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In a series of papers [3, 4 and 5] on insoluble (transitive) permutation groups
of degree p = 2q +1, where p and q are primes, N. Ito has shown that, apart from a
small number of exceptions, such a group must be at least quadruply transitive.
One of the results which he uses is that an insoluble group of degree p = 2q +1
which is not doubly primitive must be isomorphic to PSL (3, 2) with p = 7. This
result is due to H. Wielandt, and ltd gives a proof in [3]. It is quite easy to extend
this proof to give the following result: a doubly transitive group of degree 2q + l,
where q is prime, which is not doubly primitive, is either sharply doubly transitive
or a group of automorphisms of a block design with A = 1 and k = 3. Our
notation for the parameters of a block design, v, b, k, r, X, is standard; see [9].

In this paper we shall prove two results about doubly transitive but not doubly
primitive groups which resemble the two results mentioned above.

THEOREM A. Let G be an insoluble transitive permutation group of degree p = 4q +1,
where p and q are primes, which is not doubly primitive. Then G = PSL (3, 3) and
P = U.

THEOREM B. Let G be a doubly transitive permutation group on Q of degree
3^ + 1, where q is a prime. Then one of the following statements is true.

(1) G is doubly primitive.

(2) G is sharply doubly transitive.

(3) G is a group of automorphisms of a block design on Cl with k — 1 and k = 4.

(4) G^PSL(3 ,2 )am/g = 2.

Theorem B has the following consequence.

COROLLARY C. Let G be an insoluble doubly transitive permutation group of
degree 3g + 1 , where q is a prime and q = 3(4). Then G is doubly primitive.

To prove this we have to exclude all but the first alternative of Theorem B. The
insolubility of G excludes possibility (2), possibility (3) does not occur because the
incidence equations of the design imply q = 1(4) and possibility (4) obviously does
not arise.

If G is a doubly primitive group of degree 3q + l, where q is prime, then the
stabiliser of a point acts as a primitive group of degree 3q on the remaining points.
P. M. Neumann has considered primitive groups of degree 3<j, [7], and his results
imply that, in many cases, G is triply transitive.

The proofs of Theorems A and B are mainly combinatorial; however, at the end
of the proof of Theorem A I use the following unpublished theorem of P. M.
Neumann which he has proved using modular character theory. I take this
opportunity of thanking him for showing me the proof.

Received 13 April, 1972.
[J. LONDON MATH. SOC. (2), 6 (1973), 269-274]



270 M. D. ATKINSON

THEOREM of P. M. Neumann. Let G be an insoluble (transitive) permutation group
on Cl of prime degree p. Let P be a Sylow p-subgroup of G and assume that
\N(P)\ - kp, where k is odd. Then, if a, peCl and a ^ p, GaB has at most (p- \)/k
orbits in Cl — {a, /?}.

By using this theorem earlier in the proof of Theorem A one could slightly
shorten the proof. I have preferred not to do this not only because most of the proof
then relies on elementary arguments, but also because the arguments are largely
independent of the fact that p is prime and so subsequently could be incorporated
into a proof of a more general result.

Throughout this paper the term " block " is used only in the block design sense;
however, a term such as " K-block " refers to a set of imprimitivity for a group K.
Before giving the proofs of Theorems A and B we prove a series of preliminary
lemmas.

LEMMA 1 (E. Witt [12]). Let X be a doubly transitive group on a set Cl, let a, P e Cl
with a # P and let K be a weakly closed subgroup of XaB. Then, if A = fix (K), in the
block design whose blocks are the images under X of A we have X = 1.

Proof. Suppose that {a, P) £ Ax for some xeX. Then a and p are fixed by
Kx and, by the weak closure, Kx = K. Thus A = Ax and so only one block
contains {a, P).

. We note that XaB itself and any normal Sylow p-subgroup of XaB are weakly
closed in XaP. .

LEMMA 2. Let X be a doubly transitive group on a set Cl, let aeCl and let A be a
set of imprimitivity for the action of Xa on Cl — {a}. Let peA and suppose that
A — {P} is invariant under X{atB). Then, in the block design whose blocks are the
images under X of F = A u {a} we have X = 1.

Proof. Let Y = {x e X | Tx = F}. Because A is an Xa-block we have XaB ^ Y
and Ya transitive on A. Furthermore, as Y contains an element which interchanges
a and p, Y is doubly transitive on F. We have

Xv(v-1) _ _ _ [X : Xaf] _ v(v-l)
k(k-X) ~ ~[ ' ]~ [Y :XaP]~ k(k-l) '

Thus X = 1.

The next lemma is an extension of a result of C. C. Sims (Theorem 3.7 of [9]).

LEMMA 3. Let X be a doubly transitive group on a set Cl, let aeCl and let A be a
set of imprimitivity of size m for the action of Xa on Cl — {a}. Then, if PeA,
X{a>B) has an invariant set F of size m—\ on Cl — {a, P). Furthermore, if XaB is
transitive on A — {P}, XaB and X{ot>B] are transitive on F.

Proof A routine check establishes that, for any x,yeX, Ax is an .X^-block and,
if ax = ay, that Ax and Ay belong to the same block system of X^. The set
B = {(ax, Ax) | xeX} obviously has size n(n—l)/m, where n = \Cl\. We may take
the elements of B as the blocks of a block design on Cl if we agree that a point
a> e Cl is incident with the block (ax, Ax) if and only if o) e Ax. The incidence
equations for the design tell us that X = m— 1. Thus there are exactly m — 1 blocks
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(<xxh Ax,), i = 1,2, . . . , m - l , with {a, /?} c A*; and it is clear that all the axh

i = 1, 2, . . . , m-\, are distinct and form an ^T{a(>^-invariant set T.
Now assume that Xa/? is transitive on A-{/?} and let y i , y 2 e r . By definition

there exist elements xi,x2eX such that OLX^ = yl5 oct2 = y2 and {ct, (}} is con-
tained in both A*! and Ax2. Since X is doubly transitive there exists aeXa such
that 7i a = y2- Now (v! a, Axx a) = (y2, Axt a) and (y2, Ax2) are both members
of B and a e Ax2 n A*j a. Thus Ax2 = A*! 0 and {a, /?, /to) £ Ax2 = Axt a.
However, a consequence of our extra assumption is that Xna is transitive on
Ax2 - {a}. Therefore we can find b e Xyia such that fab = /?. We then have
abeXaP and yx ab = y2; thus XaP is transitive on T as also is X{<xP).

The proof of the next lemma follows directly from the incidence equations of a
block design.

LEMMA 4. Let Q be a set on which there is a non-trivial block design with X = 1.
Then

(a) if |Q| = p = 4q +1, where p and q are prime, then p = 13,

(b) if |Q| = 3q + 1 , w/jere g is prime, then k = 4 or q = 2.

We shall frequently use the well-known theorem of Burnside that a transitive
group of prime degree is either doubly transitive or is a metacyclic Frobenius group.

Proof of Theorem A

Let G be an insoluble transitive permutation group on a set Q of size p = 4q +1,
where p and q are prime, which is not doubly primitive. If G is a counterexample to
Theorem A we may assume, from a search through the list of groups of degree 13
(see, for example, [9]), that p ^ 13. In fact, we may assume that p > 53 from
the results of [1]. From Lemma 4 we may, in addition, assume that G is not a
group of automorphisms of a non-trivial block design with A = 1. Furthermore, by
a theorem of [1] we have that q divides \G\ to the first power only.

Let P be a Sylow p-subgroup of G and Q a Sylow g-subgroup of Ga where
a e Q . Let Als A2, ... be a non-trivial system of imprimitivity for the action of Ga

on Cl-{<x}. LetH = {xeGa\Alx = AJ, K = {xeGa \ Atx = A,-, i = 1,2, ...} and
let jSe Aj. Then Ga/J ^ H and X<a Ga. There are four cases to consider depending
on the size of the Ga-blocks.

Case 1. 2q Ga-blocks of size 2

If Aj = {/?, y} then GaP fixes y and Lemma 1 provides a contradiction.

Case 2. g Ga-blocks of size 4

By case 1 we may assume that H acts primitively on Ax and so acts as 4 4 or S4

on Ax. Therefore Aĵ  — {/?} is an orbit of Gap.
If Ga is insoluble then it is also insoluble as a permutation group on the set

{Als.. . , AJ and so, in this case, it acts doubly transitively on this set. Consequently,
H permutes {A2, ..., AJ transitively and, as [H: GaP] = 4, all the orbits of Ga/, on
{A2, ..., AJ have size at least ( g - l ) / 4 > 3. It follows that A1-{jS} is the unique
orbit of Gap of size 3 and therefore At — {/?} is G{a> ̂ -invariant. We may now obtain
a contradiction from Lemma 2.
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If Ga is soluble then H permutes the set {A2,..., AJ semi-regularly and therefore
GaP also permutes {A2,..., AJ semi-regularly. If At — {)5} is G{a ^-invariant then
we may obtain the same contradiction as above from applying Lemma 2. Hence
we may assume that GaP possesses another orbit F of size 3 such that F u (At — {/?})
is an orbit of G{a>/?). If F is contained in some Ga-block A,- then GaP preserves A,
and so fixes the single point of Af—F; Lemma 1 now gives a contradiction. It
follows that F intersects 3 of the Ga-blocks and that GaP permutes {A2,..., AJ
semi-regularly in orbits of size 3. From this it follows that [GaP: Kp] = 3 and that
GaP acts regularly on F and so acts regularly on Al-{^}. Now H cannot act as S4

on Aj since GaP = Hp acts regularly on Ax - {/?}; thus H acts as y44 on At and hence
K and Kp have normal Sylow 2-subgroups. The Sylow 2-subgroup of Kp is normal
in GaP and is a Sylow 2-subgroup of Ga/J and it follows from Lemma 1 that Kp is an
(elementary Abelian) 3-group. Now K<\H and so K acts trivially or transitively
on Ax; thus, either K = 1 or K acts transitively on each of A1} A2,.. . , Aq. In
particular we have that either Kp = 1 so that \G\ = Ylpq or that K acts primitively
on each of Alf A2,.. . , Aq. In the latter case K acts faithfully on A^ for, if N is
the kernel of the action of K on Ax and N # 1, then JV acts transitively on some A,
contradicting the fact that 23Jf\K\. Thus \KP\ = 3 and \G\ = 36pq. In each of
these cases, \G\ = \2pq or \G\ = 36pq, we can obtain a contradiction by considering
possibilities for [G : N(P)] and using Sylow's theorem.

Case 3. 4 G8-blocks of size q

In this case Q < K and so K is transitive on each of Ax, A2, A3 and A4. If N
is the kernel of the action of X on Aj and N # 1, then N acts transitively on some
A, which contradicts the fact that q 2 ^ |G | . Thus K acts faithfully on each of
Alf A2, A3 and A4. As in case 2 we consider the possibilities of Ga being soluble or
insoluble separately.

If Ga is insoluble then H acts on Ax as an insoluble group and so acts doubly
transitively on Aj. Hence Tt = Ax — {/?} is a Ga/rorbit of size q — 1. If Fx is not
G{0(( pj-invariant then there exists another Gap-orbit F2 of size q — 1 such that
F t u F 2 is an orbit of G{eti P). By Lemma 3 there is yet another Ga/rorbit F 3 of size
q — 1 and since it is a G{ot> pj-orbit it is distinct from Fx and F2 . If either of F2 or F 3

is contained in any Â  then GaP leaves A,- invariant and fixes the remaining point of
A,; using Lemma 1, this leads to a contradiction. It follows that, for at least one A,,
we have 0 < |F2 n AJ < q-1 and 0 < |F 3 n Af| <q-\. But F2 n A, and F 3 n A,
are invariant under Kp and, as they are sets of imprimitivity for the action of Ga/?

on F 2 and F3, we have |F2 n A,| < %(q — 1) and |F 3 n At\ < %(q— 1). Consequently,
Kp has at least 3 orbits on A,-. Now K acts doubly transitively on each of Ax and A,
with characters 1 +Xi and 1 +x2, say, and the number of orbits of Kp on A, is
( 1 + X i , l + X 2 ) ^ 2 and this is a contradiction.

If Ga is soluble we shall show that Kp = 1. If Kp # 1 then Kp fixes precisely one
point from each of A1} A2, A3 and A4 because K has a unique conjugacy class of
subgroups of index q. Thus Kp and any conjugate of Kp fix exactly 5 points. Con-
sider some conjugate Kp

9 of K contained in Ga/J. If Kp
9 ^ K then some A,- contains

none of the fixed points of Kp
9 and hence there is some A, which contains at least

two of these fixed points; but then Kp
9 must fix pointwise the whole of Ay and so

has more than 5 fixed points. Thus Kp° < K and, as K has a unique subgroup of
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index q which fixes /?, we have Kp
9 = Kfi. Therefore Kfi is weakly closed in Gafi

and Lemma 1 gives us a contradiction. This means that Kp — 1 as we asserted.
Hence \G\ = vpq where u|24 and we can obtain a contradiction by considering
possibilities for [G : N(P)] and using Sylow's theorem.

Case 4. 2 Ga-blocks of size 2q

In this case we have H — K and we may assume, by case 3, that K acts primi-
tively on each of Ax and A2. By the same argument as in case 3, it also acts faith-
fully on Al and A2. If K acts doubly transitively on Ax then Ax — {/?} is an orbit of
Ga/} of size 2q-l. Lemma 2 implies that At — {)?} is not G{a>^-invariant and hence
there is another G^-orbit of size 2q — \. It follows that GaP fixes a third point and
therefore Lemma 1 can be applied to gain a contradiction.

If K does not act doubly transitively on Ai then a theorem of H. Wielandt [11]
tells us that K has rank 3 on A, (and on A2), 2q = m2 + l for some integer m, and
the orbits of GaP = Kp on A, are Fo = {/?}, I \ and F2 of sizes 1, %m{m— 1) and
-}w(m+l) respectively. Let nl = 1+i/^+Xt and n2 — l + ^ + f o De t n e decomposi-
tions of the permutation characters of K corresponding to the actions of K on A,
and A2. Since (T^, TT2) = 1, 2 or 3, GaP has 1, 2 or 3 orbits on A2.

If Ga/} has only one orbit on A2 then At —{/?} is the only Ga/J-invariant set of
size 2q — l. Hence Ax — {/?} is G{a> ̂ -invariant and Lemma 2 provides a contradiction.

If GaP has two orbits F 3 and F 4 on A2 then again Lemma 2 applies unless at
least one of F t and F2 is not G{a< ^-invariant. Suppose that Fx is not G{a> ^-invariant.
Then we may suppose that |F3 | = IFJ and that Ft u F 3 is a G{ajjj-orbit. Therefore
|F 3 | = \m(m-\), |F 4 | = |m(/w + l) and the orbits of G{a<p) are {a, p}, T2, Tx u F3

and F4 . Clearly, G{a/J) does not have an invariant set of size 2q — 1 and this
contradicts Lemma 3. A similar contradiction arises from assuming that F2 is not
G{a> ^-invariant.

Finally, we have to consider the case in which Gafi has 3 orbits on A2. We may
assume in any case that \N(P)\ — pq since in all other cases \N(P)\ is even and another
theorem of P. M. Neumann, [8], would yield that G is triply transitive. The theorem
of P. M. Neumann stated earliei tells us that GaP has at most (p— i)/q = 4 orbits in
Q—{a, /?} and this contradicts the fact that Ga/? has 3 orbits on A2 and so 5 orbits on

This completes the proof of Theorem A. We note that the piimality of p was used
heavily in the last paragraph. If this case could be dealt with by other means then it
would probably be possible to prove a result about doubly transitive groups of
degree Aq +1 somewhat on the lines of Theorem B.

Proof of Theorem B

Assume for a contradiction that there exists a group G which satisfies the
conditions but not the conclusions of Theorem B. By a search through the list of
groups of degrees 7 and 10 (see [9]) we see that there are no counterexamples to the
theorem with q ^ 3 and so we may assume that q > 5. As an easy consequence of
Lemma 4 we have that G is not a group of automorphisms of a non-trivial block
design on Q with A = 1. We also observe that G cannot be a Zassenhaus group,
for these have degree pf l+l or 2", where p is prime [2, 6 and 10], and 3q + l is of
this form only if q = 3.
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Let Q be a Sylow ^-subgroup of Ga, for some a e fi, and let A1} A2,. . . be a non-
trivial system of imprimitivity for the action of Ga on Q-{a}. Let

/?eA1} H = {xeGa\A1x= AJ and K = {xeGa\ A(x = Ah i = l ,2 , . . .} .

Then Ga/} ^ H and K < G . There are two cases to consider.

Case 1. q Ga-blocks of size 3

In this case an argument similar to that of case 2 of Theorem A can be used.
Instead, however, we give the following argument of G. Higman which avoids the
assumption that q is prime. We may assume that GaP fixes no points other than a and
/? by Lemma 1 and it follows from this that N(GaP) = G{a> p]. If we let At = {/?, y, 3}
we have that {y, 8} is Ga^-invariant and hence GaP is contained in G{y> d] as a subgroup
of index 2. It follows that G{y> 6} < N(Ga/?) and so G{(Zi P) = G{y> d}. But now Lemma 2
provides a contradiction.

Case 2. 3 Ga-blocks of size q

As Q ^ K, K is transitive on each of A1} A2 and A3 and, exactly as in the proof
of case 3 of Theorem A, K acts faithfully on each of A1} A2 and A3.

If Ga is insoluble we may reach a contradiction by arguing as in case 3 of
Theorem A. If Ga is soluble an argument similar to that of case 3 of Theorem A may
be used to show that Kfi = 1, the only difference being that we use fixed-point sets
of order 4 rather than sets of order 5. Hence we have |Ga/5| = 2 and, as G is not a
Zassenhaus group, Ga/} fixes a third point, contradicting Lemma 1.
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