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The Kronecker-Weierstrass theory of pencils is extended to give a necessary and sufficient condition that
two 2 % i % n lensors are equivalent, The conneciion between equivalence class representatives and the
triple transitivity of PGL(2,F) is discussed. One consequence of the discussion is that the number of
inequivalent 2 x 3 x n tensors is finite. An efficient algorithm is given for testing the condition which
ultimately depends on a fast pattern matching algorithm.

1. INTRODUCTION

Let U,V,W be finite dimensional vector spaces over a field F and let ¢, § be two
trilinear forms from U x I x ¥ into F. We say. that ¢, @ arc equivalent if there exist
automorphisms o, 3,7 of U,V, W such that

dlu, v, w) = 8(a(1),f(v),y(w))  forall (uv,w)eUxVxW

A trilinear form can be defined by its effect a;j. = ¢(e;, f;,8¢) on the triples
(i, f}:8x) drawn from fixed bases of U,V,W. Then the definition of equivalence
becomes the condition that two third order tensors {a;;i), (bijx) satisfy

dijr = E UirVjsWibrss for some non-singular matrices (1;,), (v js), (Wis)
.50

A trilinear form ¢ : U/ x V' x W — F gives rise, in a natural way, to a bilinear map-
ping { : U x V' — W*, the dual of W, through the equation

C(u,v)(w) = ¢(u, v, w)

so the tensor equivalence equations also describe the natural equivalence on bilin-
ear mappings.

In this paper we shall be considering the case that one of U, ¥, (W say) has
dimension 2 {dimension 0 is frivial and dimension 1 is easy). In this case, putting
Gy = (aiji)y He = (bijr), k£ = 1,2, the tensor equivalence condition can be formu-
lated so that it is the existence of non-singular matrices P, Q, X such that

PG1Q = x1 Hh + x12Hh
PGyQ = xo1th + xnHy
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where, if Gi, H; are m x n matrices, P, Q and X are mxm, nxn and 2x2
respectively,

There is an old theory dating back to Kronecker and Weierstrass which shows
that every pair of m x n matrices can be transformed by pre-multiplication and
post-multiplication by two non-singular matrices to a canonical pair whose entries
are largely zeros and ones. A good account of this theory is given in [2]. Kronecker—
Weierstrass equivalence of pairs (G1, G2) and (Hy, /) of m x n matrices (the equa-
tions above with X = I is a stronger equivalence than tensor equivalence. There-
fore there is the possibility that distinct Kronecker—Weierstrass classes might fuse
under tensor equivalence, We shall give computable invariants to distinguish the
tensor equivalence classes and an efficient algorithm for testing equivalence. As an
illustration of the weaker equivalence we show that there are only finitely many
equivalence classes of 3 x 12 x 2 tensors for each n (whereas, for Kronecker—Weier-
strass equivalence, there are infinitely many classes).

The problem of finding invariants to distinguish the tensor equivalence classes
has previously been considered by Ja'la’ [3] and our approach is similar to his.
Unfortunately there is an error in section 3 of [3] and the invariants claimed in that
paper are not distinguishing invariants of each equivalence class and so Theorem 2,
3, and 4 are false. However section 2 of {3] contains carrect results which we shall
build on.

2. TENSOR EQUIVALENCE

Any m x n x 2 tensor can be specified by two m x 1 matrices Gy and G as indi-
cated in section 1 and these define a homogeneous pencil pGy < AG2 (p and A are
indeterminates). The Kronecker—Weierstrass theory shows how this pencil is made
up of a regular part and a singular part. Our concern here is with regular pencils
(m = r and det(tG + AG,) # 0). It was shown in section 2 of [3] that the tensor
equivalence theory for the singular part of a pencil is no different to that for the
Kronecker-Weierstrass equivalence theory; and, therefore, once the tensor equiv-
alence theory is worked out for regular pencils we can immediately obtain it for
general pencils.

Much of the discussion concerns homogeneous polynomials in g, A and we pref-
ace it with a remark about when two such polynomials are “the same”. We regard
two polynomials f(p, A),g{u,A) as essentially the same polynomial if they are pro-
jectively equivalent, that is f(u, A) = kg(p, A) for some non-zero constant k. In par-
ticular each linear polynomial ap 4 bA determines and is determined by a unique
ratio a/b (the ratio co corresponds to b = ().

As in [3] we let Dy{p, A) be the greatest common divisor of all minors of order
k in the n x n regular pencil pG + AG,. Then the classical homogeneous invariant
polynomials are defined by

7 Dy +1(#’: ’\)

ik(lu!A) = Dn—k(# A) L

(It can be shown that these quotients are indeed polynomials and, moreover, that
ir(p, A) divides i;_1(p, A).) The invariant polynomials factor into powers of, say r,

1<k <n
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distinct irreducible polynomials

i1 A) = pL(m AY 5 2 (p A)™ - (s A)™
(i A) = r(p A) G2 ()™ - r (11, AY™
in(p, A) = G1p, A) ™ da (it A2 e (j1 M)

Of course 7y < 7,1, for each relevant s,¢ and, to avoid trivialities, we take 711,712,
.., Ty # 0, although neither of these facts plays a significant part in what follows.

The invariant polynomials (or their irreducible factorisations) characterise the
Kronecker—-Weierstrass equivalence class of the pencil pG + AG,. We must investi-
gate these factorisations under the more general tensor equivalence. To this end let
(Hi,Hy) be any pair of n x # matrices which define a tensor equivalent to the one
defined by (Gy,Ga). Then there exist non-singular matrices P,Q and a non-singular
matrix (71! 312} such that

PH\Q = x11G1 + x1567 and PHQ = x31G + x00Ga

The pencil pPH,Q + APH,Q has the same invariant polynomials as pH; + AH,. On
the other hand

}LPH1Q -} APHZQ = (,uxn + Axgl)Gl + (ﬂ,xlz + a\xgz)Gz

and therefore the invariant polynomials for pHy + AH, are obtained from those of
Gy + AG;, by replacing g by pxy + Axap and A by pxpz + Axg; and their factorisa-
tions are

dy(pxyy + Axap, frx1p -+ Ax)™ L@ (pxn + Axay, prxrn + Axp)™ (1<k <n).
As a consequence we see that the family of column vectors
1 Ti2 Tir
ca=| I =] i st =

Tl Tz Tur

remains invariant under tensor equivalence.
From now on we shall take the field F to be algebraically closed so that the
irreducible polynomials ¢;(pt, A} are linear, say

S, ) = o+ A for some ratio  p; = o /.
The corresponding polynomials for the equivalent pencil pH; + AH, are
Pi(ppxnn + Axa, px12 + Axn) = (aixu + Gixp)p + (qxg + fixan)A
and are determined by the ratios

axn + Gixe _ xupi txn
X+ Gixn  xupi +xn
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Summing up what we have obtained so far, we know that each regular pencil uG; +
AG, determines a family of columns ¢y,¢3,...,¢, and corresponding distinct ratios
P15 P2, - oy pre Moreover, if juHy + AH, is an equivalent pencil, it determines the same
family of columns and the associated ratios have the form (xyyp; + x12)/(x210: + X22)
for some nonsingular matrix (31t $12).

At this point it is convenient to adopt a notation which recognises that the r
invariant columns may not be distinct. We describe the r invariant columns by the
column signature ¢{*'c™ ...¢;" which indicates that 72y columns are equal to ¢,m;
columns are equal to ¢z, and sao on; thus > m; = r, Moreover we order the columns
lexicographically so that ¢1 > ¢ > -+« > ¢4,

Then, of the r ratios py,...,pr, a set Ry of my of them is associated with column
¢1, a set Ry of my of them is associated with column ¢z, and so on, The sequence
(R, Ry,...,Ry) will be called the ratio signature of the pencil. With these notations

we may state the main result on tensor equivalence of regular pencils.
THEOREM Tivo regular pencils of n x n matrices are tensor equivalent if and only if

(a) they have the same column signature, and
(b for some non-sing_gtdc{r mairix (311 $12) th.e mapping p— gxnp-l- x12)/ (xa1p +
Xaz) maps the ratio signature of one pencil onte the ratio signature of the other.

Proof The discussion above has shown that two tensor equivalent pencils must
fulfil (a) and (b). Conversely suppose that (a) and (b) hold for two pencils pGi +
AGy and pH; + AH,. The first of these is tensor equivalent to the pencil u(x1; G +
x12G2) + A(x21 Gy + x2:G3). The latter pencil has, by the remarks above, the same
column signature and ratio signature as pH; + AH;. But these two signatures de-
termine completely the invariant factors of a pencil and so the pencils p(x1; Gy +
X12G2) + AM(x2 Gy + x22G;) and pH) + AH, are equivalent in the Kronecker—Weier-
strass sense. Consequently Gy + AG, and pHy + AH, are tensor equivalent,

3. EQUIVALENCE CLASS REPRESENTATIVES

In the Kronecker—Weierstrass equivalence theory there is a natural representative
of each equivalence class (the Kronecker canonical form, see [2]). For the tensor
equivalence theory there does not seem to be a natural representative in most cases.
To obtain a representative we would have to choose some ratio signature in an orbit
of ratio signatures under the group PGL(2,F) of all transformations z — (x¥13z +
x12)/ (%212 + X22) with x11x22 # x12221. This group is a sharply triply transitive group
in its action on the set of all ratios FU {co} and consequently given any triple of
ratios (o, §8,y) there is a unique transformation in PGL(2, F) which maps this triple
to the triple (o00,0,1).

If Ri,Ra, R, all had size 1 we could take a representative with Ry = {co}, Ry =
{0}, Rs = {1}, Since the only element of PGL{2, F) which fixes the triple {c0,0,1)
is the identity no further conditions can be placed on the ratio signature. For other
cases there is not such an obvious triple of ratios to transform to (oc0,0,1) and
some artificiality has to be introduced. One possibility would be to totally order
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the sequences of subsets of F in some way (for example, any total order on F
induces an order on subsets of F and hence on sequences of subsets of F by lexico-
graphic rules). As an example of how to use such an order suppose that |Ry| > 3 and
we decided to transform a triple of ratios in Ry to (o0,0,1). There are mj(my — 1)
x (nty — 2) triples in Ry, any of which could be mapped to (oo, 0, 1); we would choose
the one which minimised the resulting ratio signature. Further details of this ap-
proach are given in [1],

When #n = 3 the triple transitivity of PGL(2, F) allows a complete enumeration of
the tensor inequivalent regular pencils. The restrictions Ei. iTij = 3and 74 < Tty
show that the only possible column signatures are

3 2 1 1
@ o], @) |1, i |0 0) vy |[1]|0f,
0 0 0 0
1n°? 1
™ o], |1
0 1

and to each column signature there corresponds just one equivalence class since
cach ratio signature contains at most 3 distinct ratios and these can be taken as
00,0,1. Equivalence class representatives are now easily found. For example, the
pencil

A0 0

0 p 0

0 0 A+p
represents case (v) (this case arises whenever det(2Gy + AGy) is multiplicity-free
and so is much the most common),

In conjunction with [3] it follows that there are only a finite number of equivalent
2 % 3 x n tensors.

For regular pencils with » >3 it is more useful to have an efficient procedure for
testing equivalence of ratio signatures under the action of PGL(2,F ) A test which
operates by computing equivalence class representatives would require O(n*logn)
arithmetic operations if it used the suggestions for equivalence class representatives
above. In the final section we give a test for tensor equivalence whose cost is only
O(n*log n) arithmetic operations assuming that the Kronecker canonical forms have
been computed.

4. TESTING EQUIVALENCE

In this section we give an algorithm to test condition (b) of the theorem. Let
R =(Ry,Ry,...,R,) and S = (5,%,...,5) be two ratio signatures with |R;| = |5,
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i=1,2,...,f and with 3" |R;| = r < n. We shall show how to find, in O(#*logn) op-
erations, an element o € PGL(2, F) which maps R to $ (or prove that no such ele-
ment exists).

Let r; be one of the points of Ry and let $; = {sy,...,8,}. Consider the following
elements of PGL(2,F):

1
®:z— s Briz— k=12,...a

Z—H z—s5;’

Note that rya = 530 = co. If there is an element ¢ € PGL(2, F) which maps R to
S then it must map r; to some s;. But then cca™ O’ﬁk = o5y = 51 = oo so that

~1g6; would be affine (of the form z — uz + v) and it would map each Rie to
S,ﬁ; Conversely, any affine transformation which maps each Rja to S;f8, has the
form a~!of; where o € PGL(2, F) maps R to S. Thus, to construct ¢ (if it exists)
we have to consider, for each k = 1,2,...,4, whether there exists an affine transfor-
mation mapping Ra to SG;. If, for a fixed k, we can do this in O(nlogs) operations
then we shall have a test for condition (b) in O(n*logn) operations.

So it remains to consider the following problem. If R = (Ry,Ry,...,R;) and § =
(S1,82,...,5;) are two ratio signatures, does there exist an affine transformation
which maps R to S. We may presume that the point co occurs in neither signa-
ture for, if it did occur, it would have to occur in corresponding sets R;, §; in order
for o to exist and could be deleted from both. The affine transformations form a
subgroup of PGL(2,F) and we use this fact to reduce the search for ¢ to affine
transformations of a more specific form.

Let R=[JRi, §= S, put ¢ =(1/r)> g ¥, d = (1/r)3,c5 X, and define 7 :
z—z—c, §:z—2z—d. It is easy to check that, if ¢ maps R to §, then co =4
and 7~10§ maps Ry to §6; then, because ¢y = dé = 0, v~ 104 has the form z — pz.
Hence, by replacing R, 8 by Ry, $§ we may restrict our search to ¢ of the form
z—pz.

For a further reduction we compute

f=max{lz]|z€R), g =max{|z}|z€ ),

let € be the transformation z — (f /g )z, and replace S by Se. Any affine transforma-
tion which maps R to (the new) S must map points of maximum modulus of R into
points of maximum modulus in S. But these two maxima are now equal and so the
only transformations that can map R to S have the form z — ze'®; they correspond
to rotations about the origin in the Argand diagram.

We shall represent every point in R = |JR; by a triple (6,4,{) consisting of its
argument &, modulus p, and nametag (the index ¢ of the set R; which contains it),
Then we sort these triples so that they are listed (61, pe1,71), (82, b2, 2}, « -, (Brs fhry Br)
in non-decreasing order of argument, with triples with equal arguments coming in
non-decreasing order of medulus, Similarly we represent and arrange the points of
§=1JSi as a list (¢1,v1,/1)s--,(Pr, Vr, jr). Any rotation which maps R to S must,
for some #, map each ;€% onto vpye!%** and have i = Jean (here, and sub-
sequently, all subscripts are reduced modulo r to lic between 1 and r). Thus a
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necessary and sufficient condition for such a rotation to exist is

Ore1— 0 = Pranst — Prvh
i = Vith
Ik = jr+h

for k = 1,2,...,r (and the first equation is interpreted modulo 27},

Now put ap = (841 — Ok, pix, ix ) and Be = (dr+1 — P&, Vi, jr). Then, if we consider
the two sequences (ay, ...,o,) and (By,..., 5), the necessary and sufficient condition
above is that some cyclic shift of one sequence produces the other, But this condi-
tion can be formulated as a pattern matching problem: it is that {oy,...,a) occurs
as a substring of (81,...,5,51,...,f—1). This question can be decided in O{r) op-
erations by the Knuth-Morris-Pratt pattern matching algorithm [4].

The cost of deciding whether an affine transformation mapping R to 8§ exists
is dominated by the sorting step and is O(rlogr) = O(nlogn) as required. This
completes the discussion of the algorithm to check condition (b) of the theorem.

References

f1] M. D. Atkinson, Another addendum to Kronecker’s theory of pencils, SCS-TR-29, School of Com-
puter Science, Carleton University, 1983,

[2] E R. Gantmacher, The Theory of Matrices, Vo, 1 and 2, Chelsea, New York, 1974,

[3] J. Ja'l&’, An addendum to Kronecker's theory of pencils, Siam J. Appl. Math, 37 (1979), 700-712.

[4] D. E. Knuth, J. H. Pratt and V. R, Morris, Fast pattern matching in strings, Stam J. Comp. 6 (1977),
323-350.




