Improving polynomial evaluation at an approximate root

D. Westreich

Department of Computer Engineering, MBT, Israel Aircraft Industries Ltd, Yahud, Israel

A reduced round off error procedure is given for determining the accuracy of an approximate root

of a polynomial.
(Received July 1979)

When considering high degree polynomials with large co-
efficients it is difficult to determine if an approximate root
returned by a polynomial root solver subroutine is sufficiently
near the actual root. One would usually accept the root if the
value of the polynomial at the root is near zero. However,
when evaluating the polynomial at a large root on a computer,
the nature of the polynomial together with floating point
arithmetic are apt to introduce large round off errors so that
no significant results may be obtained. To overcome this
difficulty we recommend the following simple expedient.
n
Suppose P(z) = ¥ a;z' is an n degree polynomial, a, # 0
i=o

and z, is an approximate root of P(z). Let [x] be the greatest
integer function and define

Jj=1ifnisodd and |z5| > 1
J = 0 otherwise.
Then the roots of P(z) are equivalent to those of

F(z) = P(2)/z* = Q(z) + R(2)

~ where k = [n/2] + j

0G) = X a, 2"
i=k
k-1

and R(z) =X a; 2 *
i=0

0O(z) is a polynomial of degree n — k (~ n/2) and R(z) is a
polynomial in 1/z of degree k (&~ n/2). Thus, instead of
evaluating P(Z,) we evaluate Q(z,) and R(z,) where in each
case the round off error will be considerably less than for
P(zp). We will then accept the root z, if Q(zo) + R(z,) is
sufficiently near zero.

This principle may be used to improve the accuracy of an
approximate root. That is, use the Newton-Raphson iteration
scheme applied to F(2), i.e. z;,, = z; — F(z,)/F'(z,) starting
at z,.

Permutation groups and set union algorithms

M. D. Atkinson

Department of Computing Mathematics, University College, Cardiff

In this note we give one more application of the set union
techniques described in Aho, Hopcroft and Ullman (1974) for
representing a partition of a set, testing for membership of a
subset and replacing two parts by their union. Other applica-
tions are given there but ours is to a completely different area:
computational group theory.

Suppose that we are given a permutation group H on the
symbols 1, 2, ..., n, i.e. a set of one to one functions (permu-
tations) defined on 1, 2, . . . , n which is closed under functional
composition. In this situation the symbols may be partitioned
into orbits, two symbols being in the same orbit if one is
mapped on to the other by one of the permutations of H.

Suppose also that we are given one more permutation g and
that G is the group obtained by composing g with the permu-
tations of H in all possible ways (G is the group generated by
H and g). Then the orbits of G can be obtained from those of
H by successively combining subsets of 1, 2, . . . , n according
to the following scheme:

initially 1, 2, ..., n is partitioned into subsets given by the

References
AHO, A. V., HOPCROFT, J. E. and ULLMAN, J. D. (1974).

orbits of H;
foreacha =1,2,...,n
let B be the image of « under g;
if the subset containing o is different from the subset
containing B then replace these subsets by their union.
It is easily proved that the resulting partition of 1,2, ..., nis
the set of orbits of G.

Clearly the above process can be implemented by one of the
standard set union algorithms. The best one currently known
has a running time which grows only slightly faster than » and
so the orbits of G can be computed in an acceptably short time.

Finally, notice that if a group is given by generating permuta-
tions g, g,,... we can obtain its orbits starting from the
trivial partition of 1, 2, ..., n into singleton subsets and
successively using the above with g = g,, g,, . . . This method
of computing orbits does not require all generators to be
simultaneously present in main memory (unlike the one
described by McKay and Regner (1974) and so may offer
advantages when storage space is limited.

The Design and Analysis of Computer Algorithms, Addison-Wesley.

McKaAy, JouN and REGNER, E. (1974). Algorithm 482, Transitivity Sets, CACM, Vol. 17 No. 8 p. 470.

The Computer Journal Volume 23 Number 2

187



