TWO THEOREMS ON DOUBLY TRANSITIVE
PERMUTATION GROUPS

M. D. ATKINSON

In a series of papers [3, 4 and 5] on insoluble (transitive) permutation groups
of degree p = 2q+1, where p and q are primes, N. It6 has shown that, apart from a
small number of exceptions, such a group must be at least quadruply transitive.
One of the results which he uses is that an insoluble group of degree p = 2q+1
which is not doubly primitive must be isomorphic to PSL (3,2) with p = 7. This
result is due to H. Wielandt, and Itd gives a proof in [3]. It is quite easy to extend
this proof to give the following result: a doubly transitive group of degree 2g+1,
where g is prime, which is not doubly primitive, is either sharply doubly transitive
or a group of automorphisms of a block design with A=1 and k=3. Our
notation for the parameters of a block design, v, b, k, r, 4, is standard; see [9].

In this paper we shall prove two results about doubly transitive but not doubly
primitive groups which resemble the two results mentioned above.

THEOREM A. Let G be aninsoluble transitive permutation group of degree p = 4q + 1,
where p and q are primes, which is not doubly primitive, Then G = PSL (3, 3) and

p=13.

THEOREM B. Let G be a doubly transitive permutation group on Q of degree
3q+1, where q is a prime. Then one of the following statements is true.

(1) G is doubly primitive.

(2) G is sharply doubly transitive.

(3) G is a group of automorphisms of a block design on Q with A = 1 and k = 4.
4 G=PSL(3,2)andq =2.

Theorem B has the following consequence.

CoRrOLLARY C. Let G be an insoluble doubly transitive permutation group of
degree 3q+1, where q is a prime and q = 3(4). Then G is doubly primitive,

To prove this we have to exclude all but the first alternative of Theorem B. The
insolubility of G excludes possibility (2), possibility (3) does not occur because the
incidence equations of the design imply g = 1(4) and possibility (4) obviously does
not arise.

If G is a doubly primitive group of degree 3g+1, where g is prime, then the
stabiliser of a point acts as a primitive group of degree 3q on the remaining points.
P. M. Neumann has considered primitive groups of degree 3g, [7], and his results
imply that, in many cases, G is triply transitive.

The proofs of Theorems A and B are mainly combinatorial; however, at the end
of the proof of Theorem A I use the following unpublished theorem of P, M.
Neumann which he has proved using modular character theory. 1 take this
opportunity of thanking him for showing me the proof,
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THEOREM of P. M. Neumann. Let G be an insoluble (transitive) permutation group
on Q of prime degree p. Let P be a Sylow p-subgroup of G and assume that
IN(P)| = kp, where k is odd. Then, if a, feQ and o # B, G,z has at most (p—1)/k
orbits in Q—{a, B}.

By using this theorem earlier in the proof of Theorem A one could slightly
shorten the proof. I have preferred not to do this not only because most of the proof
then relies on elementary arguments, but also because the arguments are largely
independent of the fact that p is prime and so subsequently could be incorporated
into a proof of a more general result.

Throughout this paper the term “ block  is used only in the block design sense;
however, a term such as * K-block ™ refers to a set of imprimitivity for a group K.
Before giving the proofs of Theorems A and B we prove a series of preliminary
lemmas,

Lemma 1 (E. Witt [12]). Let X be a doubly transitive group on a set Q, let o, f€ Q
with o # B and let K be a weakly closed subgroup of X,5. Then, if A = fix (K), in the
block design whose blocks are the images under X of A we have A = 1.

Proof. Suppose that {«, f} = Ax for some xe X. Then a and § are fixed by
K* and, by the weak closure, K* = K. Thus A = Ax and so only one block
contains {a, f}.

We note that X, itself and any normal Sylow p-subgroup of X,, are weakly
closed in X ;.

LemMA 2. Let X be a doubly transitive group on a set Q, let o€ Q and let A be a
set of imprimitivity for the action of X, on Q—{a}. Let fe A and suppose that
A—{B} is invariant under X, p. Then, in the block design whose blocks are the
images under X of T' = AU {o} we have A = 1.

Proof. Let Y = {xeX|I'x = T}. Because A is an X,-block we have X, < Y
and Y, transitive on A. Furthermore, as Y contains an element which interchanges
« and f, Y is doubly transitive on I'. We have

Av(p—1)
k(k—1)

[X: Xl  o(w—1)
[Y:X,] k(k=1)"

b=[X:Y]=

Thus A = 1.
The next lemma is an extension of a result of C. C. Sims (Theorem 3.7 of [9]).

LemMA 3. Let X be a doubly transitive group on a set Q, let o€ Q and let A be a
set of imprimitivity of size m for the action of X, on Q—{«}. Then, if feA,
X, py has an invariant set T' of size m—1 on Q—{«a, B}. Furthermore, if X,z is
transitive on A—{B}, X,z and X, g, are transitive on I

Proof. A routine check establishes that, for any x, ye X, Ax is an X,-block and,
if ax = ay, that Ax and Ay belong to the same block system of X,,. The set
B = {(ax, Ax)| x e X} obviously has size n(n—1)/m, where n = [Q|. We may take
the elements of B as the blocks of a block design on Q if we agree that a point
weQ is incident with the block (ax, Ax) if and only if we Ax. The incidence
equations for the design tell us that A = m~—1. Thus there are exactly m—1 blocks
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(ox;, Ax)), i=1,2,...,m—1, with {a, f} = Ax; and it is clear that all the ax;,
i=1,2,..,m—1, are distinct and form an X, ,-invariant set T".

Now assume that X, is transitive on A—{f} and let y;,y,eI". By definition
there exist elements x,, x,€X such that ax, = y,, ax, =, and {«, B} is con-
tained in both Ax, and Ax,. Since X is doubly transitive there exists ae X, such
that y,a=179,. Now (y, 4, Ax, a) = (y,, Ax; a) and (y,, Ax,) are both members
of B and aeAx,nAx;a. Thus Ax, = Ax,a and {a, §, fa) S Ax, = Ax, a.
However, a consequence of our extra assumption is that X, is transitive on
Ax,—{o}. Therefore we can find be X, , such that Bab = f. We then have
abe X,5 and y, ab = y,; thus X, is transitive on T as also is X, p.

The proof of the next lemma follows directly from the incidence equations of a
block design.

LEMMA 4. Let Q be a set on which there is a non-trivial block design with A = 1.
Then

(a) if |Q| = p =4q+1, where p and q are prime, then p = 13,
(b) if |1Q| = 3g+1, where q is prime, then k = 4 or g = 2,

We shall frequently use the well-known theorem of Burnside that a transitive
group of prime degree is either doubly transitive or is a metacyclic Frobenius group. -

Proof of Theorem A ‘ )

Let G be an insoluble transitive permutation group on a set Q of size p =4q+1,
where p and g are prime, which is not doubly primitive. If G is a counterexample to
Theorem A we may assume, from a search through the list of groups of degree 13
(see, for example, [9]), that p # 13. In fact, we may assume that p > 53 from
the results of [1]. From Lemma 4 we may, in addition, assume that G is not a
group of automorphisms of a non-trivial block design with 2 = 1. Furthermore, by
a theorem of [1] we have that g divides |G| to the first power only.

Let P be a Sylow p-subgroup of G and Q a Sylow g-subgroup of G, where
aeQ. Let A, A, ... be a non-trivial system of imprimitivity for the action of G,
on Q—{a}. Let H={xeG,|A, x=A}, K={xeG,|A;x=A,i=1,2,..} and
let fe A;. Then G,; < H and K <1 G,. There are four cases to consider depending
on the size of the G,-blocks.

Case 1. 2q G,-blocks of size 2
If A, = {B, y} then G,, fixes y and Lemma 1 provides a contradiction.

Case 2. gq G,-blocks of size 4

By case 1 we may assume that H acts primitively on A, and so acts as 4, or S,
on A;. Therefore A;—{f} is an orbit of G,.

If G, is insoluble then it is also insoluble as a permutation group on the set
{A,, ..., A} and so, in this case, it acts doubly transitively on this set. Consequently,
H permutes {A,, ..., A} transitively and, as [H : G,45] = 4, all the orbits of G,; on
{A,, ..., Aj} have size at least (g—1)/4 > 3. It follows that A, —{f} is the unique
orbit of G,, of size 3 and therefore A, —{B} is G,, p-invariant. We may now obtain
a contradiction from Lemma 2.
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If G, is soluble then H permutes the set {A,, ..., A;} semi-regularly and therefore
G, also permutes {A,, ..., A;} semi-regularly. If A;—{f} is Gy, g-invariant then
we may obtain the same contradiction as above from applying Lemma 2. Hence
we may assume that G, possesses another orbit I' of size 3 such that ' u (A; —{f})
is an orbit of G, 5. If I' is contained in some G,-block A, then G,; preserves A,
and so fixes the single point of A;—I'; Lemma 1 now gives a contradiction. It
follows that I' intersects 3 of the G,-blocks and that G,, permutes {A,, ..., A}
semi-regularly in orbits of size 3. From this it follows that [G,; : K;] = 3 and that
G, acts regularly on I' and so acts regularly on A, —{f}. Now H cannot act as S,
on A, since G, = Hy acts regularly on A, —{f}; thus H acts as A, on A, and hence
K and K, have normal Sylow 2-subgroups. The Sylow 2-subgroup of K, is normal
in G5 and is a Sylow 2-subgroup of G,, and it follows from Lemma 1 that K, is an
(elementary Abelian) 3-group. Now K <1 H and so K acts trivially or transitively
on A;; thus, either K =1 or K acts transitively on each of A}, A,, ..., A, In
particular we have that either K; = 1 so that |G| = 12pq or that K acts primitively
on each of A, A,, ..., A,. In the latter case K acts faithfully on A,; for, if N is
the kernel of the action of K on A, and N # 1, then N acts transitively on some A,
contradicting the fact that 2° y [K|. Thus |K| =3 and |G| = 36pg. In each of
these cases, |G| = 12pq or |G| = 36pq, we can obtain a contradiction by considering
possibilities for [G : N(P)] and using Sylow’s theorem.

Case 3. 4 G,-blocks of size q

In this case Q < K and so K is transitive on each of A;, A,, A and A,. If N
is the kernel of the action of K on A; and N # 1, then N acts transitively on some
A, which contradicts the fact that g2 #|G|. Thus K acts faithfully on each of
A, A,, A; and A,. Asin case 2 we consider the possibilities of G, being soluble or
insoluble separately.

If G, is insoluble then H acts on A, as an insoluble group and so acts doubly
transitively on A;. Hence I'; = A, —{f} is a G,4-orbit of size g—1. If ', is not
G, pinvariant then there exists another G,g-orbit I', of size g—1 such that
I'y UT, is an orbit of G, 4. By Lemma 3 there is yet another G,4-orbit Iy of size
q—1 and since it is a Gy, p-orbit it is distinct from I'y and I', . If either of ", or T’y
is contained in any A, then G,; leaves A, invariant and fixes the remaining point of
A;; using Lemma 1, this leads to a contradiction. It follows that, for at least one A;,
wehave 0 < [T, n Al <gq—1and 0 < |[I'3n Al <g—1. ButI',n A, and I’y N A
are invariant under K, and, as they are sets of imprimitivity for the action of G,z
on I', and I'5, we have |[T', n Al <4(g—1) and [T'; n A} < 4(g—1). Consequeatly,
K, has at least 3 orbits on A;. Now K acts doubly transitively on each of A; and A,
with characters 1+x, and 1+yx,, say, and the number of orbits of Kz on A, is
(14, 1 +¥,) < 2 and this is a contradiction.

If G, is soluble we shall show that K; = 1. If K, # 1 then K, fixes precisely one
point from each of A;, A,, A; and A, because K has a unique conjugacy class of
subgroups of index g. Thus K, and any conjugate of K, fix exactly 5 points. Con-
sider some conjugate K,? of K contained in G,5. If Ky & K then some A; contains
none of the fixed points of K,® and hence there is some A; which contains at least
two of these fixed points; but then K, must fix pointwise the whole of A; and so
has more than 5 fixed points. Thus K < K and, as K has a unique subgroup of
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index g which fixes f, we have K, = K. Therefore Kj is weakly closed in G,
and Lemma 1 gives us a contradiction. This means that K; = 1 as we asserted.
Hence |G| = vpg where v|24 and we can obtain a contradiction by considering
possibilities for [G : N(P)] and using Sylow’s theorem,

Case 4. 2 G,-blocks of size 2¢q

In this case we have H = K and we may assume, by case 3, that K acts primi-
tively on each of A, and A,. By the same argument as in case 3, it also acts faith-
fully on A, and A,. If K acts doubly transitively on A, then A, —{f} is an orbit of
G, of size 2g—1. Lemma 2 implies that A, —{f} is not G, ,-invariant and hence
there is another G,z-orbit of size 2g—1. It follows that G, fixes a third point and
therefore Lemma 1 can be applied to gain a contradiction.

If K does not act doubly transitively on A, then a theorem of H. Wielandt [11]
tells us that K has rank 3 on A, (and on A,), 2q = m*+1 for some integer m, and
the orbits of G,; = K; on Ay are I, = {B}, I'; and I', of sizes I, ym(m—1) and
dm(m+1) respectively. Let m, = 1+y,+y, and n, = |+, +x, be the decomposi-
tions of the permutation characters of K corresponding to the actions of K on A,
and A,. Since (m,, m,) = 1,2 or 3, G, has 1, 2 or 3 orbits on A,.

If G,; has only one orbit on A, then A, —{B} is the only G,s-invariant set of
size 2g—1. Hence A, —{f} is G, g-invariant and Lemma 2 provides a contradiction.

If G,4 has two orbits I'y and I’y on A, then again Lemma 2 applies unless at
least one of I'y and T', is not G, 4-invariant. Suppose that I, is not G, g-invariant.
Then we may suppose that [I';| = |I';| and that I’y U I'5 is a Gy, g-orbit. Therefore
IT3] = dm(m—1), [T'y] = dm(m+1) and the orbits of G, 4 are {&, f}, I';, I'; U T,
and I'y. Clearly, G, 5 does not have an invariant set of size 29—1 and this
contradicts Lemma 3. A similar contrad1ct10n arises from assuming that I, is not
G4, py-invariant.

Finally, we have to consider the case in which G,z has 3 orbits on A,. We may
assume in any case that |N(P)| = pq since in all other cases [N(P)| is even and another
theorem of P. M. Neumann, [8], would yield that G is triply transitive. The theorem
of P. M. Neumann stated earliei tells us that G,; has at most (p—1)/q = 4 orbits in
Q-—{oc B} and this contradicts the fact that G,, has 3 orbits on A, and so 5 orbits on

—{a, B}

This completes the proof of Theorem A. We note that the primality of p was used
heavily in the last paragraph. If this case could be dealt with by other means then it
would probably be possible to prove a result about doubly transitive groups of
degree 4g+1 somewhat on the lines of Theorem B.

Proof of Theorem B

Assume for a contradiction that there exists a group G which satisfies the
conditions but not the conclusions of Theorem B. By a search through the list of
groups of degrees 7 and 10 (see [9]) we see that there are no counterexamples to the
theorem with q < 3 and so we may assume that ¢ > 5. As an easy consequence of
Lemma 4 we have that G is not a group of automorphisms of a non-trivial block
design on Q with 4 = 1. We also observe that G cannot be a Zassenhaus group,
for these have degree p®+1 or 27, where p is prime [2 6 and 10}, and 3g+1 is of
this form only if g = 3.
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Let Q be a Sylow g-subgroup of G,, for some € Q, and let A,, A,, ... be a non-
trivial system of imprimitivity for the action of G, on Q—{«}. Let

feA;, H={xeG,|A;x=A;} and K={xeG,|Ax=4A, i=12..}

Then G5 < H and K< G. There are two cases to consider.

Case 1. q G,-blocks of size 3

In this case an argument similar to that of case 2 of Theorem A can be used.
Instead, however, we give the following argument of G. Higman which avoids the
assumption that q is prime. We may assume that G, fixes no points other than « and
B by Lemma 1 and it follows from this that N(G,p) = G, 4. If we let A; = {B, y, 8}
we have that {y, 0} is G,s-invariant and hence G, is contained in Gy,, 5 as a subgroup
of index 2. It follows that G, 5 < N(G,) and so G, 4 = Gy, 5. But now Lemma 2
provides a contradiction.

Case 2. 3 G,-blocks of size g

As Q < K, K is transitive on each of A, A, and A, and, exactly as in the proof
of case 3 of Theorem A, K acts faithfully on each of A, A, and A,.

If G, is insoluble we may reach a contradiction by arguing as in case 3 of
Theorem A. If G, is soluble an argument similar to that of case 3 of Theorem A may
be used to show that K; = 1, the only difference being that we use fixed-point sets
of order 4 rather than sets of order 5. Hence we have |G| = 2 and, as G is not a
Zassenhaus group, G, fixes a third point, contradicting Lemma 1.
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