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Abstract: Fxamples are obtained for infinite sets of inequivalent spaces
(of the same dimension) of linear transformations of equal rank in a space

L(v,W) . This is done for both decomposable and indecomposable spaces.

51 TINTRODUCTION

This paper is concerned with k-spaces of linear transformations from
one (finite dimensional) vector space V into another space W, that is
subspaces of L(V,W) which, apart from the zero mapping, contain only
transformations of rank k. Two k-spaces Hl < L(Vl,wl) and HZ < L(V2,W2)

are said to be equivalent if there exist isomorphisms a:V; *> V,,

B :Wl > W2 s Y :Hl -+ H2 such that the diagram
h S
Vi > Wy
o l/ B
y(h)
v, —> W,
commutes, for all h ¢ H, . Equivalent spaces share all the same algebraic
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properties and are usually regarded as being 'the same space.' Our aim here
is to show that the number of inequivalent k-subspaces of L(V,W) can be

infinite.

The study of k-spaces was begun in [2] where a k-space H £ L(V,W)

was termed (essentially) decomposable if V had a direct sum decomposition

vV = V1 ] V2 where dim V1 =i and dim(<HV2>) = 3 with i+} = k. The

decomposable spaces are the simplest types of k-spaces and several of the



results of [21 gave sufficient conditions for a k-space to be decomposable.

A more recent sufficient condition for decomposability is dim H > k+l [1]

Of course this subject can be studied in the language of matrices by
choosing bases for V and W and representing each linear transformation
by its matrix. The notion of equivalence between two k-spaces H, and

1

H2 of mxn matrices is just that

H, = pH

9 qg={phq:h e Hl}
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for non-singular mxm and nxn matrices p and q. The matrices p
and q correspond respectively to a general row operation and a general
column operation performed simultaneously on the matrices of Hl . For a
k-space of matrices to be decomposable means that some space equivalent

to it has all its matrices of the form

ixj

with 4i+j = k. We shall find use for both ways of representing k-spaces,

Fairly complete information is available for small values éf k. It
is rather easy to show that all l-spaces are decomposable. For 2-gpaces it
can be shown that, apart from trivial variatiomns, the 3-dimensional space
of all 3x3 skew-symmetric matrices is the only indecomposable example,
Moreover using Kronecker's theory of pencils together with some of the ideas

in section 3 of this paper one can prove that, for fixed m = dim V and



n = dim W, there are only a finite number of decomposable 2-spaces. 1In
the case of 3-spaces unpublished work of Atkinson and Lloyd demonstrates

that there are precisely 8 different indecomposable examples.

However this behaviour does not persist for larger values of k: ~ for
some values of m,n,k there can be an infinite number of k-spaces of mxn
matrices all having the same dimension. We give two examples of this, in
section 2 of indecomposable spaces, and in section 3 of decomposable spaces.
The examples are described in more generality than strictly necessary in
order to better illustrate the techniques, which we feel should have wider

applicability.

Throughout the paper we shall take the ground field F to be the
field of complex numbers but most of the theory carries over to arbitrary

fields.



§2 1Indecomposable Spaces

The main purpose of this section is to give an example of an in-
finité set of inequivalent indecomposable k-subspaces of equal dimension
in a particular space, L(V,W) . Ve begin by considering the linear maps

™+l obtained by exterior multiplication of A'U by a

from AU to A
vector in U . U is an n-dimensional vector space over the complex num-

ber field F and r is an integer, 1<sr<n . For an f to be in Hr

means that there is an x €U such that for all Xc¢ A'U  we have £(X) =
r-1

xAX . The kernel of f is xAA ~U which, for nonzero x , has di-

mension n-1 . The rank of £ 1s || - n-li n-1 . We let
r-1 r r-1 r

k= [n;l] and note that Hr is a k-subspace of L(ArU s Ar+10) . We

prove

2.1 Theorem: Hr is indecomposable if 1<r<n-1 .,

. - .
Proof: Suppose AU—-V’I@V2 with dimVl—i, dim<HrV2> i,

and i+j=k . Certainly 1i=0 is impossible for it implies

n-1f _ r+l . n
[ N ] =dim(A” "U) = [r+l]

contradicting r<n-l1 . For nonzero h EHr , the kernel of h 1is contained
in V2 R These kernels all have the form x AAr_lU and since they generate
all Afu they cannot all be contained a proper subspace.

In general one can form k-subspaces from a given k-subspace H
of L(V,W) as follows. Let W'cW be a supspace for which h(V) nW' = {0}

for every heH and let n: W-W/W' be the natural map. The subspace
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nH={noh : h H}
is a k-subspace of L(V,W/W') . We prove

2.2 Theorem: H 1is decomposable if and only if nH is decom-

posable.

It is clear that it suffices to prove this theorem for the case

when dimW'=1 . We begin by first proving

2.3 Lemma. Let HEL(V,W) be a k-subspace and suppose

dimW=%k+1 ., Then HV 1is a subspace of W .

Proof: If hV 1is a fixed subspace of W as h varies over
non-zerc elements of H then HV 1is this subspace. Suppose then that
H contains two independent elements f and g such that £fV=z2gV .

Let H'=< {f,g} > . Let

V=V @2+ 8V _ and
o r

W=W @ OW
o r

be the decompositions for H' given by 3.1 of [2] . 1If WO;tO then

dimwo= 1 and HV=W14B QWr is a k-dimensional subspace of W .

Therefore WO= {0} . Then there is precisely one index 1 for which

because no such 1 dimplies WO # {0} while more than

one such 1 dimplies dimW 2k+2, neither of which is possible. For

dimWi= l+dimVi R

definiteness we suppose 1i=1 so that dile= 1+dimV1 . Let deW,

m=ml+°°-+mr where wieWi, i=1l,..., r . By 3.2 in [2] it is clear

that we can find a, beF and v, eV, such that (af +bg)v1=w For

11 1
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the remaining 1i=2,...,r, af+bg maps Vi onto Wi and so there

are V¢ Vi such that (af+bg)vi=wi . The lemma follows.

We now pass on to the proof of the theorem.
If H is decomposable then so is nH because the decomposition

of V for H will suffice for nH .

Let us suppose nH is decomposable and let

V=V le

0

where dimV0= i and dim <nHV1> =k~1 , Since nH restricted to v

is an i-subspace the same is true of H . We note that

0

(nhVO) n (nhVI) =0

for nonzero heH . Therefore (hVO)n(hV]_) is zero or W' . But hVO

cannot contain a nonzero element of W' because nh[VO has rank equal

to dimUO . Therefore p(h|V1)=k—i for nonzero heH and

HV. c nHV

1 +wW',

1

a (k-i+1) - dimensional space. By the lemma HV is a subspace,

1

Either HVl ‘has dimension k-1, in which case H 1is decomposable or

= 1
HVl nHVl +W .

The latter however is impossible because then there is an he¢H and

vy eVl for which h(vl) i{s a nonzero member of W' ., For this h,

nh has rank at most k-i-1 on V contrary to assumption that nH

1 3
is a k-subspace.

We are now in a position to prove our main result of this sec-

tion , namely



- -

2.4 Theorem: Let Y € Ar+lU be not of the form x A X for

an x e¢ U and X € A'U . Let 1 Ar+1U > Ar+1

_1]

map. Then nHr is an indecomposable [nr Jlsubsgace of

U/<¥> be the natural

L(ArU,Ar+1U/<Y>) . If Yl and Y, are inequivalent members of Ar+1U

not of the form x A X and if ny and n, are the natural maps from

Ar+1U to Ar+1U/<Y1> and Ar+lU/<Y2> respectively then nlﬂr and

n2Hr are inequivalent.

The condition that Y not be of the form x A X means that

and Y, to be inequivalent means

Y ¢ n(A"U) for all h ¢ B, . For Y )

1
. . (r+l)
that there is no automorphism A of U for which Yl = A (Yz) .
By theorems 2.1 and 2.2, nHr is indecomposable.
What remains to be proved 1s that anr and nZHr are

inequivalent. Suppose not.

Let a, B, Y be chosen as in section 1 where Vl = V2 = ArU >

r+l
;=4 2
where h is induced by the exterior multiplication by =x . Then

W U/<Y1> , and W, = Ar+lU/<Y2> , Let X e U and h ¢ anr
y(h) is induced by the exterior multiplication by a unique xl e U

and the map X * xl is a 1:1 linear map L of U . That L is 1:1
follows from the assumption that ¥ is not of the form x A X for any
x ¢ U and X ¢ ATU .

For any set X,,...,x_ of independent vectors of U we have
1’ ba

0

1

ﬁ(nl(onxlA...Axr))

I

nz(L(xi)Aa(xlA...Axr))



and therefore
L(xi)Aa(xlA...AXr) =0,
Then

a(xlA...Axr) = AL(xl)A...AL(xr)

where A may depend on the choice of KysvoosXy, o However, linearity
and nonsingularity of both a and L implies that A is constant and
we incorporate its rth root in L to obtain

(r)

o =L .

By representing Y, as a sum of decomposable (r+l)-vectors it
follows that
(r+l
L )(Yl) € <Y,>,
implying that ¥y and Y, are equivalent, contrary to our hypothesis.

n)> n2 , A*U contains infinitely many inequivalent

When [
r

members, because the dimension n” of the group acting on ATU is less
than the dimension [2] of ATU . In particular, when n > 9 and r =
we have [g) > n2 . In addition, only finitely many of the equivalence
classes can come from trivectors of the form x A X with x ¢ U and

X e A2U because A2U has only fini£e1y many equivalence classes.

Therefore L(Vl,Vz) has infinitely many inequivalent indecomposable

_ In _|n _ in-1
k-subspaces when dimV1 = [2] s dimV2 = [3] -1, and k= {2 ] .

3
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§3 DECOMPOSABLE SPACES

In this section we show how to comstruct an infinite number of
decomposable k-subspaces of equal dimension in a particular space Liv,W) .
The construction is best described in terms of matrices.and depends on

two ways of generating spaces of matrices from a given space.

Suppose X is a space of mxn matrices with a basis Xys Koy eees Xg o
Let yq5 ¥os +evs ¥ be mxd matrices defined so that the jth column
of Yy is equal to the ith column of Xj .  When the matrices Yis tees Vg
are linearly independent we say that X is column full in that there is
no column operation which simultaneously reduces a fixed one of the columns
of each Xy to zero, If X is column full we define f£(X) = Yps vees Y,
an n-dimensional space of mxd matrices. Of course f(X) depends upon
the given basis of X but our notation deliberately suppresses this since
a different choice of basis will give a space equivalent to £(X) under a
column operation. Moreover, from the definition it follows that, for any
mxm‘ non-singular p and nxn non-singular q, £(pX) = pf(X) and
£(Xq) = £(X) . Thus f dis a well-defined 1:1 operation on equivalence
classes, clearly involutory, which maps column full d-dimensional spaces of

mXn matrices into column full n-dimensional spaces of mxd matrices.

3,1. Lemma: Let X be a column full space of mXn matrices. Then X

contains a non-zero matrix of rank less than m if and only if the equivalence

class of f£f(X) contains a space whose matrices all have their (1,1) entries

equal to zero.




Proof: Suppose that X contains a non-zero matrix of rank less than m.
Since £ respects equivalence classes we may replace X by a space
containing a matrix with zero first row and take this matrix as the first
member of a basis of X . Then, by definition of £, f(X) has a basis
whose (1,1) positions are all zero. The converse follows by reversing the

argument.

We turn now to another correspondence on equivalence classes. For

any space X of m*n matrices let
g(X) = {y ¢ M_ i trace (xy) = 0 for all x ¢ X}
If p and q are non-singular m*m and nXn matrices then
g(pXa) = ¢ BXp .

Thus g, like f , respects equivalence classes, is also involutory, and
maps d-dimensional spaces of mxn matrices into (mn-d)-dimensional spaces

of nXm matrices.

3.2, Lemma: Let X be any space of m¥n matrices. Then some space

equivalent to X has all its (1,1) entries equal to zero if and only if

g(X) contains a rank 1 matrix.

Proof: TFrom the definition of g we have that g(X) contains the matrix
E, (with a one in the (1,1) position and zeros elsewhere) if and only if
the matrices of X all have zero (1,1) position. The lemma now follows

since g preserves equivalence classes.
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Putting these two lemmas together gives

3.3, Lemma: Suppose that m<n and X is a column full d-dimensional space

of mxn matrices. Then X 1is an m-space if and only if e(£(X)) (which

is an (md-n)-dimensional space of dxm matrices) contains no rank 1

matrix.

Notice that every (md-n)-dimensional space Y of dxm matrices
containing no rank 1 matrix arises in the form g(f(X)) for some column
full space X . This is because Z = g(¥) = g—l(Y) is not eguivalent
to a space with all (1,1) entries equal to zero, hence is column full, and

so of the form Z = f_l(X) = £(X) .

3.4, Theorem: If n 2 4 there are an infinite number of inequivalent

n-dimensional n-spaces of n x (n2-2) matrices,

Proof: By Lemma 3.3 and the remark following it we need only show that
there are an infinite number of inequivalent 2-dimensional spaces of

nxn matrices which do not contain a rank 1 matrix.

Let G = PGL(2,F) be the group of all linear fractional mappings
z +—E§$§ , ps-rq # 0, of the complex projective line m = F u {=} .
G permutes w(n) , the set of n-subsets of =, and in this action it has
an infinite number of orbits (for each n-set T there are only a finite
number of cross-ratios formed by 4 points selected from T, G preserves

cross-ratios, and so for each orbit T din 7(n) there are only a finite

number of cross ratios formed by 4 points taken from an n-set in T) . We



shall show that, for every orbit of G in m(n) , there is an equivalence
class of 2-dimensional spaces of nxn matrices which do not contain a rank

1 matrix, and that distinct orbits give rise to distinct equivalence classes,

So let T be any orbit of G din m(n) and let T ='{pl,p2,...,pn}
be one of the n-sets of T . Represent each p; as Uilri with Gi’Ti € F

and consider the space X generated by
a= diag(cl,...,cn) and b = diag(Tl,...,Tn).

Notice that X contains no rank 1 matrix because the py are all
distinct. The equivalence class of X depends neither on the particular
representation of py as oilri nor on the ordering pl,pz,...,pn 3 1t

is therefore determined by T alone and we may denote it by E(T) .

Suppose that T' is any other n-set in the orbit T . Then there

is a transformation 2z = :zig of G whichmaps T to T' and we may
ap +B
LI 1 ] r i . -

let T {pl,...,pn} where Py Ypi+5 . The space X 1s generated also
by

aa + Bb = diag(aol + 811,..., ao + BTn) and

vya + &b = dlag(yol + 6T1,..., Yo, + 6Tn)

a0i+BT.

R — = 1y,

and, since Py YUi+6Ti , we must have E(T) = E(T'); in other words,

the equivalence class of X 1is determined by T alone.

Finally, to show that different orbits of & in w(n) produce

different equivalence classes we consider an arbitrary space Y in E(T),

3
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take any basis ¢, d for Y, and show that the homogeneous polynomial
n
in x and y det{xc-yd) has the factorization I (xe:i
i=1
en/n n} iz one of the n-sets of T . Since Y is equivalent

-yn i) where

1,000,

to X there exist non-singular matrices p,q and constants o, B, v, §

with o8 - By # 0 such that

peq = aa + Bb, pdq = ya + &b,

However,
aa + Bb = diag(c!, ... ,01'1) , Ya + 6b = diag(t!, ... ,'1'1;)
oo, +8T ap B
where c;/'r' = ci-l»STi = 1+6 and
Y { i Ypi

f

det{xc - yd) = det(x(ca + Bb) - y(ya + &b))/det(pq)

]

n
[ﬁél(xci - yt;) |/det(pq)

n
- -
[i=1 (xey = y0y)

roy
where the set {sllnl s ves s En/nn} = {Oi/'r]'_ s ey cn/'rn}e r .
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