TWO THEOREMS ON DOUBLY TRANSITIVE PERMUTATION GROUPS

M. D. ATKINSON

In a series of papers [3, 4 and 5] on insoluble (transitive) permutation groups of degree p = 2q+1, where p and q are primes, N. Itô has shown that, apart from a small number of exceptions, such a group must be at least quadruply transitive. One of the results which he uses is that an insoluble group of degree p = 2q+1which is not doubly primitive must be isomorphic to PSL (3, 2) with p = 7. This result is due to H. Wielandt, and Itô gives a proof in [3]. It is quite easy to extend this proof to give the following result: a doubly transitive group of degree 2q+1, where q is prime, which is not doubly primitive, is either sharply doubly transitive or a group of automorphisms of a block design with $\lambda = 1$ and k = 3. Our notation for the parameters of a block design, v, b, k, r, λ , is standard; see [9].

In this paper we shall prove two results about doubly transitive but not doubly primitive groups which resemble the two results mentioned above.

THEOREM A. Let G be an insoluble transitive permutation group of degree p = 4q + 1, where p and q are primes, which is not doubly primitive. Then $G \cong PSL(3, 3)$ and p = 13.

THEOREM B. Let G be a doubly transitive permutation group on Ω of degree 3q+1, where q is a prime. Then one of the following statements is true.

(1) G is doubly primitive.

(2) G is sharply doubly transitive.

(3) G is a group of automorphisms of a block design on Ω with $\lambda = 1$ and k = 4.

(4) $G \cong PSL(3, 2)$ and q = 2.

Theorem B has the following consequence.

COROLLARY C. Let G be an insoluble doubly transitive permutation group of degree 3q+1, where q is a prime and $q \equiv 3(4)$. Then G is doubly primitive.

To prove this we have to exclude all but the first alternative of Theorem B. The insolubility of G excludes possibility (2), possibility (3) does not occur because the incidence equations of the design imply $q \equiv 1(4)$ and possibility (4) obviously does not arise.

If G is a doubly primitive group of degree 3q+1, where q is prime, then the stabiliser of a point acts as a primitive group of degree 3q on the remaining points. P. M. Neumann has considered primitive groups of degree 3q, [7], and his results imply that, in many cases, G is triply transitive.

The proofs of Theorems A and B are mainly combinatorial; however, at the end of the proof of Theorem A I use the following unpublished theorem of P. M. Neumann which he has proved using modular character theory. I take this opportunity of thanking him for showing me the proof.

Received 13 April, 1972.

THEOREM of P. M. Neumann. Let G be an insoluble (transitive) permutation group on Ω of prime degree p. Let P be a Sylow p-subgroup of G and assume that |N(P)| = kp, where k is odd. Then, if $\alpha, \beta \in \Omega$ and $\alpha \neq \beta$, $G_{\alpha\beta}$ has at most (p-1)/korbits in $\Omega - \{\alpha, \beta\}$.

By using this theorem earlier in the proof of Theorem A one could slightly shorten the proof. I have preferred not to do this not only because most of the proof then relies on elementary arguments, but also because the arguments are largely independent of the fact that p is prime and so subsequently could be incorporated into a proof of a more general result.

Throughout this paper the term "block" is used only in the block design sense; however, a term such as "K-block" refers to a set of imprimitivity for a group K. Before giving the proofs of Theorems A and B we prove a series of preliminary lemmas.

LEMMA 1 (E. Witt [12]). Let X be a doubly transitive group on a set Ω , let α , $\beta \in \Omega$ with $\alpha \neq \beta$ and let K be a weakly closed subgroup of $X_{\alpha\beta}$. Then, if $\Delta = \text{fix}(K)$, in the block design whose blocks are the images under X of Δ we have $\lambda = 1$.

Proof. Suppose that $\{\alpha, \beta\} \subseteq \Delta x$ for some $x \in X$. Then α and β are fixed by K^x and, by the weak closure, $K^x = K$. Thus $\Delta = \Delta x$ and so only one block contains $\{\alpha, \beta\}$.

We note that $X_{\alpha\beta}$ itself and any normal Sylow *p*-subgroup of $X_{\alpha\beta}$ are weakly closed in $X_{\alpha\beta}$.

LEMMA 2. Let X be a doubly transitive group on a set Ω , let $\alpha \in \Omega$ and let Δ be a set of imprimitivity for the action of X_{α} on $\Omega - \{\alpha\}$. Let $\beta \in \Delta$ and suppose that $\Delta - \{\beta\}$ is invariant under $X_{\{\alpha,\beta\}}$. Then, in the block design whose blocks are the images under X of $\Gamma = \Delta \cup \{\alpha\}$ we have $\lambda = 1$.

Proof. Let $Y = \{x \in X \mid \Gamma x = \Gamma\}$. Because Δ is an X_{α} -block we have $X_{\alpha\beta} \leq Y$ and Y_{α} transitive on Δ . Furthermore, as Y contains an element which interchanges α and β , Y is doubly transitive on Γ . We have

$$\frac{\lambda v(v-1)}{k(k-1)} = b = [X : Y] = \frac{[X : X_{\alpha\beta}]}{[Y : X_{\alpha\beta}]} = \frac{v(v-1)}{k(k-1)}.$$

Thus $\lambda = 1$.

The next lemma is an extension of a result of C. C. Sims (Theorem 3.7 of [9]).

LEMMA 3. Let X be a doubly transitive group on a set Ω , let $\alpha \in \Omega$ and let Δ be a set of imprimitivity of size m for the action of X_{α} on $\Omega - \{\alpha\}$. Then, if $\beta \in \Delta$, $X_{\{\alpha,\beta\}}$ has an invariant set Γ of size m-1 on $\Omega - \{\alpha,\beta\}$. Furthermore, if $X_{\alpha\beta}$ is transitive on $\Delta - \{\beta\}$, $X_{\alpha\beta}$ and $X_{\{\alpha,\beta\}}$ are transitive on Γ .

Proof. A routine check establishes that, for any $x, y \in X$, Δx is an X_{ax} -block and, if $\alpha x = \alpha y$, that Δx and Δy belong to the same block system of X_{ax} . The set $B = \{(\alpha x, \Delta x) \mid x \in X\}$ obviously has size n(n-1)/m, where $n = |\Omega|$. We may take the elements of B as the blocks of a block design on Ω if we agree that a point $\omega \in \Omega$ is incident with the block $(\alpha x, \Delta x)$ if and only if $\omega \in \Delta x$. The incidence equations for the design tell us that $\lambda = m-1$. Thus there are exactly m-1 blocks

 $(\alpha x_i, \Delta x_i)$, i = 1, 2, ..., m-1, with $\{\alpha, \beta\} \subseteq \Delta x_i$ and it is clear that all the αx_i , i = 1, 2, ..., m-1, are distinct and form an $X_{\{\alpha, \beta\}}$ -invariant set Γ .

Now assume that $X_{\alpha\beta}$ is transitive on $\Delta - \{\beta\}$ and let $\gamma_1, \gamma_2 \in \Gamma$. By definition there exist elements $x_1, x_2 \in X$ such that $\alpha x_1 = \gamma_1$, $\alpha x_2 = \gamma_2$ and $\{\alpha, \beta\}$ is contained in both Δx_1 and Δx_2 . Since X is doubly transitive there exists $a \in X_{\alpha}$ such that $\gamma_1 a = \gamma_2$. Now $(\gamma_1 a, \Delta x_1 a) = (\gamma_2, \Delta x_1 a)$ and $(\gamma_2, \Delta x_2)$ are both members of B and $\alpha \in \Delta x_2 \cap \Delta x_1 a$. Thus $\Delta x_2 = \Delta x_1 a$ and $\{\alpha, \beta, \beta a\} \subseteq \Delta x_2 = \Delta x_1 a$. However, a consequence of our extra assumption is that $X_{\gamma_2\alpha}$ is transitive on $\Delta x_2 - \{\alpha\}$. Therefore we can find $b \in X_{\gamma_2\alpha}$ such that $\beta ab = \beta$. We then have $ab \in X_{\alpha\beta}$ and $\gamma_1 ab = \gamma_2$; thus $X_{\alpha\beta}$ is transitive on Γ as also is $X_{\{\alpha, \beta\}}$.

The proof of the next lemma follows directly from the incidence equations of a block design.

LEMMA 4. Let Ω be a set on which there is a non-trivial block design with $\lambda = 1$. Then

- (a) if $|\Omega| = p = 4q + 1$, where p and q are prime, then p = 13,
- (b) if $|\Omega| = 3q+1$, where q is prime, then k = 4 or q = 2.

We shall frequently use the well-known theorem of Burnside that a transitive group of prime degree is either doubly transitive or is a metacyclic Frobenius group.

Proof of Theorem A

Let G be an insoluble transitive permutation group on a set Ω of size p = 4q + 1, where p and q are prime, which is not doubly primitive. If G is a counterexample to Theorem A we may assume, from a search through the list of groups of degree 13 (see, for example, [9]), that $p \neq 13$. In fact, we may assume that p > 53 from the results of [1]. From Lemma 4 we may, in addition, assume that G is not a group of automorphisms of a non-trivial block design with $\lambda = 1$. Furthermore, by a theorem of [1] we have that q divides |G| to the first power only.

Let P be a Sylow p-subgroup of G and Q a Sylow q-subgroup of G_{α} where $\alpha \in \Omega$. Let $\Delta_1, \Delta_2, \ldots$ be a non-trivial system of imprimitivity for the action of G_{α} on $\Omega - \{\alpha\}$. Let $H = \{x \in G_{\alpha} \mid \Delta_1 x = \Delta_1\}$, $K = \{x \in G_{\alpha} \mid \Delta_i x = \Delta_i, i = 1, 2, \ldots\}$ and let $\beta \in \Delta_1$. Then $G_{\alpha\beta} \leq H$ and $K \lhd G_{\alpha}$. There are four cases to consider depending on the size of the G_{α} -blocks.

Case 1. $2q G_{\alpha}$ -blocks of size 2

If $\Delta_1 = \{\beta, \gamma\}$ then $G_{\alpha\beta}$ fixes γ and Lemma 1 provides a contradiction.

Case 2. $q G_{\alpha}$ -blocks of size 4

By case 1 we may assume that H acts primitively on Δ_1 and so acts as A_4 or S_4 on Δ_1 . Therefore $\Delta_1 - \{\beta\}$ is an orbit of $G_{\alpha\beta}$.

If G_{α} is insoluble then it is also insoluble as a permutation group on the set $\{\Delta_1, ..., \Delta_q\}$ and so, in this case, it acts doubly transitively on this set. Consequently, H permutes $\{\Delta_2, ..., \Delta_q\}$ transitively and, as $[H: G_{\alpha\beta}] = 4$, all the orbits of $G_{\alpha\beta}$ on $\{\Delta_2, ..., \Delta_q\}$ have size at least (q-1)/4 > 3. It follows that $\Delta_1 - \{\beta\}$ is the unique orbit of $G_{\alpha\beta}$ of size 3 and therefore $\Delta_1 - \{\beta\}$ is $G_{\{\alpha, \beta\}}$ -invariant. We may now obtain a contradiction from Lemma 2.

If G_a is soluble then H permutes the set $\{\Delta_2, ..., \Delta_a\}$ semi-regularly and therefore $G_{\alpha\beta}$ also permutes $\{\Delta_2, ..., \Delta_a\}$ semi-regularly. If $\Delta_1 - \{\beta\}$ is $G_{\{\alpha, \beta\}}$ -invariant then we may obtain the same contradiction as above from applying Lemma 2. Hence we may assume that $G_{\alpha\beta}$ possesses another orbit Γ of size 3 such that $\Gamma \cup (\Delta_1 - \{\beta\})$ is an orbit of $G_{(\alpha,\beta)}$. If Γ is contained in some G_{α} -block Δ_i then $G_{\alpha\beta}$ preserves Δ_i and so fixes the single point of $\Delta_i - \Gamma$; Lemma 1 now gives a contradiction. It follows that Γ intersects 3 of the G_{α} -blocks and that $G_{\alpha\beta}$ permutes $\{\Delta_2, ..., \Delta_{\beta}\}$ semi-regularly in orbits of size 3. From this it follows that $[G_{\alpha\beta}: K_{\beta}] = 3$ and that $G_{\alpha\beta}$ acts regularly on Γ and so acts regularly on $\Delta_1 - \{\beta\}$. Now H cannot act as S_{Δ} on Δ_1 since $G_{\alpha\beta} = H_{\beta}$ acts regularly on $\Delta_1 - \{\beta\}$; thus H acts as A_4 on Δ_1 and hence K and K_{β} have normal Sylow 2-subgroups. The Sylow 2-subgroup of K_{β} is normal in $G_{\alpha\beta}$ and is a Sylow 2-subgroup of $G_{\alpha\beta}$ and it follows from Lemma 1 that K_{β} is an (elementary Abelian) 3-group. Now $K \lhd H$ and so K acts trivially or transitively on Δ_1 ; thus, either K = 1 or K acts transitively on each of $\Delta_1, \Delta_2, ..., \Delta_d$. In particular we have that either $K_{\beta} = 1$ so that |G| = 12pq or that K acts primitively on each of $\Delta_1, \Delta_2, ..., \Delta_q$. In the latter case K acts faithfully on Δ_1 ; for, if N is the kernel of the action of K on Δ_1 and $N \neq 1$, then N acts transitively on some Δ_1 contradicting the fact that $2^3 \not| |K|$. Thus $|K_{\beta}| = 3$ and |G| = 36pq. In each of these cases, |G| = 12pq or |G| = 36pq, we can obtain a contradiction by considering possibilities for [G: N(P)] and using Sylow's theorem.

Case 3. 4 G_{α} -blocks of size q

In this case $Q \leq K$ and so K is transitive on each of Δ_1 , Δ_2 , Δ_3 and Δ_4 . If N is the kernel of the action of K on Δ_1 and $N \neq 1$, then N acts transitively on some Δ_i which contradicts the fact that $q^2 \not| |G|$. Thus K acts faithfully on each of Δ_1 , Δ_2 , Δ_3 and Δ_4 . As in case 2 we consider the possibilities of G_{α} being soluble or insoluble separately.

If G_{α} is insoluble then H acts on Δ_1 as an insoluble group and so acts doubly transitively on Δ_1 . Hence $\Gamma_1 = \Delta_1 - \{\beta\}$ is a $G_{\alpha\beta}$ -orbit of size q-1. If Γ_1 is not $G_{(\alpha,\beta)}$ -invariant then there exists another $G_{\alpha\beta}$ -orbit Γ_2 of size q-1 such that $\Gamma_1 \cup \Gamma_2$ is an orbit of $G_{(\alpha,\beta)}$. By Lemma 3 there is yet another $G_{\alpha\beta}$ -orbit Γ_3 of size q-1 and since it is a $G_{(\alpha,\beta)}$ -orbit it is distinct from Γ_1 and Γ_2 . If either of Γ_2 or Γ_3 is contained in any Δ_i then $G_{\alpha\beta}$ leaves Δ_i invariant and fixes the remaining point of Δ_i ; using Lemma 1, this leads to a contradiction. It follows that, for at least one Δ_i , we have $0 < |\Gamma_2 \cap \Delta_i| < q-1$ and $0 < |\Gamma_3 \cap \Delta_i| < q-1$. But $\Gamma_2 \cap \Delta_i$ and $\Gamma_3 \cap \Delta_i$ are invariant under K_{β} and, as they are sets of imprimitivity for the action of $G_{\alpha\beta}$ on Γ_2 and Γ_3 , we have $|\Gamma_2 \cap \Delta_i| < \frac{1}{2}(q-1)$ and $|\Gamma_3 \cap \Delta_i| < \frac{1}{2}(q-1)$. Consequently, K_{β} has at least 3 orbits on Δ_i . Now K acts doubly transitively on each of Δ_1 and Δ_i with characters $1 + \chi_1$ and $1 + \chi_2$, say, and the number of orbits of K_{β} on Δ_i is $(1 + \chi_1, 1 + \chi_2) \leq 2$ and this is a contradiction.

If G_{α} is soluble we shall show that $K_{\beta} = 1$. If $K_{\beta} \neq 1$ then K_{β} fixes precisely one point from each of Δ_1 , Δ_2 , Δ_3 and Δ_4 because K has a unique conjugacy class of subgroups of index q. Thus K_{β} and any conjugate of K_{β} fix exactly 5 points. Consider some conjugate $K_{\beta}^{\ g}$ of K contained in $G_{\alpha\beta}$. If $K_{\beta}^{\ g} \leq K$ then some Δ_i contains none of the fixed points of $K_{\beta}^{\ g}$ and hence there is some Δ_j which contains at least two of these fixed points; but then $K_{\beta}^{\ g}$ must fix pointwise the whole of Δ_j and so has more than 5 fixed points. Thus $K_{\beta}^{\ g} \leq K$ and, as K has a unique subgroup of index q which fixes β , we have $K_{\beta}^{g} = K_{\beta}$. Therefore K_{β} is weakly closed in $G_{\alpha\beta}$ and Lemma 1 gives us a contradiction. This means that $K_{\beta} = 1$ as we asserted. Hence |G| = vpq where v|24 and we can obtain a contradiction by considering possibilities for [G: N(P)] and using Sylow's theorem.

Case 4. 2 G_{α} -blocks of size 2q

In this case we have H = K and we may assume, by case 3, that K acts primitively on each of Δ_1 and Δ_2 . By the same argument as in case 3, it also acts faithfully on Δ_1 and Δ_2 . If K acts doubly transitively on Δ_1 then $\Delta_1 - \{\beta\}$ is an orbit of $G_{\alpha\beta}$ of size 2q-1. Lemma 2 implies that $\Delta_1 - \{\beta\}$ is not $G_{\{\alpha,\beta\}}$ -invariant and hence there is another $G_{\alpha\beta}$ -orbit of size 2q-1. It follows that $G_{\alpha\beta}$ fixes a third point and therefore Lemma 1 can be applied to gain a contradiction.

If K does not act doubly transitively on Δ_1 then a theorem of H. Wielandt [11] tells us that K has rank 3 on Δ_1 (and on Δ_2), $2q = m^2 + 1$ for some integer m, and the orbits of $G_{\alpha\beta} = K_{\beta}$ on Δ_1 are $\Gamma_0 = \{\beta\}$, Γ_1 and Γ_2 of sizes 1, $\frac{1}{2}m(m-1)$ and $\frac{1}{2}m(m+1)$ respectively. Let $\pi_1 = 1 + \psi_1 + \chi_1$ and $\pi_2 = 1 + \psi_2 + \chi_2$ be the decompositions of the permutation characters of K corresponding to the actions of K on Δ_1 and Δ_2 . Since $(\pi_1, \pi_2) = 1$, 2 or 3, $G_{\alpha\beta}$ has 1, 2 or 3 orbits on Δ_2 .

If $G_{\alpha\beta}$ has only one orbit on Δ_2 then $\Delta_1 - \{\beta\}$ is the only $G_{\alpha\beta}$ -invariant set of size 2q-1. Hence $\Delta_1 - \{\beta\}$ is $G_{\{\alpha, \beta\}}$ -invariant and Lemma 2 provides a contradiction.

If $G_{\alpha\beta}$ has two orbits Γ_3 and Γ_4 on Δ_2 then again Lemma 2 applies unless at least one of Γ_1 and Γ_2 is not $G_{\{\alpha,\beta\}}$ -invariant. Suppose that Γ_1 is not $G_{\{\alpha,\beta\}}$ -invariant. Then we may suppose that $|\Gamma_3| = |\Gamma_1|$ and that $\Gamma_1 \cup \Gamma_3$ is a $G_{\{\alpha,\beta\}}$ -orbit. Therefore $|\Gamma_3| = \frac{1}{2}m(m-1)$, $|\Gamma_4| = \frac{1}{2}m(m+1)$ and the orbits of $G_{\{\alpha,\beta\}}$ are $\{\alpha,\beta\}$, Γ_2 , $\Gamma_1 \cup \Gamma_3$ and Γ_4 . Clearly, $G_{\{\alpha,\beta\}}$ does not have an invariant set of size 2q-1 and this contradicts Lemma 3. A similar contradiction arises from assuming that Γ_2 is not $G_{\{\alpha,\beta\}}$ -invariant.

Finally, we have to consider the case in which $G_{\alpha\beta}$ has 3 orbits on Δ_2 . We may assume in any case that |N(P)| = pq since in all other cases |N(P)| is even and another theorem of P. M. Neumann, [8], would yield that G is triply transitive. The theorem of P. M. Neumann stated earlier tells us that $G_{\alpha\beta}$ has at most (p-1)/q = 4 orbits in $\Omega - \{\alpha, \beta\}$ and this contradicts the fact that $G_{\alpha\beta}$ has 3 orbits on Δ_2 and so 5 orbits on $\Omega - \{\alpha, \beta\}$.

This completes the proof of Theorem A. We note that the plimality of p was used heavily in the last paragraph. If this case could be dealt with by other means then it would probably be possible to prove a result about doubly transitive groups of degree 4q + 1 somewhat on the lines of Theorem B.

Proof of Theorem B

Assume for a contradiction that there exists a group G which satisfies the conditions but not the conclusions of Theorem B. By a search through the list of groups of degrees 7 and 10 (see [9]) we see that there are no counterexamples to the theorem with $q \leq 3$ and so we may assume that $q \geq 5$. As an easy consequence of Lemma 4 we have that G is not a group of automorphisms of a non-trivial block design on Ω with $\lambda = 1$. We also observe that G cannot be a Zassenhaus group, for these have degree $p^a + 1$ or 2^p , where p is prime [2, 6 and 10], and 3q + 1 is of this form only if q = 3.

Let Q be a Sylow q-subgroup of G_{α} , for some $\alpha \in \Omega$, and let $\Delta_1, \Delta_2, \ldots$ be a nontrivial system of imprimitivity for the action of G_{α} on $\Omega - \{\alpha\}$. Let

 $\beta \in \Delta_1$, $H = \{x \in G_{\alpha} \mid \Delta_1 x = \Delta_1\}$ and $K = \{x \in G_{\alpha} \mid \Delta_i x = \Delta_i, i = 1, 2, ...\}$. Then $G_{\alpha\beta} \leq H$ and $K \lhd G$. There are two cases to consider.

Case 1. $q G_{\alpha}$ -blocks of size 3

In this case an argument similar to that of case 2 of Theorem A can be used. Instead, however, we give the following argument of G. Higman which avoids the assumption that q is prime. We may assume that $G_{\alpha\beta}$ fixes no points other than α and β by Lemma 1 and it follows from this that $N(G_{\alpha\beta}) = G_{\{\alpha,\beta\}}$. If we let $\Delta_1 = \{\beta, \gamma, \delta\}$ we have that $\{\gamma, \delta\}$ is $G_{\alpha\beta}$ -invariant and hence $G_{\alpha\beta}$ is contained in $G_{\{\gamma,\delta\}}$ as a subgroup of index 2. It follows that $G_{\{\gamma,\delta\}} \leq N(G_{\alpha\beta})$ and so $G_{\{\alpha,\beta\}} = G_{\{\gamma,\delta\}}$. But now Lemma 2 provides a contradiction.

Case 2. 3 G_{α} -blocks of size q

As $Q \leq K$, K is transitive on each of Δ_1 , Δ_2 and Δ_3 and, exactly as in the proof of case 3 of Theorem A, K acts faithfully on each of Δ_1 , Δ_2 and Δ_3 .

If G_{α} is insoluble we may reach a contradiction by arguing as in case 3 of Theorem A. If G_{α} is soluble an argument similar to that of case 3 of Theorem A may be used to show that $K_{\beta} = 1$, the only difference being that we use fixed-point sets of order 4 rather than sets of order 5. Hence we have $|G_{\alpha\beta}| = 2$ and, as G is not a Zassenhaus group, $G_{\alpha\beta}$ fixes a third point, contradicting Lemma 1.

References

- 1. K. I. Appel and E. T. Parker, "On unsolvable groups of degree p = 4q+1, p and q primes", Canad. J. Math., 19 (1967), 583-589.
- 2. W. Feit, "On a class of doubly transitive permutation groups", Illinois J. Math., 4 (1960), 170-186.
- 3. N. Itô, "A note on transitive permutation groups of degree p", Osaka J. Math., 14 (1962), 213-218.
- 4. ——, "Transitive permutation groups of degree p = 2q+1, p and q prime numbers II", Trans. Amer. Math. Soc., 113 (1964), 454-487.
- 5. ——, "Transitive permutation groups of degree p = 2q+1, p and q prime numbers III ", Trans. Amer. Math. Soc., 116 (1965), 151–166.
- 6. ——, "On a class of doubly transitive permutation groups", Illinois J. Math., 6 (1962), 341-352.
- 7. P. M. Neumann, "Primitive permutation groups of degree 3p", (unpublished).
- 8. ——, "Transitive permutation groups of prime degree", J. London Math. Soc., 5 (1972), 202–208.
- C. C. Sims, "Computational methods in the study of permutation groups", Computational problems in abstract algebra, 169–183. John Leech (Editor). (Pergamon Press, 1970).
- 10. M. Suzuki, "On a class of doubly transitive groups", Ann. of Math., 75 (1962), 105-145.
- 11. H. Wielandt, "Primitive Permutations gruppen vom Grad 2p", Math. Z., 63 (1956), 478-485.
- 12. E. Witt, "Die 5-fach transitiven Gruppen von Mathieu ", Abhandl. Math. Sem. Univ. Hamburg, 12 (1937), 256-264.

Department of Computing Mathematics, University College, Cardiff.