm 1, but it 
can also fail badly. 
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EXAMPLE. If n = 5 and the inner product matrix is 

M = 

2 1 - 1  1 - 1  

1 2 0 - 1  1 

1 0 2 0 - 1  

1 - 1  0 3 1 

1 1 - 1  1 87 

then det M = 1, but Euclidean reduction allows no norm reduction even though ~o~ has 
norm 87. Note that M is certainly a possible matrix of inner products since the matrix 

satisfies M = AA T. 

A = 

1100 011 0 1 1 0 0 

- 1  0 0 i 

1 0 - 1  1 

4 - 5  6 3 

Euclidean reduction is obviously optimal when n = 2. For  n = 3 and small det M it is 
also a reasonable strategy since we have 

LEMMA, Let M be the matrix o f  inner products o f  3 generalised characters 

(.J!) M= f b 
g h 

with a <% b <~ c and if] ~< a/2, [g[ ~< a/2o ]hi -%< b/2 (the latter 3 inequalities are the condition 
that no Euclidean reduction is possible). Then, i f  M is non-singular, a, b, c are bounded in 
terms o f  det M. Moreover, ! f  M is unimodular, then M = I. 

PROOF. The lemma follows by writing 4 x det M as 

a b ( c -  b) + a(b 2 - 4h 2) + a b ( c -  a) + b(a 2 - 4g 2) + ac(b - a) + c(a 2 _ 4 f  2) + (abc + 8fgh) 

and noting that each of the seven summands is non-negative. 
If we are unable to find all the irreducible characters as integral combinations of 

qJa . . . .  , q~,, either because M is not unimodular or for some other reason, we have to 
prepare for a time-consuming search for possible character decompositions of ~0i . . . . .  cp, 
consistent with M. It was recommended by Conway (1984) and our own experience 
supports it, that the calculations should use proper characters only; we should return to 
the originally given set S and discard any improper characters which may have been 
introduced. The execution time of the search will depend crucially on the norms of the opt. 
These norms should be as small as possible and it is advisable to invest some effort in 
reducing them. A strategy broadly similar to Euclidean reduction can be used. Here we 
search for pairs ~0t, ~pj for which ~o i __c q~j (that is, q~j-q~i is a proper character). Whenever 
such a pair is found we replace qoj by rpj-cp~. This strategy is made possible by the 
following result of M. Guy (in Conway, 1984). 
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LEMMA. Let ~, fl be characters with inner product matrix 

I f  a <. b and a b -  h 2 < b, then ~ ~_ ft. 

This lemma is optimal in that if the inequalities on a, b, h do not hold, then there exists 
a group having two characters a, fl with these inner products for which a ~ fl is false. 
However, the lemma does not make optimal use of all the inner product information. 

EXAMPLE. Suppose that three characters a, fl, y have inner product matrix (:, 1:/ 
M =  2 . 

11 3 1 6 /  

This is a possible matrix of inner products since, for example, M = AA r where 

A =  0 0 0 0 1 . 

1 1 1 2 2 

Guy's  criterion applies to neither of the pairs {~, y} and {fl, y}; however, these inner 
products imply that c~ +/~ _~ y which is stronger than c~ _ y and fl ~ y. 

In general one can exploit the other inner product information through 

THEOREM. Let  ct, fl, y be characters with inner product matrix 

M =  b 

q 

and suppose that a < b and p <. q (necessary conditions that ~ c_fl). Suppose that the 
quadratic 

[(a + b - 2 h -  1)m - (q --  p)Z]x2 4- 2x [aq + bp - hp - hq - q] + [ab - h 2 - -  b] 

takes a negative value for  some x >t O. Then ct ~_ ft. 

PROOF. For any x, a + y x  and fl+TX are class functions whose inner product matrix is 

\ h + ( p + q ) x + m x  2 b + 2 q x + m x  2 J" 

For x ~ 0  we have A <~B. The proof of Guy's lemma given by Conway (1984) requires 
only that '~' and '/P in that lemma be positive class functions whose difference is a 
generalised character. Hence, if A B - H Z - B  < 0 for some x >i 0, we can deduce that 
a + y x  ~ f l + y x  and hence that a ~ f l .  However, A B - H Z - - B  is precisely the quadratic 
given in the theorem. 

COROLLARY. With the same notation, suppose that a ~ b, p <. q and ( a + b - 2 h ) m -  
(q_p)Z  <m. Then .~_fl.  Moreover, the character f l - a  contains or is contained in 
according as a + b -  2h >f m or a + b - 2h <~ m. 
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PROOF. The first part follows directly from the theorem (it states that the coefficient of x 2 
is negative). For the second part note that the inner product matrix of the characters fl-c~ 
and ~ is 

q - p  
and apply Guy's lemma. 

Although the theorem seems, in practice, to be very effective in proving that a __ fl 
(whenever this can be deduced from the inner products) it is not optimal. To see this 
consider the inner product matrix 

M =  1 17 

5 14 

of three characters c¢,fl,~,. The quadratic of the theorem is 1 0 x 2 - 6 x + l  which is 
everywhere positive. On the other hand a case by case analysis shows that c~ __c fl in all 
possible irreducible decompositions of c~, fl, ~ (there are several). 

In Atkinson & Hassan (1983) an even more general condition is given which uses all 
the inner products involving one of c~ and fl in the inner product table. 

Before leaving these considerations arising out of Guy's lemma we shall point out one 
further direction in which it may be generalised. To say that ct_ fl is to say that every 
irreducible character has multiplicity in c~ at most equal to its multiplicity in ft. If we 
cannot establish that ct _ fl it is sometimes useful to know how closely the condition can 
fail, that is, how many of ct's multiplicities are greater than fl's and by how much. 

MULTIPLICITY LEMMA. Let  c~, fl be characters with inner product matrix 

and suppose that 0 < a ~ b .  O f  the irreducible characters X l , . . . ,  )~, let Z~ . . . . .  X, have 
greater multiplicity in ~ than in ft. Write 

a = C 1 ~ ( 1 +  , . . +Ct )~ t+~X2 

fl  = d l z  1 +  . . . - { - - d t / t + f l 2  

where ci > d~, and (X~, ~2) = (X~, f12) = 0 for  i = 1 . . . . .  t. Then 

Y. (c~-df .< (ab- h2)/b. 

Moreover,  i f  equality holds, then d t = 0 for i =  1 . . . .  , t and a2 and 92 are multiples o f  some 
character 0. 

PROOF. If we write 
c~ = cq +~2, 3 = Pl+f l2 ,  

then obviously 
(~1, ~2) = (~ i , /h )  = (&, ~2) = (/~1,/h) = 0. 

By direct calculation we have the following identity: 

(~2, "~ ) (B~ , /h ) -  (~2, /h)  2 = (c¢, ~)(3, j3)-  (~, 3)2-( /3, /3)(cq-/3~,  ~1-/31)  
- [ ( / 3 , / ~ ) - ( <  ~ ) - l ( < - / h , / 3 1 )  

- (~1 ,  ~ 1 -  Pl)(Pl, = 1 - 3 0 .  
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The left-hand side of this identity is non-negative since the quadratic form (xa2 +Yfl2, 
x0% +YP2) is positive semi-definite. The right-hand side is 

ab-  h2-  b ~ ( ci-d~)2-(b-a)(~l  - ill, f l l ) - ( a z -  fl2, o~2- fl2)(~1, ill) 
-(~1, ~1- 3~)(~, ~1- 3 0 

<~ab-h2-b ~(ci--di) 2 since fll__0h, 

This proves the first part of the lemma. If equality holds, then the form (xa2q-Yfl2~ 
xa2 +Yfl2) has a zero and therefore a2 and t2 are dependent. Moreover, (ill, al  - f i ~ ) =  0 
from which it follows that fl~ = 0, and the second part is also proved. 

This lemma can also be strengthened to take into account inner products  of  c~ and fl 
with other characters (see Atkinson & Hassan (1985) for details). 

Conway (1984) describes how Guy has extended his inclusion lemma to exploit the 
Schur indicators (which often are available). This extension is not just a simple numerical 
test; in fact it requires possibly several applications of the Euclidean reduction algorithm. 
As the next example shows, the multiplicity lemma is effective in cutting down  the number 
of runs of this algorithm. 

EXAMPLE. Suppose that a, J3 have inner product matrix 

and that i,j are the (known) Schur indicators of a, ft. Guy's original criterion does not 
apply so we cannot deduce immediately that a ~ ft. However, 1 ~< (ab-  h2)/b < 2 and so, if 
a ~ fl does not hold, the lemma shows that there is (precisely) one irreducible character X 
whose multiplicity in c~ is y +  1 and whose multiplicity in fl is y. The inner p roduc t  matrix 
of a--(y+ 1)X and f l -YZ is 

2 1 - - ( y + 1 )  2 31- -y(y+l ) '~  
3 1 - y ( y +  1) 50--y z J 

and this is positive definite only if y = 0. Suppose the indicator of Z is k (=  - 1, 0, 1 ). Then 
a - Z  and fl have inner product matrix 

31 

and their indicators are i - k  andj .  Guy's technique (see Conway (1984) where this matrix 
is considered) shows that 

I j - i+k l  <~ 8, 1 2 i - 2 k - f  <~ 6, 13i-3k-2j] <~ 8. 

Since we know i and j it is trivial to check whether one of k ~-- - 1, 0, 1 satisfies these 
inequalities. If no such k exists we can conclude c~ _~/~. 
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