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IN THIS paper we consider subspaces X of M^*, the space of all m x n
matrices with entries in some given field, with the property that each
matrix of X has rank at most r. In [2] Flanders showed that such spaces
necessarily have dimension at most max (mr, nr) and he determined the
spaces of precisely this dimension. We shall extend this work by classify-
ing the spaces of dimension slightly lower than this upper bound. Our
results depend on the (often unstated) assumption that the ground field
has at least r +1 elements but, unlike Flanders, we do not need to exclude
the characteristic 2 case.

If every matrix in the space X has rank at most r the same is clearly
true of the space PXQ = {PXQ: X e X} where P, Q are non-singular
mxtn, nxn matrices respectively. This equivalent space PXQ can also
be derived from X by performing row and column operations to all
matrices of X simultaneously. A wide class of examples is provided by
spaces equivalent to subspaces of the space 9i(p, q) of all matrices of the

form I I where A is a p x q matrix and p + q = r. These examples we

shall call r-decomposable and they clearly consist of matrices of rank at
most r. It was shown in [1] that any 2-dimensional space of matrices of
rank at most r is r-decomposable.

We shall find it useful to exploit the duality between Jinn and Jinm

defined by the bilinear form

T ( X , Y ) = trace (XY) for XeM^, YeM,,m.

If X is a subspace of Mmn of dimension d we shall denote by X* its
annihilator in Mnm with respect to T; X* has codimension d in Jinm. A
simple calculation shows that (PXQ)* = Q~lX*P~x and hence equivalent
spaces have equivalent annihilators.

THEOREM. Let X be a space of mxn matrices over some field with at
least r + l elements. Suppose that every matrix in X has rank at most r and
that dim3?>max (mr, nr)-r+l. Then, if m<n, X is equivalent to a
subspace of 9t(r, 0) (matrices whose last m-r rows are zero) while, if
m>n, X is equivalent to a subspace of 91(0, r). If m = n one of these two
possibilities must occur except if dim 3f = n r - r + 1 when the only further
possibilities are that X is equivalent to 9l(r- 1, 1) or to 91(1, r- 1).
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Much of the proof is concerned with the study of the rank 1 matrices in
the space. In particular it is convenient to denote by F, the rank 1 matrix
which consists of zeros except for a 1 in the (i, i) position. A set of rank 1
matrices Ml7 M2,... ,Mk is said to be an orthogonal set of rank 1
matrices if some linear combination of Mu ..., Mk has rank k. Qearly
Fu...,Fk is an orthogonal set. Conversely we have

LEMMA 1. Every orthogonal set of k rank 1 matrices is (simultaneously)
equivalent to Flt..., Fk.

Proof. The case fc = 1 is well known and provides the base for an
induction on k. Assume that k > 1 and that Mu ..., Mk is an orthogonal
set of rank 1 matrices. It is clear that M h . . . , Mk_t is an orthogonal set
and so we may assume that row and column operations have already been

used to transform M x , . . . , Mk_t into Flt..., Fk_ t. Let Mk = I I
\ W s\ I

where U is a (k - 1) x (k - 1) matrix. If X = 0 then, since Mk has rank 1,
one of V and W is 0; but then all linear combinations of Mu ..., Mk

have rank less than k. Hence X contains some non-zero entry and by row
and column operations which leave Fx,..., Fk_1 unchanged we may
transform Mk so that it has a 1 in the (fc, k) position and zeros elsewhere
in the kth row and column. Then, since iVf̂  has rank 1, we must have
Mk = Fk as required.

I a u\
LEMMA 2. If A is a matrix of the form I I where u is a row vector,

\ v B J
v is a column vector and B is a matrix of rank k — 1, then, for some scalar
x, rank (xFl

Proof. B contains a (k — 1) x (fc -1 ) non-singular submatrix Bx say. The

( a + x Ui \
I of xF,+ A, where ut

consists of the elements of u in the columns of B, and o, is defined
similarly, is a polynomial of degree 1 in x and the coefficient of x is
detBj. Hence, for some value of x, xFx + A has a fcxk non-singular
submatrix and thus has rank k.

LEMMA 3. Let Xbea space of matrices generated by rank 1 matrices and
containing a matrix of rank fc. Then X contains k orthogonal rank I
matrices.

Proof. Let M , , . . . , M, be a basis of rank 1 matrices for X. We shall
prove by induction on k that such a basis contains a set of k orthogonal
rank 1 matrices. This result is obvious if fc = 1 so we now assume that
k > 1 and that the statement has been proved for smaller values than k.
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By assumption X contains a matrix of rank k and by passing to an

equivalent space we may take this to be A = I k 1 where lk is the (exit

identity matrix. Since alx=£Q one of the basis matrices, M, say, has
non-zero (1,1) position. By subtracting multiples of the first row and
column from the other rows and columns we may take Mx to be Fx; in so
doing we change the first row and column of A so that it now has the
form

a
h-l

0

u2
0
0

For any matrix X e X let X' be the matrix obtained by deleting the first
row and first column, and let X' be the space of all such X1. This space X'
has a basis of rank 1 matrices (viz. a subset of M2,..., M't, since M[ = 0)
and contains a matrix of rank k — 1. Applying the inductive hypothesis to
X1 we obtain k - 1 orthogonal rank 1 matrices among M2,..., M1, which,
by renumbering, we may take to be M2,..., M'k. It follows that some
linear combination C of M 2 , . . . , Mk has C" of rank fc —1. But then
Lemma 2 shows that some linear combination of Mj and C has rank k;
therefore M, , . . . ,Mk is an orthogonal set as required.

LEMMA 4. Let 86 be a space of matrices all having rank at most r. Then
either of the following is a sufficient condition for X to be r-decomposable:

(i) 9? contains r orthogonal rank 1 matrices,
(ii) 2£ is generated by rank 1 matrices.

Proof. We first prove, by induction on r, that condition (i) implies the
r-decomposability of 2?. If r = 0 this is trivially true so we assume that
r > 0 and that the result is true for smaller values. By Lemma* 1 we may
assume that Fu ... ,Fr belong to 36. As in the proof of Lemma 3, for each
matrix X e X we let X' be the matrix obtained by deleting the first row
and column of X. Then, by Lemma 2, the space X' of matrices X' consists
of matrices of rank at most r—1. Since also X' contains r—\ orthogonal
rank 1 matrices (viz. F2,..., FJ) we may apply the inductive hypothesis to
X1. Hence, for some p, q with p + q = r- 1, X' is equivalent to a subspace
of 9?(p, q). The row and column operations which demonstrate this
equivalence may clearly be induced by operations on the rows and
columns of the matrices in X and therefore we may take the matrices of X

(T U\
to have the form I I where T is a (p + l)x(q +1) matrix.

Let 1L, V be respectively the spaces consisting of all the matrices U, all
the matrices V. Also let x, y be respectively the maximal rank of a matrix
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in % V. Since each Ue^l has at most p + 1 rows we have x ^ p + 1.
Similarly y « q + 1 and consequently x + y=£p+l + q + l = r + l . However
we shall show that x + y^r . By definition of x and y there exist matrices

A1 >A2eafoftheformA1 = (^1 ^ ) , A 2 = ( ^ ^ 2 ) with rank (I/,) =

x, rank (V2) = y. Then L^ has a n x x x non-singular submatrix Ux and we
let U2 be the corresponding submatrix of U2. Similarly V2 has a yxy
non-singular submatrix V2 and we let V̂  be the corresponding submatrix
of Vl. The equation det(al/1 + pL/2) = 0 has at most x solutions for the
ratio a/0 while the equation det (aVl + (}V2) = 0 has at most y solutions
for the ratio 0/a. Since the field has at least r+1 elements there are,
including infinity, at least r + 2 ratios. Hence for some a, /3 both aUl +
(iU2 and aVl + f}V2 are non-singular. It follows that aUl + ^U2 has rank
x, aV1 + pV2 has rank y and so aAi + fZA2 has rank at least x + y. But
aA1 + ̂ A26af and therefore has rank at most r, thus x + y=sr as re-
quired.

We now recall the matrices F 2 , . . . , Fr and observe that as a result of
the transformations applied to 3T they have become matrices G2,... ,Gr

( TJ JC\

1 1 with zero first row and column. Clearly
rank ((H2K2)+ • • • +(HrKr))=ep and r a n k U ^ • • • +L,)=s<j, but since

r - l = rank(F2+ • • • +Fr) = rank(G2+ • • • +Gr)

ssrank ((H2K2)+ • • • + (HJC,)) + rank (1^+ • • • + L,)

= r— 1

we must have rank (L2+ •••+£,) = q.
Applying Lemma 3 to the subspace ( 1 ^ , . . . , L,) of V we deduce that V"

contains q.orthogonal rank 1 matrices; similarly % contains p orthogonal
rank 1 matrices.

We complete the proof of the first part of the lemma by another
application of the inductive hypothesis. Since x + y =sr we must have x « p
or y « q. Suppose that y =s q (the case x « p is similar). Then, as q < r, V is
q-decomposable and there exist row and column operations which trans-
form °V into a subspace of 9l(s, t) for some s, t with s +1 = q. These row
and column operations clearly may be induced by row and column
operations on the matrices of 26. Thus the matrices of 2£ are equivalent to
matrices of the form
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with T a (p +1) x (q +1) matrix and X a n j x t matrix. But such matrices
are contained in 9J(p + l + s,f) and since p + l + s + t = p + q + l = r this
shows that X is r-decomposable.

To prove the second part we suppose that X is generated by rank 1
matrices and let t be the maximum rank of a matrix in X. By Lemma 3 X
contains t orthogonal rank 1 matrices and hence, by the first part, is
/-decomposable. But f=Sr and hence X is r-decomposable.

LEMMA 5. Let X be a space of nxn matrices all of which have rank at

most r. Suppose that dim X=nr-k and that X contains the matrix I r I.

Then X has a subspace of dimension at least r2 — fc whose matrices all have

the form I I where A is an rx.r matrix.

Proof. Throughout the proof all matrices will be partitioned as

( I where A is an rxr matrix. By Lemma 1 of [2] for all such

matrices we have D = 0 and CB = 0. We define several spaces related to
X:

*-{(? JMc ? ) • « - — 4

Clearly 9<=;Sl(B& and so x = dim jrf + dim gS-dim^^O. Moreover

dim-sissr2 and so y = r2-dimsis^O. For ( n)e^ t n e m aPPm8

I n / ^ l n n I is o n t o ^ ancl has kernel "S,,; hence dim y+dim ^0 =

dimST.

Let L « ) e 3 B sothat ( ) e X for some A, C, and let ( n

Then trace (CB) = 0 and, since ( T\eX' trace (C+Q)B = 0;

hence trace (QJB) = 0. We may identify 98, <€Q with spaces of r x ( n - r ) ,
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(n — r)xr matrices respectively and, with this identification, each annihi-
lates the other with respect to the trace bilinear form. Thus dim 98 +
dim <tf0*= K"~ r ) and so z = r(n-r)~dim 98-dim Q ^ O .

We then have

dim X = dim 9+dim %, = - x + dim si + dim 98 + dim <£„

= -x + r2- y +dim 98 +dim %

= -x + r2 - y + r(n - r) - z

= nr-(x+y + z)

and it follows that x + y + z = k.

Let 'S, = 11 ) € a?l. Then for any ( ) e <Sl the argument used

above to show that "€0 annihilates 98 shows also that the matrix C
annihilates 98. By definition of z, ^ 0 has codimension z in the annihilator
of 98 and consequently the subspace "90 of "^ consisting of all those

I 1 e 2£ for which I I e %) has codimension at most z in $!. The
\ V̂  v / \L/ vl/

map ( _ n) *~* ( n r\) m a P s ^» o n t o & ̂  ^ anc* hence the image of ^0

under this map has codimension at most z in ^ n si. However this image,

Xo, consists of all matrices I I for which I leaf for some
\ \j yj i \ \s \j /

i-e- consists of matrices I n n o w

dim %0 3= dim 9 D si - z
= dim 9 + dim si - dim (9+si) - z
ssdim^+dim jrf-dim (j^©98)-z since
= dim y-dim98-z
= dim si-x — z
= r2-x-y-z
= r2-k

and this completes the proof.

LEMMA 6. Let % be a space of rxr matrices of dimension at least
r2 — r +1 defined over an algebraically closed field. Then X contains r
orthogonal rank 1 matrices.

Proof. Let 9 be the subspace generated by the rank 1 matrices in 2£
and let t be the maximum rank of any matrix in <8/. We shall prove that
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t = r from which the conclusion will follow by applying Lemma 3 to "8/. By
Lemma 4 <8/ is r-decomposable and we may replace 2£ by an equivalent

space so that every matrix of <& has the form I ) where U is a p x q

matrix with p + q = t. I f p = r or q = r then clearly t = r so from now on
assume that r-p, r — q are positive. Let

6*"< Z a n (r-p)x(r-q) matrix}.

The condition on dim 2£ implies that d im3?^ ( r -p ) ( r -q ) - r + l and, by
definition of "3/, % contains no rank 1 matrix. However the dimension of
the (irreducible) variety of {r-p)x(r-q) matrices of rank at most 1 is
( r -p) + ( r - q ) - l = 2 r - f - l (Theorem 2.1 of [3]). Since this variety in-
tersects 2E only in the zero matrix the dimension theorem of algebraic
geometry yields

2 r - f - l + dim2r-(r-p)(r-q)=sO.

Hence 2 r - r - l + ( r - p ) ( r - q ) - r + l - ( r - p ) ( r - q ) s s O from which we
obtain r> r as required.

This lemma has an equivalent formulation which we feel is interesting
enough to be mentioned even though we make no use of it. Consider any
r - 1 rxr matrices and let si be the space they generate. The annihilator
space with respect to the trace bilinear form has dimension at least
r*-r+l and so contains r orthogonal rank 1 matrices. Thus there is, by
Lemma 1, a space equivalent to si every matrix A of which satisfies

trace (AF,) = 0, i = l ,2, . . . , r .

But this condition is just that A has zero main diagonal. This gives

COROLLARY. Given any r - 1 rxr matrices with entries in an algebraically
closed field there exist row and column operations which simultaneously
reduce all their main diagonals to zero.

This lemma and corollary are not true for an arbitrary field. For
suppose that r = 3 and consider the 7-dimensional space of all matrices of
the form

/a b c)

(d f g
\e - g fl

Over the reals such a matrix has rank 1 only if / = g = 0. However the
,a b c\

5-dimensional space of all I d 0 0 1 cannot contain 3 orthogonal rank 1
\e 0 0/
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matrices because all matrices in this space have rank at most 2. The

(0 0 0\
0 1 0 1 and
0 0 - 1 /

(0 0 0\
0 0 11 and hence, over the reals, these matrices are not equivalent to
0 1 0/

matrices with zero diagonal.

LEMMA 7. Let X be a space of matrices all of rank at most r and
containing a matrix of rank r. Then X is generated by matrices of rank r.

Proof. Let AeX and have rank r and let A' be an rx r non-singular
submatrix of A. Let B be any other matrix in X and let B' be the
corresponding rxr submatrix. The equation det(AA' + 3 ^ = 0 has at
most r solutions and since the ground field has r+1 elements AA' + B' is
non-singular for some A. But then B is a linear combination of A and
AA + B both of which have rank r.

PROOF OF THEOREM. Let F be the field over_which the matrices of X are
defined, Jet F be its algebraic closure and let X be the vector space over F
of all F-linear combinations of matrices in X. Choose an F-basis
Au A2, for X; this set is then also an F-basis for X. Consider any set
of r+1 rows and r + 1 columns and for every matrix A let A' be the
(r + 1) x (r +1) submatrix of A consisting of these rows and columns. The
polynomial det (£ x,A|) is then zero for all values in F of the variables
xux2, This polynomial is homogeneous of total degree at most r+1
and no terms x\+1 occur since the coefficient of such a term is det A\
which is zero. Hence the polynomial is of degree at most r in each
variable and since |F]>r + l it vanishes identically. Thus every (r + l)x
(r+1) submatrix of each matrix of X is singular and so X also consists of
matrices of rank at most r.

We now use the lemmas to prove that X is r-decomposable. Let 9tx be
the space of matrices obtained by adding m-n columns of zeros to the
matrices of X if m 2=n, or by adding n-m rows of zeros if ns» m.
According to Flanders theorem [2] Xx (indeed X) must contain a matrix
of rank r precisely and by passing to an equivalent space this can be taken

( J. Then Lemma 5 shows that Xt contains a subspace of dimen-

(A 0\
I with A an

rXr matrix. By Lemma 6 this subspace contains r orthogonal rank 1
matrices and hence, by Lemma 4, $tx is r-decomposable.

as
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We interpret each matrix in P̂ as a linear mapping from the space Vm

of row m-vectors over F to the space Vn of row n-vectors over F. Then
each matrix in dtx can be interpreted as a linear mapping from Vm © Vn_m

to Vn, where the matrix acts on Vm as a matrix in St and maps V n m to
zero. The condition that Xi is r-decomposable is that Vm©Vn_m hasa
subspace Ux of codimension p which is mapped by every matrix in %tx

into a subspace W of Vn of dimension q. But ( /=l / 1nV I B has codimen-
sion *£p in Vm and is mapped by all matrices in %tx into W. Since l/s£ Vm-
the matrices of %t map U into W and hence S£ itself is r-decomposable.

Some space equivalent to % is therefore contained in 9L (p, q) for some
p, q with p + q = r. One easily calculates that dim 94(p, q) = np + mq - pq
and if we put dim S£ = max (mr, nr) — k with k^r-1 we have

max (mr, nr) - k «s np + mq - pq.

If m<n this leads to

nr-k^np + mq -pq^np + (n- \)q — pq= nr-q-pq

from which

and so q = 0. Similarly if m>n we have p = 0. If m = n then

nr - k « n(p + q) — pq — nr - pq

and sopq^k^p + q-1 and therefore (p - l)(q -1) as 0. Hence if p and q
are both non-zero we have k = r — 1 and one of p and q is 1.

The theorem therefore holds in the algebraically closed field F and we
now deduce it for the original field F. To show that the r-decomposability
is realisable over F we must show that U and W above have bases of
vectors with entries in F.

Observe that, for any matrix X e 26 of exact rank r, we have ker X*zU.
If q = 0 such a matrix has null space precisely U. But the null space of a
matrix over F is spanned by F-vectors and so in this case U, and certainly
W, is spanned by F-vectors.

If q = 1 every matrix of rank r in S£ has a null space of codimension 1 in
17. If these null spaces are not all equal then U will be generated by these
null spaces and again will have a basis of F-vectors. Since W is spanned
by the image of a matrix in 9£ of rank r, W also has a basis of one
F-vector. If the null spaces of the matrices of rank r in X are all equal
then by Lemma 7 all matrices of 8? map some (m - r)-dimensional
subspace to 0 and hence X is equivalent over F to a subspace of 9i(r, 0).

The cases q = 0, p - 1 can be treated in a similar way by regarding SC as
a space of mappings from a vector space of column n -vectors to a space
of column m-vectors.
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