
1

The combinatorics of some abstract data types

M D Atkinson and D Tulley

School of Mathematical and Computational Sciences,
University of St Andrews, North Haugh,

St Andrews, Fife, KY16 9SS, UK

Abstract

Abstract data types (ADTs) may be regarded as abstract ma-
chines and then a program for an ADT is any sequence of operations
allowed by its specification. The effect of such programs on container
ADTs is captured by the relationship between each input sequence
and the set of possible output sequences that can result from it. This
relationship is studied principally in the case of dictionaries, stacks
and priority queues and a distinction is drawn between ADTs of
unbounded and bounded capacity.

1 Introduction

Abstract machines have a long and honourable history in Computer Sci-
ence. Turing machines, push-down automata, and finite-state machines
are three well known types; they have been used to study general purpose
computers, compilers, and string manipulation although their importance
goes well beyond these three applications. The central theoretical issue for
these (and other) machines is the characterisation of the languages asso-
ciated with them. The aim of this paper is to study some abstract data
types in the same spirit.

Abstract data types (ADTs) have a relatively short and honourable
history. They are central to the point of view adopted in object-oriented
programming (which is setting the direction of programming in the 1990s)
and which now permeates all large software projects. Although abstract
data typing was initially adopted primarily for its use as a software design
tool it has always been recognised that each data type had a rigorous
mathematical definition.

2

Each ADT is characterised by the set of operations that can be per-
formed on it. Therefore an ADT can be regarded as an abstract ma-
chine whose instruction set is the set of operations it supports. Some of
these operations may supply input or output while others may examine or
change the state of the ADT. The precise specification of these instruc-
tion sets has been studied in considerable depth by algebraic means (see
[HEO92a, HEO92b] for a survey). However, the classical abstract machines
are studied at a much deeper level; their behaviour in response to arbitrary
sequences of instructions (i.e. programs) is studied and this behaviour is
captured by the idea of the language recognised by the machine. As yet,
such a study has hardly begun for ADTs although, as indicated below,
there is a very natural extension of the language notion to ADTs.

There is an infinite number of data types and it seems to be infeasi-
ble to give a general theory of their associated languages which has deep
implications for all of them. However, in practice, only a small number of
ADTs recur frequently in software and algorithm design (stacks, queues,
arrays, dictionaries etc) and it is perhaps more profitable to study only
those which have demonstrable software utility.

This paper will concentrate on container ADTs: those for which Insert
and Delete operations are defined. Such ADTs act as data transformers,
outputting their input data in a permuted order. If, except for house-
keeping operations, Insert and Delete are the only operations supported
by the data type then the functional behaviour of the ADT is essentially
defined by the possible ways in which it can permute the data. A sequence
of Insert and Delete operations constitutes a program for the ADT when
it is regarded as a machine. For such an ADT it is not sensible to define
its associated language to be the set of input sequences that lead to an
accepting state, since that discards so much essential information about
the output. Instead, we propose that the associated language should be
defined to be the set of (input, output) pairs of sequences that can arise
from the execution of an ADT program (indeed, even for Turing machines,
this definition is attractive since it avoids fudges about how the input is to
be encoded). As we shall see, there are a number of questions about the
language associated with an ADT whose formulation and solution require
combinatorial machinery. We shall list some of these questions and then
go on to discuss their solutions for some particular data types.

The different container data types are generally distinguished from each
other by the type of Delete operation that they support. Table 1 shows four
common container data types and the properties of their Delete operation.

Let A be any container data type. We shall consider only programs
for A which begin and end with A in the empty state; this represents the
normal way that a container data type would be used. Such a program
then consists of a sequence of Insert and Delete operations in which every
initial segment contains at least as many Inserts as Deletes (this condition

3

Table 1. Some ADTs and their Delete operations

Name of ADT Delete operation
Queue Delete the item that has been in the queue the longest
Stack Delete the item that was placed in the stack most recently
Dictionary Delete any item
Priority queue Delete the smallest item

is to ensure that a Delete operation is never executed when A is empty)
and having equal numbers of Inserts and Deletes (to ensure that that the
final state of A is empty). Let σ be any sequence of length n and let P
be any program with n Inserts and n Deletes. The execution of P with σ
as the input sequence results in the members of σ being inserted into A
in order of occurrence in σ; the Delete operations generate a sequence τ
which we call the output of P . A pair (σ, τ) which is related by a program
P in this way is called allowable (or A-allowable when the ADT cannot be
deduced from context). The set of allowable pairs is denoted by L(A) and
is called the language associated with the data type A. Basic combinatorial
questions about L(A) include:

1. How many A-allowable pairs with each component of length n are
there?

2. Is there a characterisation of the A-allowable pairs that enables them
to be recognised quickly?

3. Is there an efficient algorithm that, given an input sequence σ, can
determine how many A-allowable pairs (σ, τ) there are? And, dually,

4. Is there an efficient algorithm that, given an output sequence τ , can
determine how many A-allowable pairs (σ, τ) there are?

In practice, container ADTs generally have a bounded size, either en-
forced by their implementation or the physical limits of the hardware, so it
makes sense to consider the above questions when no more than k elements
can be stored at any time in the ADT. We therefore introduce the idea of
k-allowability by defining the language Lk(A) of a k-bounded ADT A to be
the set of allowable pairs (σ, τ) for which there is a program P which can
transform σ into τ without requiring more than k elements to be stored at
any one time.

There are other variations we can introduce as well. We have not
yet stipulated what form the input sequence takes; it could be taken

4

as a sequence of distinct elements (which we can assume to be the el-
ements 1, 2, . . . n in some order, without loss of generality), as a word
over the binary alphabet, or as a reordering of an arbitrary multiset S =
{1a1 , 2a2 , . . . , rar}.

This leads to a large number of questions to be studied and we shall
present at least partial solutions to many of them in this paper. In section
2 we present results about dictionaries concentrating mainly on the case
when the input sequence is a word over the binary alphabet. Then, in
section 3 we consider stacks and show that, in the binary case, they behave
like dictionaries. Section 4 contains results for queues and deques (double
ended queues) and finally in section 5 we study priority queues and double
ended priority queues.

Most of the results are related to questions 1,3 and 4 in the above list
but there has been some progress on question 2. This is mostly, but not
exclusively, based on the idea of avoided patterns as used by Pratt ([Pra73])
and Knuth ([Knu73a, 2.2.1; Q 5]). A pattern of length m is a permutation
ρ = (ρ1, ρ2, . . . ρm) of 1, 2, . . . ,m, and a sequence σ = (σ1, σ2, . . . σn) is said
to contain the pattern if there is a subsequence σ′ of σ such that |σ′| = m
and ρi < ρj if and only if σ′i < σ′j . As an example, the sequence 5, 4, 2, 3, 1
contains the pattern 3, 1, 2 because it contains the subsequence 5, 2, 3, but
on the other hand 5, 4, 3, 2, 1 does not contain the pattern 1, 2, 3. If ρ does
not occur within σ we shall say that σ avoids ρ.

2 Dictionaries

Dictionaries are the class of abstract data types with the most general
delete operation. They allow the removal of any element which is currently
stored in the dictionary. Their behaviour was studied in [ALT] where they
are referred to as buffers and, in the case of a bounded capacity, as bounded
buffers. When the input sequence is a permutation of distinct elements, the
order of the elements has no effect on the number of outputs possible and
so instead of studying the number of allowable pairs it is only necessary to
consider how many output sequences are possible from the input sequence
1, 2, . . . , n. Then the number of allowable pairs is n! times the number
of allowable output sequences from 1, 2, . . . , n. In the unbounded case
there is not any great challenge since it is clear that the input sequence
can be permuted into any output sequence by merely inserting the entire
input sequence and then deleting the elements in the required order. Thus
L(Dictionary) = {(σ, τ)|τ is a rearrangement of σ} and for this reason the
unbounded dictionary is the most permutationally powerful abstract data
type. The bounded case is also relatively simple for we have in [ALT]

Lemma 1. For a bounded dictionary of capacity k, each input sequence of
n distinct elements gives kn−kk! allowable output sequences.

5

Lemma 2. The allowable output sequences of a bounded dictionary with
input sequence 1, 2, . . . , n are precisely the sequences that avoid all patterns
of length k + 1 which begin with their maximal element.

In the case when the input sequence is a binary sequence the results are
a little more complex.

Lemma 3. For a bounded dictionary of size k the number xn of binary
allowable pairs of length n satisfies the recurrence

xk+n =
r∑

i=1

(−1)i+1xk+n−iai,k with r =
⌈

k
2

⌉
(2.1)

a0,k = 1

ai,k = 2
(

k − i

i− 1

)
+

(
k − i

i

)
PROOF: Let w

(i)
n be the number of allowable pairs of length n of the

form (0iα, β), then obviously xn = w
(0)
n , and

w
(0)
n+1 = 2w

(1)
n+1 for n ≥ 0

w
(i)
n+1 = w(i−1)

n +
k−1∑
j=i

w(j)
n for n ≥ i > 0

The first of these two equations holds because the number of pairs of
the form (0α, β) is the same as the number of pairs of the form (1α, β) and
all allowable pairs have one of these two forms.

For the second notice that all pairs (0iα, β), of length n+1, either have
the form (0iα, 0β′) or (0iα, 1β′). There are w

(i−1)
n pairs of the first form

because the first 0 is input and immediately output, then there are w
(i−1)
n

ways to complete the pair. The second can be split into several further
forms, (0j1γ, 1β′) for i ≤ j < k. For each of these the dictionary must
insert all j 0’s and the 1 and then immediately output the 1. There are
then w

(j)
n ways to complete the pair and thus there are

∑k−1
j=i w

(j)
n allowable

pairs of the second form.
We can represent this recurrence more succinctly using matrix notation.

Let

wn =

w

(1)
n

...
w

(k−1)
n

 , Ak =

3 1 · · · 1 1
1 1 · · · 1 1
0 1 · · · 1 1
...

.
...

...
0 · · · 0 1 1

6

then the recurrence equation is

wn+1 = Akwn (2.2)

Hence, for any constants d0, d1, . . . dt,
∑t

i=0 diwn+i =
∑t

i=0 diA
i
kwn and

if we choose the constants so that
∑t

i=0 diλ
i is the characteristic polyno-

mial of A then we shall have
∑t

i=0 diwn+i = 0. We can derive a recurrence
equation for the characteristic polynomial, uk(λ) = det(Ak −λI), of Ak by
subtracting the (k − 1)th column of the determinant from the kth column
and expanding it by the kth column. It is then easily seen that

uk(λ) = −λ(uk−1(λ) + uk−2(λ)) for all k ≥ 3

The initial cases

u0(λ) = 1
u1(λ) = 3− λ

u2(λ) = λ2 − 4λ + 2

are calculated directly.
From the recurrence it follows easily by induction on k that there exists

polynomials y2r and y2r+1 each of degree r + 1 for which

u2r(λ) = λr−1y2r(λ) (2.3)
u2r+1(λ) = λry2r+1(λ) (2.4)

and that the polynomials satisfy

y2r(λ) = −λy2r−1(λ)− y2r−2(λ) (2.5)
y2r+1(λ) = −y2r(λ)− y2r−1(λ) (2.6)

Now a standard inductive proof using binomial coefficient identities
proves

yk−1(λ) = (−1)k−1
r∑

i=0

λr−i(−1)iai,k where (2.7)

r =
⌈

k
2

⌉
, a0,k = 1, ai,k = 2

(
k − i

i− 1

)
+

(
k − i

i

)
Combining (2.3) and (2.4) gives

uk−1(λ) = λb
k−2
2 cyk−1(λ)

= (−1)k−1
r∑

i=0

λr−i+b k−2
2 c(−1)iai,k

7

Therefore the sequence (wn) satisfies

r∑
i=0

wr+b k−2
2 c+n−i(−1)i+1ai,k = 0 where r =

⌈
k
2

⌉
Since r +

⌊
k−2
2

⌋
≤ k, w

(1)
n is an element of the vector wn and xn =

w
(0)
n = 2w

(1)
n , we have

xk+n =
r∑

i=1

xk+n−i(−1)i+1ai,k

2

The recurrence of this lemma shows how xn can be computed once ini-
tial values x0, x1, . . . xk−1 are known. However, for t ≤ k−1 (indeed t ≤ k)
the number of binary allowable pairs of length t is unconstrained by the
dictionary size k. Therefore, if t ≤ k, it is easily seen that

xt =
t∑

i=0

(
t

i

)2

=
(

2t

t

)
For example, with k = 3, the recurrence becomes

xn+3 = 4xn+2 − 2xn+1

and the values of xn are

n 0 1 2 3 4 5 6
xn 1 2 6 20 68 112 312

3 Stacks

Unbounded stacks were studied extensively in the 1970’s and a number of
significant connections with other combinatorial objects were found. Be-
cause the permutational power of the stack comes from its structure and not
from the relative values of the elements it is processing, the allowable pairs
are closely related to the valid programs of a stack. This leads to several
correspondences; for example, the number of valid programs of length 2n
which a stack can execute, and thus, given a fixed input sequence, the num-
ber of allowable output sequences of length n, is in a one to one correspon-
dence with the number of balanced bracket sequences of length 2n. There

8

Table 2. αk for small values of k

Stack size αk Numerical Estimate
1 1 1
2 2 2

3 3+
√

(5)

2 2.61
4 3 3
5 largest root of x3 − 5x2 + 6x− 1 3.247

are then similar correspondences with trees ([Knu73a, 2.3.4.4],[Rot75]), tri-
angulations of polygons ([CLR92, pp320–324]), Young Tableaux ([Knu73b,
pp63–64]), lattice paths ([Moh79]) and ballot sequences ([Knu73b, p531],
[RV78]). These connections are of great interest in the design of efficient
algorithms (see [Knu73b, Pra73, Tar72]) and all point to the stack’s fun-
damental role in giving precise expression to informal concepts such as
“nesting”, “structured decomposition” and “hierarchy”.

It is known from the many correspondences above that, given a fixed
input sequence of distinct elements, there are cn =

(
2n
n

)
/(n + 1) (the nth

Catalan number) possible output sequences. Therefore the number of al-
lowable pairs of length n is n!cn. It is also known that, if the input sequence
is 1, 2, . . . n, the allowable output sequences of an unbounded stack are those
sequences which avoid the pattern 3, 1, 2([Knu73a]).

In the bounded case we can apply the techniques of [ALT] which show
that the number of output sequences for a fixed input sequence of distinct
elements rises exponentially in the length of the input sequence. The base
αk of the exponent depends on the stack size k and some values of αk

are given in Table 2. Because of the asymptotic behaviour of cn, αk → 4
as k → ∞. This case was also studied in [dBKR72], where it was posed
as the problem of finding the average height of planted plane trees. This
corresponds to the average capacity require to generate a randomly chosen
output sequence. The result is that on average

k =
√

πn− 1
2

+ O

(
1√
n

log n

)
stack locations are required.

When the input sequence is a binary sequence the stack has exactly
the same behaviour as a dictionary for both the bounded and unbounded
cases, as the following shows.

Lemma 4. The allowable output sequences of a stack on a binary input
are precisely those of a dictionary of the same capacity on a binary input.

9

PROOF: Suppose (σ, τ) ∈ Lk(Dictionary), then there is a program of
insert and delete operations which transform σ into τ . Among all such
programs we choose one, C say, in which all the insert operations are
delayed as long as possible; in C an insert operation only occurs if it is not
possible to produce any more of the output sequences τ from the elements
stored in the dictionary. So, when C is executed, the only point at which
both a 0 and a 1 are stored in the dictionary is when there are one or more
0’s stored already, a 1 was inserted by the last operation in C which has
been executed and the 1 will be deleted by the next operation in C (and
the same situation with 1 and 0 interchanged).

A stack can execute the same sequence, C, and will produce the same
output sequence τ from the input sequence σ because, for every delete
operation, the element which the dictionary would output is either the
last one inserted (in which case the stack can also output it), or there are
only elements of a single value stored in the dictionary/stack. Therefore
(σ, τ) ∈ LK(Stack) and so Lk(Dictionary) ⊆ LK(Stack).

The other inclusion is trivial and so we have Lk(Dictionary) = LK(Stack)
2

It follows from this that the number of allowable pairs of a stack with
binary input sequences satisfies the recurrence given for the bounded dic-
tionary in section 2.

When the input sequence is allowed to have duplicated elements little
is know about the behaviour, but some progress has been made in [ALW]
in the case that equal symbols occur adjacently.

4 Queues and deques

The analysis of queues is entirely trivial. In both the bounded and un-
bounded cases, the only possible output sequence is the input sequence, so
there are n! allowable pairs of length n. It is interesting to note that with
such a permutationally weak data type even the transition from bounded to
unbounded has no effect on its power. In all the other data types considered
here it is a significant transition.

Double ended queues (deques) are queues which allow two insert and
two delete operations. It is possible to insert elements at both ends of
the queue and it is possible to delete elements from both ends. There are
also variants of the deque; an input restricted deque has only one input
operation (it can only insert elements at one end of the queue) and an
output restricted deque has only one delete operation (it can only remove
elements from one end of the queue). The third possible variant, where
we have only one input operation and one output operation, can have two
forms. If we allow insertion and deletion at the same end of the queue

10

we have a stack, otherwise we have an ordinary queue. Both of these
possibilities have been considered previously so we shall ignore them here.
Deques and their two variants were studied in [Pra73], where most of the
results are presented as excluded pattern conditions.

The number of cases to study is reduced a little because the properties
of input restricted deques and output restricted deques are symmetric. This
is because, a pair (σ, τ) is allowable (or k-allowable) for an input restricted
deque if and only if the pair (τR, σR) is allowable (or k-allowable) for an
output restricted deque (σR denotes the reversal of the sequence σ). Knuth
[Knu73b, p534; Q 13] states that the generating function for the number
of allowable output sequences for an output restricted deque, with some
input sequence σ, is

G(z) =
1
2
(1 + z −

√
1− 6z + z2)

Pratt then shows that there is a 2-1 correspondence between these out-
puts and honest trees with n leaves (an honest tree is a general tree with no
nodes of out degree 1). He then goes on to prove that, on input 1, 2, . . . n,
the allowable outputs are precisely those which avoid the patterns 4, 2, 3, 1
and 4, 1, 3, 2. The corresponding patterns for an input restricted deque
are 4, 2, 3, 1 and 4, 2, 1, 3. He then shows that the allowable outputs for a
deque with input 1, 2, . . . n are those sequences which avoid the infinite set
of patterns shown in table 3.

The bounded versions of the above deque variants can be handled by the
techniques of [ALT]. For example, for a deque of size 3 we can show there
are 2.3n−2 allowable outputs for any fixed input. Similarly for a deque
of size 4 we can show that the number of allowable outputs for a fixed
input sequence is 6.4n−3. For size 5 the number of allowable outputs grows
exponentially with base α, where α is the largest root of x3−7x2 +10x+2
(approximately 4.855).

5 Priority queues

There has been a great deal of work in recent years on the combinatorial
properties of priority queues, both bounded and unbounded, operating on
input sequences formed from distinct elements, the binary alphabet and
multisets.

It is convenient to define

s(τ) = |{σ|(σ, τ) ∈ L(Priority Queue)}|
t(σ) = |{τ |(σ, τ) ∈ L(Priority Queue)}|
sk(τ) = |{σ|(σ, τ) ∈ Lk(Priority Queue)}|
tk(σ) = |{τ |(σ, τ) ∈ Lk(Priority Queue)}|

11

Table 3. The excluded patterns which characterise a deque

5, 2, 3, 4, 1
5, 2, 7, 4, 1, 6, 3
5, 2, 7, 4, 9, 6, 3, 8, 1
5, 2, 7, 4, 9, 6, 11, 8, 1, 10, 3
5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 3, 12, 1
etc.

and those obtained by exchanging 1 and 2
and/or the last two elements in each pattern

In [AT93] it is shown that, when the input is formed from n distinct
elements, there are (n+1)n−1 allowable pairs of length n for an unbounded
priority queue. For this case algorithms are presented in [AB] which cal-
culate s(τ) in O(n) time and t(σ) in O(n4) time. The transitive closure of
the allowability relation is also found.

When the inputs are restricted to binary sequences it was shown in
[Atk93] that there are cn+1 allowable pairs of length n. An O(n2) algo-
rithm is then presented which calculates s(τ). It is also shown that (σ, τ)
is allowable if and only if (τR, σR) is allowable and this gives an O(n2)
algorithm to compute t(σ).

Some very recent work in [ALW] gives the only result we know of in the
case when the input is a rearrangement of a multiset S = {1a1 , 2a2 , . . . , rar}.
Here it is shown that there are

1
n + 1

∏(
n + 1

ai

)
allowable pairs.

All the results above are for unbounded priority queues. The study
of the bounded case was begun in [AT]. For input sequences of distinct
elements the only progress made has been for the priority queue of size 2.
In this case, if xn is the number of allowable pairs then∑

xn
tn

n!
=

1
1 + log (1− t)

and from this it can be deduced that xn/n! is asymptotic to (e/(e−1))n as
n →∞. It was also shown how to compute s2(τ) and t2(σ) in time O(n2).

When the input is a binary sequence more general results are known.
For example, sk(τ) and tk(σ) can be computed in time O(n2). It was also

12

shown in [AT] that there is a 1 − 1 correspondence between k-allowable
pairs of length n and ordered forests of height no more than k + 2 on n + 2
nodes.

The study of double ended priority queues has been rather less produc-
tive. This data type has two kinds of delete operation: Delete-Minimum
and Delete-Maximum (denoted by “d” and “D” respectively). Many exper-
imental results and conjectures are reported in [Thi93]. Linton has given
a characterisation of allowable pairs in terms of avoided pairs of patterns
extending the idea of pattern avoidance in section 1. The only other results
we know of bear on questions 3 and 4 of the introduction.

Let D be any sequence of n Delete-Minimum and Delete-Maximum op-
erations and let π(D) be the permutation of 1, 2, . . . , n defined by

D(I)i =
{

n− j if Di = D
i− 1− j if Di = d

where j is the number of D’s among D1 . . .Di−1

Also define the complementary permutation π̄(D) by π̄(D)i = n+1−π(D)i.
Then we have

Lemma 5. Consider the set of double ended priority queue programs in
which the sequence of delete operations is a fixed sequence D, and let A(D)
be the set of all (σ, τ) related by such programs. Further, let sD(τ) =
|{σ|(σ, τ) ∈ A(D)}| and tD(σ) = |{τ |(σ, τ) ∈ A(D)}|. Then

1. sD(τ) is maximal when τ = π(D)

2. sD(τ) is minimal when τ = π̄(D)

3. tD(σ) is minimal when σ = π(D)

6 Conclusion

We have presented a unified framework in which the (input,output) relation
for various container data types can be studied. The properties of the
relation for stacks, queues, dictionaries and priority queues are fairly well
understood.

The main unsolved problems requiring further research include

1. A treatment of deques and double ended priority queues as com-
plete as that for stacks, queues, dictionaries and unbounded priority
queues.

2. A better understanding of bounded priority queues on non binary
inputs.

13

3. An extension of the theory to networks of container data types (as
proposed by Tarjan for stacks and queues in [Tar72]). Note that
networks of bounded dictionaries, queues, deques and stacks can, in
principle, be handled by the techniques of [ALT].

Bibliography

[AB] M D Atkinson and R Beals. Priority queues and permutations.
To appear SIAM J. Comput.

[ALT] M D Atkinson, M J Livesey, and D Tulley. Networks of bounded
buffers. Submitted to SIAM J. Comput.

[ALW] M D Atkinson, S A Linton, and L A Walker. Priority queues
and multi-sets. In preparation.

[AT] M D Atkinson and D Tulley. Bounded capacity priority queues.
Submitted to Theoretical Computer Science.

[AT93] M D Atkinson and M Thiyagarajah. The permutational power
of a priority queue. BIT, 33:2–6, 1993.

[Atk93] M D Atkinson. Transforming binary sequences with priority
queues. Order, 10:31–36, 1993.

[AW93] M D Atkinson and L A Walker. Enumerating k-way trees. In-
formation Processing Letters, 48:73–75, 1993.

[CLR92] T H Cormen, C E Leiserson, and R L Rivest. Introduction to
Algorithms. McGraw-Hill, Cambridge, Mass., 1992.

[dBKR72] N G de Bruijn, D E Knuth, and S O Rice. The average height
of planted plane trees. In R C Read, editor, Graph Theory and
Computing, pages 15–22. Academic Press, 1972.

[HEO92a] I Classen H Ehrig, B Mahr and F Orejas. Introduction to alge-
braic specification. part 1:formal methods for software develop-
ment. Computer Journal, 35:451–459, 1992.

[HEO92b] I Classen H Ehrig, B Mahr and F Orejas. Introduction to alge-
braic specification. part 2:from classical view to foundations of
systems specifications. Computer Journal, 35:460–467, 1992.

[Knu73a] D E Knuth. Fundamental Algorithms, The Art of Computer
Programming. Addison-Wesley, Reading, Mass, 1973.

[Knu73b] D E Knuth. Sorting and Searching, The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Mass, 1973.

14

[Moh79] S G Mohanty. Lattice path counting and applications. Academic
Press, New York - London, 1979.

[Pra73] V R Pratt. Computing permutations with double-ended queues,
parallel stacks and parallel queues. 5th ACM Symposium on
Theory of Computing, pages 268–277, 1973.

[Rot75] D Roton. On a correspondencebetween binary trees and a cer-
tain type of permutation. IPL, 4:58–61, 1975.

[RV78] D Roton and Y L Varol. Generation of binary trees from ballot
sequences. JACM, 25:396–404, 1978.

[Tar72] R E Tarjan. Sorting using networks of queues and stacks.
JACM, 19:341–346, 1972.

[Thi93] M Thiyagarajah. Permutational power of priority queues. Mas-
ter’s thesis, School of Computer Science, Carleton University,
1993.

