
Longest subsequences in permutations

M. H. Albert∗ R. E. L. Aldred† M. D. Atkinson∗

H. P. van Ditmarsch∗ B. D. Handley† C. C. Handley∗

J. Opatrny‡

October 24, 2002

Abstract

For a class of permutations X the LXS problem is to identify in a given
permutation σ of length n its longest subsequence that is isomorphic to
a permutation of X. In general LXS is NP-hard. A general construction
that produces polynomial time algorithms for many classes X is given.
More efficient algorithms are given when X is defined by avoiding some
set of permutations of length 3.

Keywords pattern containment, permutations, longest subsequence

1 Introduction

The properties of the Longest Increasing Subsequence (LIS) of a sequence of
values have been studied for many years. In the case where the sequence of
values is a permutation much interest has centred on the probability distribution
of the length of an LIS ; a good survey of these investigations is given in [2].
Computing the LIS is a favourite example in many algorithms courses (and
books, see [8, 9, 14]) because it neatly illustrates the design paradigm of dynamic
programming. The algorithm is due initially to Schensted [11] and has run-
time complexity O(n log n) (proved essentially optimal by Fredman [7]). It has
recently become an important part of the MUMmer system [6] for aligning whole
genomes.

The length of a LIS of a sequence σ is a good measure of the “increasing
tendency” of σ. In some data processing situations we may have a sequence
of initially sorted data that is subjected to a small number of alterations and
so is no longer entirely increasing. It is useful to be aware of this since some

∗Department of Computer Science, University of Otago
†Department of Mathematics and Statistics, University of Otago
‡Department of Computer Science, University of Concordia

1

sorting methods have extreme performance (either good or bad) on such data
sets (see [3]). In this context it is helpful to define the defect of a sequence as
the minimal number of elements that have to be deleted to obtain an increasing
sequence. Then the smaller the defect of a sequence the more it has a tendency
to be increasing. For future reference we note the obvious fact that the defect
cannot go up if we pass to a subsequence.

In this paper we consider a problem analogous to that of finding the LIS, but
in a more general context, that of permutation patterns, which is a rapidly
growing area of combinatorics. A permutation π is said to occur as a pattern
within another permutation σ if there is a subsequence of σ whose members
appear in the same relative order as the elements of π (for brevity, we say that
such a subsequence is isomorphic to π). For example 3124 occurs as a pattern
within 4716352 because of the subsequence 4135. We also write π � σ and say
that π is involved in σ or that π is a subpermutation of σ.

With this terminology the LIS problem can be stated as follows. Let I be
the set of identity permutations of all lengths. An increasing subsequence of a
permutation σ is just an occurrence within σ of a pattern of I so the LIS problem
is to identify the longest permutation of I that occurs as a pattern within σ.
Formulated like this it seems to be a natural question to replace the set I by
other sets of permutations, in other words, to ask the question:

Longest X-subsequence (LXS) Problem Given a fixed set X of permuta-
tions, is there an efficient algorithm that will find, for any given permutation σ,
a longest permutation of X that is involved in σ?

Just as for the special case X = I we can define the X-defect of a permutation
σ as the minimal number of symbols from σ that must be deleted to obtain a
permutation in X. However, if we want to use the X-defect as a measure of
“X-ness”, we have to overcome the possibility that the X-defect could go up
when we pass to a subsequence. For example, with X = {12, 1243} the X-defect
of 1243 is 0 whereas the X-defect of its subsequence 124 is 1. We circumvent
this behaviour by only considering sets X which are closed in the sense that
whenever σ ∈ X and π � σ then π ∈ X. This is, in fact, a very reasonable
restriction to make since closed sets are a natural object of study in the theory
of permutation patterns. Obviously, I is a closed set.

One of the important properties of a closed set is that it is determined by
“forbidden patterns”. More precisely, if we define the basis B(X) of a closed
set X to be the set of permutations minimal with respect to not lying in X, we
have

Lemma 1.1 A permutation σ lies in a closed set X if and only if σ involves
no permutation of B(X).

The LXS problem is clearly at least as difficult as the question of recognising
whether σ ∈ X. The latter question is known to be NP-complete for certain sets
X (one example, see [15, 16], is the set of all permutations that can be sorted by

2

4 stacks in parallel). On the other hand if X has a polynomial recognition algo-
rithm there is apparently no reason that the LXS problem should be tractable.
Of course, under this condition, we can decide in polynomial time whether the
X-defect is at most k, for any fixed k, and in particular we can decide this if X
is finitely based. Another connection between the X-defect and being finitely
based is provided by

Theorem 1.2 If X is a finitely based closed set then X+m, the closed set of
permutations of X-defect at most m, is also finitely based.

Proof: Obviously, X+(m+1) = (X+m)+1 so the theorem follows by induction
provided we can establish the case m = 1. Let us suppose that the basis elements
of X have length at most k. We shall give a bound (best possible, as it happens)
on the length of a basis element of X+1.

Let γ be any permutation of length n and let S1, . . . , St+1 be the index subsets
of {1, . . . , n} which support subsequences isomorphic to basis elements of X; we
call these the X-basic subsequences of γ. Let γ− j denote the result of deleting
the jth element of γ. Then we have

γ 6∈ X+1 ⇐⇒ for all j, γ − j 6∈ X

⇐⇒ for all j there exists i with Si ⊆ {1, . . . , j − 1, j + 1, . . . , n}
⇐⇒ for all j there exists i with j 6∈ Si

⇐⇒
⋂
i

Si = ∅

If γ is a basis element of X+1 then its X-basic subsequences have trivial inter-
section. Choose a minimal family P1, . . . , Pu+1 of X-basic subsequences of γ
with trivial intersection. Since X-basic subsequences have at most k elements
we have u ≤ k. By the minimal choice there exist indices xi with xi 6∈ Pi but
xi ∈ Pj for all j 6= i. Note that x1, . . . , xu+1 are distinct.

Also ∪iPi = {1, . . . , n} otherwise there is a proper subsequence of γ whose
X-basic subsequences have trivial intersection. So we have

{1, . . . , n} = {x1, . . . , xu+1} ∪
u+1⋃
i=1

(Pi \ {x1, . . . , xi−1, xi+1, . . . , xu+1})

It now follows that

n ≤ u + 1 + (u + 1)(k − u) = (u + 1)(k − u + 1)

The maximal value of the RHS occurs at u = k/2 + 1 if k is even and at
u = (k ± 1)/2 if k is odd. In any case n is bounded in terms of k.

Example 1 I+1 is the set of all permutations which, except for at most one
symbol, are increasing. By following the method given in the proof above its
basis can be computed as {321, 2143, 2413, 3142, 3412}.

3

We have seen that we cannot hope for an efficient algorithm to solve the
LXS problem in general. Nevertheless, for many X, the LXS problem has
a polynomial time algorithm. In section 2 we construct a large number of sets
for which there is a polynomial time algorithm (albeit often of rather high de-
gree). Then, in section 3, we generalise the LIS problem more directly. Notice
that the set I is defined by the basis permutation 21 of length 2. This suggests
that the next cases to consider should be those closed sets all of whose basis
elements have length 3. There are several such closed sets [12] but for all of
them (with one notable exception) we show how to solve the LXS problem in
time O(n2 log n).

Since we appeal frequently to the LIS algorithm, and to some of its properties,
we review it here and gather together some easy consequences for future refer-
ence. Let σ = s1s2 . . . sn be some permutation of length n. We scan σ from left
to right. Having scanned up to symbol si we shall have built a list of longest
increasing subsequences of each length up to i. It turns out that it is sufficient
to keep just one subsequence of each length, namely one of those with smallest
final element. These smallest final elements are all that need to be maintained
if we are interested only in the length of the LIS. We update this information
when we process the next symbol of σ (by doing a binary search) in O(log n)
steps. If we wish to compute the LIS itself we need to keep some back pointers
to enable it to be reconstructed once the algorithm has completed the scan of
σ. In our exposition (especially in Section 3) we shall give details of algorithms
modelled on the LIS algorithm that compute only the length of the LXS ; we
rely on the reader to supply the details of the back pointers to compute the
actual LXS itself.

Proposition 1.3 Given a permutation σ = s1s2 . . . sn of length n there are
algorithms for the following problems each of time complexity O(n log n):

1. compute a longest increasing subsequence of every initial segment of σ,

2. compute, for every h, a longest increasing subsequence of σ that has final
value no more than h,

3. compute, for every i, a longest increasing subsequence of σ that ends with
si.

In addition, there is an algorithm of time complexity O(n2 log n) to compute,
for every i, j with i ≤ j, a longest increasing subsequence that starts at si and
ends at sj.

Proof: The first problem is solved by applying the standard LIS algorithm.
The second can be solved either by a simple modification or by applying the
LIS algorithm to the inverse permutation. The third problem is solved by
interpolating an extra step in the main loop of the LIS algorithm: when the

4

current si is being processed we can determine to which of the subsequences
being kept si should be appended to get the longest result. For the fourth
problem we run the LIS algorithm n times. The ith time we run it we maintain
only subsequences that begin with si.

Notice that we can replace the word “increasing” with “decreasing”. Also we
can apply all the algorithms to the reverse of σ.

2 Some polynomial time algorithms

In this section we develop a construction that defines a large number of closed
sets for which the LXS problem has a polynomial time algorithm. We also give
a number of examples to demonstrate the scope of the construction.

Let θ = h1 . . . hr be a permutation of length r and let X1, . . . , Xr be sets of
permutations. We define θ[X1, . . . , Xr] as the set of all permutations that can
be divided into segments φ = χ1, . . . , χr with the properties

(i) χi is isomorphic to a permutation of Xi, and

(ii) χi < χj if and only if hi < hj .

The second property introduces a piece of notation that we use frequently: if α
and β are sequences and every component of α is less than every component of
β then we write α < β.

Example 2 Let θ = 213 and suppose that X1, X2, X3 are sets containing re-
spectively 21, 132, 312. Then φ = 54|132|867 ∈ θ[X1, X2, X3] by virtue of the
division into segments shown.

Furthermore, if H is any set of permutations of length r then we define

H[X1, . . . , Xr] =
⋃

θ∈H

θ[X1, . . . , Xr]

We shall use this construction only in the case that the Xi are closed. Since
we allow the empty permutation to occur (necessarily a member of every closed
set) the segments χi in the above definition are also permitted to be empty.
One easily checks

Lemma 2.1 If X1, . . . , Xr are closed then H[X1, . . . , Xr] is closed.

5

As it stands this notation is only a way of making larger closed sets from smaller
ones in a simple ‘finite’ way but, as the next example foreshadows, we can, with
the aid of recursion, make considerably more complicated constructions.

Example 3 Let S be the set of all stack-sortable permutations (those permu-
tations defined by avoiding the permutation 231) and let T be the closed set
consisting only of the empty permutation and the permutation 1. Put θ = 132
and consider θ[S, T, S]. It is not hard to see that this is the class S itself! In
other words, X = S is a solution of the equation

X = θ[X, T,X] (1)

There are many other solutions of this equation (for example, the set of all
permutations). However, given a family of solutions {Xi | i ∈ I}, one easily
checks that ∩i∈IXi is also a solution (and this is true for non-empty solutions
too as all non-empty classes contain the permutation 1). Thus Equation (1) has
a minimal non-empty solution M (under set inclusion).

As generally happens in such circumstances the minimal non-empty solution also
has an internal description. Equation (1) can be used as a rule for generating
further members from ones already known. In this case, as we know that the
permutation 1 and the empty permutation lie in M we can deduce immediately
that 12, 21, 132 all lie in M and from that we can obtain still larger permutations.
It is, in fact, not hard to see that M = S.

The above example shows the approach we shall take. We shall consider equa-
tions of the form

X = H[X1, . . . , Xr] (2)

where each of X1, . . . , Xr is either bound to a definite closed set Di for which
the LDiI problem is polynomially solvable or is the variable X itself. Such an
equation always has at least one non-empty solution and so has a least non-
empty solution M . The fact that each permutation of M is, via equation (2),
built up from smaller permutations allows us to devise a dynamic programming
algorithm for the longest M -subsequence.

Suppose we have a closed set M defined as the minimal non-empty solution
of an equation of the form above and we are given a permutation σ of length
n. We shall identify the longest M -subsequence of σ by solving the problem in
larger and larger windows on σ.

Let I = i, i + 1, . . . , i + p− 1 and J = j, j + 1, . . . , j + q − 1 be any two integer
ranges in 1, 2, . . . , n. Two such ranges define an p× q window on σ consisting of
the subsequence of σ whose positions are in the first range and whose values are
in the second. The term “window” is derived from thinking of the graph of σ,
placing an p× q rectangle within this graph, and observing which points of the
graph it captures. We order the windows lexicographically by their dimensions
p and q. The total number of windows is a quartic polynomial in n.

6

Now, suppose we would like to know the longest M -subsequence in a particular
p × q window W defined by intervals I and J . So long as we process windows
lexicographically we may assume we know the answer for all previous windows.
We consider all the ways in which each of I and J may be split into r subinter-
vals; there are at most O(pr−1qr−1) = O(n2r−2) such ways. Given any splitting
we have a consequent splitting of W into an r × r array of subwindows. We
now examine each θ ∈ H in turn. For a typical θ we identify the r subwindows
W1, . . . ,Wr which match the form of θ and we solve the LXiS-problem in Wi

(directly if Xi is one of the bound variables, or by looking up a previously com-
puted solution if Xi = X) and thereby read off an M -subsequence of W . The
LMS of W is the longest M -subsequence over all splittings of W and all θ ∈ H.

This algorithm has to solve a polynomial number of LXS problems all of which
take polynomial time and so is itself a polynomial time algorithm.

Many of the closed sets considered in the next section can be described by the
construction above. To give a better idea of the scope of the construction we
give two further examples.

Example 4 Let P be the class of separable permutations that was studied in
[5]. Permutations of P are built up from the identity permutation by two types
of combination. If θ, φ ∈ P then also θφ ∈ P if either θ < φ or θ > φ. This
definition makes it easy to see that P is the minimal solution of

X = H(X, X)

where H = {12, 21}.

Example 5 Consider the class whose basis is {213, 3412}. It can be proved
that this class is the minimal solution of

X = H(T, T,X, T)

where T is the class whose only non-empty member is the permutation of length
1 and H = {1432}.

Finally in this section we note that the methods carry over to systems of equa-
tions in several variables. Little expressive power is gained however for the fol-
lowing reason. Suppose the variables (the symbols not bound to known closed
sets) are V1, V2, . . . If the equation for a variable Vi occurs on the right hand side
of the equation defining a variable Vj then Vi will be a subset of Vj . So circular
chains of recursive definitions imply that the variables can all be replaced by a
single variable. Once that is done the remaining variables are partially ordered
by inclusion and we can define each one using previously determined variables.
Essentially, this reduces the multivariate case to a collection of single variable
problems.

7

3 Basis permutations of length 3

The general algorithms of section 2 can be improved in many cases. This section
considers recognition algorithms for longest X-subsequence for all closed sets X
which can be defined by avoiding permutations of length 3. Such closed sets were
first studied in [12] from an enumeration standpoint. Nowadays their internal
structure is well understood and we shall appeal to this piece of combinatorial
folk-lore in the descriptions below.

The first thing to note is that we may take advantage of the usual symmetries
(since these may be effected in linear time, which will not affect the complexity
of our algorithms). That means that the classes X to be considered may be
taken to have the following bases that we group into types according to the
number of basis permutations. In the following taxonomy we have omitted the
finite classes and the classes with 4 or more basis elements.
Name Basis Description
A1 321 Merge of two increasing subsequences
A2 231 Stack sortable permutations
B1 321, 312 Direct sum of cyclic blocks
B2 213, 321 Having the profile of 132
B3 231, 312 Layered permutations
B4 213, 312 Increasing segment followed by decreasing segment
C1 231, 312, 321 Layered with layers of lengths 1 and 2
C2 132, 231, 321 Initial point then increasing
C3 132, 213, 321 Cyclic shift of an increasing permutation
C4 132, 213, 312 Increasing permutation with reversed final segment

Each of the finite classes may be taken to have the permutation 321 in its
basis. It is known [1] how to recognise (in time O(n log n)) whether a fixed
permutation avoiding 321 occurs as a subpermutation, so we can easily solve
the LXS problem for any finite class in time O(n log n).

Classes with 4 or more basis elements have a very simple form and we leave the
reader to check that their LXS problem is virtually trivial.

3.1 A1

The algorithm that we present for the LA1S problem follows the same scheme as
the LIS algorithm. It scans the given permutation σ, keeps information relating
to A1-subsequences of each length, and updates this information as it processes
the current symbol of σ.

At a typical step, just before we process the next symbol s of σ, we shall have a
record of various A1 subsequences. Rather than storing an entire subsequence
we exploit the fact that to avoid 321 is equivalent to having a decomposition as
the union of two increasing subsequences, and we store only the final elements

8

(a, b), with a < b, of the two subsequences in this decomposition. However,
unlike the LIS situation, it is necessary to store several A1 subsequences of each
length.

The basic idea when processing x is to decide whether x can be appended to
any stored 321-avoiding subsequences to make new ones. If we had two A1-
subsequences of length t represented by pairs (a, b) and (c, d) with (a, b) <
(c, d) then we do not need to store (c, d) as it is redundant. This is because
any way of extending the subsequence represented by (c, d) to a maximal A1-
subsequence entails a way of also extending the subsequence represented by
(a, b). Consequently, if the stored pairs that represent subsequences of length t
are (a1, b1), . . . , (ar, br) and we keep them in increasing order of first component
(a1 < a2 < . . . < ar) then we shall have b1 > b2 > . . . > br. In particular, there
will be at most n pairs to keep rather than n2.

We process the current symbol x as follows:

Consider the length t subsequences that we are currently maintaining and sup-
pose they are represented by pairs (a1, b1), . . . , (ar, br) ordered as above. There
are three cases:

1. Any pair (aj , bj) with x < aj represents a subsequence that cannot be
extended using x.

2. If we have a pair with aj < x < bj then we can form a new A1-subsequence
of length t+1 represented by (x, bj). But, as we are only keeping irredun-
dant pairs we would only store such a new pair if, among those pairs with
aj < x < bj , it was the one with smallest bj . We can identify the unique
pair that we need by a binary search.

3. If we have a pair with aj < bj < x then we can form two new A1-
subsequences of length t+1 represented by (aj , x) and (bj , x) but the latter
pair is obviously redundant. Thus, among the pairs for which aj < bj < x
we only have to consider the one with smallest aj and we can identify it
by binary search.

Having identified new candidate pairs to represent A1-subsequences of length
t + 1 we then need to scan (again by binary search) the existing list of pairs
representing subsequences of length t + 1. A candidate new pair might have to
be discarded because it is redundant; if it is retained then possibly some of the
existing pairs might become redundant and be discarded.

On conclusion of the scan we consult the lists that we are keeping and identify
the length of the longest A1-subsequence. Each iteration of the main loop has
to examine all the lengths that are under consideration and for each one execute
some binary searches. Therefore the total time is O(n2 log n).

Note By an extension of this algorithm we can also solve, in time O(nk−1 log n),
the LMkS problem where Mk is defined by avoiding the permutation k, . . . , 1.

9

This extension has some points in common with the Robinson-Schensted algo-
rithm that associates a pair of standard Young tableaux with a permutation.
Indeed, once these tableaux have been constructed one can read off the lengths
of the longest increasing Mk-subsequences for every value of k (see [13] Theorem
7.23.13).

3.2 A2

Our algorithm for the LA2S -subsequence of a permutation σ follows the method
of Section 2. So the typical step is to construct the longest A2-subsequence in
some p × q window W defined by two ranges, say I = i, . . . , i + p − 1 and
J = j, . . . , j + q− 1. We are looking for a subdivision of W to represent a stack
sortable permutation αmβ with α < β < m.

Subdivisions with m < j + q− 1 correspond to stack permutations in a window
defined by I and j, . . . , j + q − 2 and we will already have found the longest
of these. So we only need to consider subdivisions having m = j + q − 1 and
those will only arise if ` = σ−1(m) lies in the range I. Assuming that this is
indeed the case we have to check O(n) subdivisions where α corresponds to a
window defined by the intervals [i, ` − 1] and [j, k − 1] and β corresponds to
a window defined by the intervals [` + 1, i + p − 1] and [k, j + q − 2] for each
k = j, . . . , j + q − 1.

Since we can process each window in O(n) steps the entire algorithm runs in
time O(n5).

This algorithm is far worse than the algorithms we have managed to find for the
other sets considered in this section. One of the reasons for this is that there
seems to be no way to characterise initial segments of a potential stack sortable
permutation by a small number of parameters.

3.3 B1

Permutations of B1 have the form α1α2 . . . where the segments αi satisfy α1 <
α2 < . . . and each has the form a+1, a+2, . . . , a+p−1, a for some a and p ≥ 1.
We exploit this structure and give an algorithm which is markedly similar to
the algorithm for longest A1-subsequence. As in that algorithm we scan the
given permutation σ from left to right and at each point we maintain a list of
B1-subsequences found so far. Rather than storing an entire B1-subsequence
we keep only enough that we can tell whether a new element of σ can be used
to extend it. In this case that means we have to store two values only: the
maximal element m say and the greatest element d say that is followed by a
smaller one.

Suppose that we process the element x of σ. Then for every pair (m, d) rep-
resenting a B1-subsequence of length t we have the potential to create a B1-
subsequence of length t + 1. In fact, if m < x we do indeed obtain such a

10

subsequence and we record it as (x, d) while if d < x < m we have a sub-
sequence represented by the new pair (m,m) (no other case can give a new
B1-subsequence of length t + 1).

As in the analysis for the A1-subsequence algorithm not all pairs need to be
stored. For, if (m, d) and (m′, d′) are two pairs representing B1-subsequences
of the same length, and if (m, d) < (m′, d′), then we may discard (m′, d′) since
any way of extending the sequence it represents allows the sequence represented
by (m, d) to be extended also. In particular, only O(n) pairs need be stored for
each length. The algorithm and its analysis now follow the same lines as the
LA1S algorithm.

3.4 B2

Here we give an algorithm that makes repeated use of the LIS algorithm. We
are looking for a subsequence of the type αβγ where each segment is increasing
and α < γ < β. We consider each position of σ as a possible starting position
for a γ segment. Let j be a typical such position.

First, by Proposition 1.3, we compute F (j, h) which is the length of the LIS that
starts at sj and whose final element has value at most h. Next, also by Propo-
sition 1.3, we compute, for each i < j, the length I(i, j) of the LIS of the first i
elements that has final value smaller than sj .

Then we compute, for each value i = j − 1, j − 2, . . ., the LIS that ends before
position j and whose first element is si. This done by the longest decreasing
subsequence algorithm running on the reversal of the first j − 1 elements of σ.
This algorithm returns its results, one per O(log n) steps. If ` is the length of
a typical sequence it finds we can find a B2-subsequence of length I(i− 1, j) +
` + F (j, si − 1) and we take the maximal length thereby computed.

Each value of j can be handled in O(n log n) steps for a total of O(n2 log n)
steps.

3.5 B3

Permutations of B3 have the form α1α2 . . . where each αi is decreasing and
α1 < α2 < . . . Following [4] we call them layered permutations. We shall
describe an algorithm for determining the maximal layered subsequence of a
given permutation σ = s1s2 . . . sn that runs in time O(n2 log n), where n is the
length of the sequence.

The algorithm requires a preprocessing step that computes, for each pair i, j
with 1 ≤ i ≤ j ≤ n, the longest decreasing subsequence (possibly empty) that
starts at si and finishes at sj . It is explained how to do this in Proposition 1.3.
Let D(i, j) denote the length of such a sequence.

The main part of the algorithm works with a subset of the set of windows of σ.

11

For convenience we define the following terms:

M(x, y): the length of the maximal layered subsequence in the window defined
by the intervals 1, . . . , x and 1 . . . , y.

T (x, y): the length of the maximal layered subsequence in the window defined
by the intervals 1, . . . , x and 1 . . . , y that has the additional properties that it
contains the term sx (in particular sx ≤ y) and contains the term y (in particular
si = y for some i ≤ x). In geometric terms this means that there are points in
the layered subsequence on the top and right boundaries of the window. If no
such sequence exists, then T (x, y) is defined to be 0.

Like some of the previous algorithms this one also scans σ from right to left.
Just before processing the symbol si it has computed and stored M(x, y) for
all x < i and all y ≤ n. In processing si it first computes T (i, sj) for all j ≤ n
according to

T (i, sj) =
{

0 if D(j, i) = 0
D(j, i) + M(j − 1, si − 1) otherwise

Once the T (i, sj) are calculated we compute the values M(i, y) by

M(i, y) = max(M(i− 1, y),M(i, y − 1), T (i, y))

obtaining M(i, 1),M(i, 2), . . . in turn.

Each iteration of this loop requires linear time so this part of the algorithm
runs in O(n2). So the dominating factor is finding the maximal decreasing
subsequences, at O(n2 log n).

3.6 B4

Permutations of this class are the juxtaposition of an increasing segment and a
decreasing segment. To find the longest B4-subsequence of a given permutation
σ of length n we run the LIS algorithm on σ first. It finds the longest increasing
subsequence of every initial segment of σ. Then, by considering the reverse of
σ we find the longest decreasing segment of every terminal segment. Finally we
combine these sets to get the longest B4-subsequence of σ. The total time is
only O(n log n).

3.7 C1, C2, C3 and C4

Permutations of the class C1 are layered with layers of sizes 1 and 2 only. We can
therefore find the longest C1-subsequence of s1 . . . sn by adapting the algorithm
for the class B3. The only modification needed is to define D(i, j) as the longest
decreasing sequence of length at most 2 from si to sj . Clearly these can be

12

computed in O(n2) steps and, as noted in the algorithm for B3-subsequences,
the remainder of the algorithm runs in n2 steps also.

An algorithm for the longest C2-subsequence is easily derived from the structure
of permutations in C2; they are increasing except, possibly, for their initial
symbol. So we run the LIS algorithm on the segment that begins at the second
position and prepend the first symbol to the subsequence it finds.

Permutations of the class C3 are simply cyclic shifts of the identity permutation.
Hence we can obtain a O(n2 log n) algorithm to find the longest C3-subsequence
of σ by applying the LIS algorithm to every cyclic shift of σ.

Permutations of the class C4 are obtained from the identity permutation by
reversing some final segment. So, to obtain the longest C4-subsequence of a
permutation σ we apply the LIS algorithm to every permutation obtained from
σ by reversing some final segment. This requires time O(n2 log n).

4 Concluding remarks

We have given a number of closed sets for which the LXS problem can be solved
in polynomial time and, by noting that it is at least as hard as the X-recognition,
shown that there are some closed sets for which this is not possible. There
remains the question of how closely these two problems are related. For example,
does every finitely based closed set X have a polynomial time LXS problem?

Another open problem is how efficiently one can solve LXS problems for various
‘simple’ sets X. In particular, can the algorithm for finding the longest stack
sortable subsequence be improved so that its performance is more comparable
with the other sets discussed in Section 3?

The LIS problem is often presented as a special case of the Longest Com-
mon Subsequence (LCS) problem since the LIS of σ is just the LCS of σ and
1, 2, The more general LXS problem does not seem to be a special case of
the LCS problem. However, the LXS problem does have a more general con-
text which suggests numerous other directions to explore. If X is not the union
of two proper closed subsets then [10] there is an infinite permutation π(X)
whose finite subsequences form (under isomorphism) the set of permutations of
X. Thus the LXS problem could be solved if one had a method for finding
the longest permutation involved in two given permutations (admittedly, one of
them would be infinite!). The problem of computing, given two permutations,
the longest permutation involved in both (even if they are finite) is completely
unexplored.

Acknowledgement We thank the referee for bringing to our attention the
connection between the LXS problem (when X is defined by avoiding k, . . . , 1)
and the Robinson-Schensted algorithm.

13

References

[1] M. H. Albert, R. Aldred, M. D. Atkinson, D. A. Holton: Algorithms for pat-
tern involvement in permutations, in Algorithms and Computation, 12th
International Symposium, ISAAC 2001, Proceedings LNCS 2223, P. Eades,
T. Takaoka (Eds.) p.355–366.

[2] D. Aldous, P. Diaconis: Longest increasing subsequences: from patience
sorting to the Baik–Deift–Johansson theorem, Bull. Amer. Math. Soc. 36
(1999), 413–432.

[3] R. M. Baer, P. Brock: Natural sorting, J. Soc. Indust. Appl. Math. 10
(1962) 284–304.

[4] M. Bóna:The Solution of a Conjecture of Wilf and Stanley for all layered
patterns, Journal of Combinatorial Theory, Series A, 85 (1999), 96–104.

[5] P. Bose, J. F. Buss, A. Lubiw: Pattern matching for permutations, Inform.
Process. Lett. 65 (1998), 277–283.

[6] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Paterson, O. White, S. L.
Salzberg: Alignment of whole genomes, Nucleic Acids Research 27 (1999),
2369–2376.

[7] M. L. Fredman: On computing the length of longest increasing subse-
quences, Discrete Math. 11 (1975), 29–35.

[8] D. Gries: The Science of Programming, Springer Verlag (New York) 1981.

[9] U. Manber: Introduction to Algorithms, Addison–Wesley (Reading, Mass.)
1989.

[10] M. M. Murphy: Ph.D. thesis, University of St Andrews, in preparation.

[11] C. Schensted: Longest increasing and decreasing subsequences, Canad. J.
Math. 13 (1961), 179–191.

[12] R. Simion, F. W. Schmidt: Restricted permutations, Europ. J. Combina-
torics 6 (1985), 383–406.

[13] R. Stanley: Enumerative Combinatorics, volume 2, Cambridge Studies in
Advanced Mathematics 62, Cambridge University Press (Cambridge, UK)
1999.

[14] J. M. Steele: Probability Theory and Optimization, SIAM 1997.

[15] W. Unger: The complexity of colouring circle graphs, Proceedings 9th
Annual Symposium on Theoretical Aspects of Computer Science, 1992,
Springer Lecture Notes in Computer Science 577, 389–400.

14

[16] W. Unger: On the k-colouring of circle graphs, Proceedings 5th Annual
Symposium on Theoretical Aspects of Computer Science, 1988, Springer
Lecture Notes in Computer Science 294, 61–72.

15

