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Abstract

The classification of spaces of matrices of bounded rank is known to depend upon 'primitive' spaces,
whose structure is considerably restricted. A characterisation of an infinite class of primitive spaces is
given. The result is then applied to obtain a complete description of spaces whose matrices have rank
at most 3.

1980 Mathematics subject classification (Amer. Math. Soc): 15 A 30, 15 A 03.

1. Introduction

Given several arbitrary mX n matrices of rank at most r < min(w, n) it is 'likely'
that there will be a linear combination of them having rank greater than r. In
other words, the hypothesis that every matrix in a vector space of matrices has
rank at most r, is a restrictive one. However there are enough examples of spaces
of matrices which have this property to make the classification of such spaces
rather difficult. To make some progress on this problem Atkinson and Lloyd
(1981) introduced the idea of a primitive space and showed that it was sufficient
to classify the primitive spaces. This paper takes a step towards this classification
by giving a simple characterisation of an infinite class of primitive spaces. The
result is strong enough to lead to a complete description of primitive spaces (and
hence all spaces) whose matrices have rank at most 3.

This work was carried out at Carleton University, Ottawa and partly supported by the Canadian
National Science and Energy Research Council under Grant No. A7171.
© Copyright Australian Mathematical Society 1983

306



f 2 J Primitive spaces of matrices ol bounded rank. H 307

We briefly review the necessary definitions. T w o spaces %, ^ of m X n
matrices are said to be equivalent if

%=P%Q= {PYQ: YG^}

for some non-singular m X m and n X n matrices P and Q. This definition
recognises that 9C and ^ commonly arise as the matrix representations of spaces
of linear transformations from an m-dimensional vector space U into a n-dimen-
sional vector space F; 9C is equivalent to % if % represents the same transforma-
tions as ̂  but with respect to different bases of U and V.

We denote the maximum of the ranks of the matrices (or transformations) in a
space % by p(9C). It is shown in Atkinson and Lloyd (1980) that, when the
ground field has more than p(%) elements, p(9C) cannot increase if the field is
extended. For this reason we shall always assume that the cardinal of the ground
field is greater than the rank of any matrix in the spaces under consideration.

A space % of matrices is defined to be primitive if the following conditions
hold:

(i) no space equivalent to 9C consists of matrices with a fixed row equal to zero,
(ii) no space equivalent to 9C consists of matrices with a fixed column equal to

zero,
(iii) no space equivalent to % consists of matrices [uY] where u is a column

vector and rank Y < p(9C),
(iv) no space equivalent to % consists of matrices [y] where u is a row vector

and rank y<p(9C).
Translating these conditions into the language of linear transformations we can

define a space 2 of linear transformations from U into V to be primitive if
(i) the images of U under the transformations in % generate V,
(ii) no non-zero element of U is in the kernel of every transformation of %,
(iii) U has no subspace (/, of codimension 1 such that % restricted to Ux

consists of transformations of rank at most p(%) — 1,
(iv) V has no 1-dimensional subspace Vx such that all the composite transfer-

Z IT

mations £/-» F-» F/K,, z G2and ir the canonical projection, have rank at most

It is not difficult to see that conditions (iii) and (iv) are equivalent (respectively)
to

(iii)' U = <kerz : z G 2 and rank z = p(2)> and (iv)' 0 = n (z : z G % and

The main justification for the idea of primitivity is the following result of
Atkinson and Lloyd (1981).

THEOREM A. / / % is a space ofmXn matrices then there exists a primitive space
ty and integers p,q^0 with p(%) = p + q + p(^) such that 9C is equivalent to a
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space of matrices of the form

pXq

Y
0

0
0

where the submatrices Y constitute the primitive space SH.
Moreover for a primitive space %(p — 0, # = 0 , 9 C = ^ ) with r = p(9C) one of

the following occurs:
(i) m = r + 1, n < \r(r + 1),
(ii) m < \r(r + 1), « = r + 1,
(iii) /or some integers c, d > 2 w/fA c + d = r,

w < c + 1 + |rf(rf + 1) and n < rf + 1 + ^c(c + 1).

Note particularly that in a primitive space 9C of m X n matrices with p(9C) = r
we have w, « < ^r(r + 1). Atkinson and Lloyd (1981) gave examples to demon-
strate that this bound is tight (although for r > 3 it cannot be attained simulta-
neously by m and n). In the next section we generalise these examples and sketch
a construction which shows that, for fixed m, n and r, there may be an infinity of
inequivalent primitive spaces of m X n matrices. In Section 3 we prove that the
primitive spaces constructed in Section 2 are the only ones which can arise when
m or n is close to the upper bound \r{r + 1). In the last section we obtain a
description of all primitive spaces whose matrices have rank at most 3. The
precise determination actually depends upon the ground field and we give full
details only in the algebraically closed case. Finally we observe that our results
have implications for the stronger hypothesis, studied by Westwick (1972), of a
space all of whose non-zero matrices have rank exactly 2 (or rank exactly 3).

2. Infinitely many primitive spaces

Throughout this section U and V denote vector spaces and dim U = r + 1. If <f>:
U X U -* V is any alternating bilinear mapping we shall let S(</>) denote the
space of all linear transformations <j>u,uGU, where

<t>u(x) = <f>(u, x) f o r a l l x E f / .

Since <i>u(u) = 0 we have rank §u < r. In general however S(<f>) need not contain
any transformations of rank precisely r, nor need S(<j>) be primitive.

Let L(<j>) = U © V and define a multiplication on L(<j>) by the rule

v)(u'
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Endowed with this multiplication L(<j>) is a Lie algebra of nilpotency class 2 and
we are in the situation covered by the proposition in Section 2 of Vaughan-Lee
(1974). Interpreting this proposition in our notation (and checking that its proof
is independent of the ground field) we obtain

LEMMA 1. Suppose that {u: <}>(u, U) has dimension r) does not generate U. Then
U has a proper subspace Ux such that (<t>(Ux, £/,)> - (<j>(U,U)).

In order to apply this lemma we specialize even further. From now on we take
d i m F > 1 + \r{r — 1) and consider only alternating bilinear mappings <j> such
that V = (<t>(U,U)). Under these conditions we have

LEMMA 2. p(S(</>)) = r and S(<t>) is primitive.

PROOF. Notice first that {u: <j>(u,U) has dimension /•} generates U; for
otherwise the previous lemma would show that V— (^(U^U^) for some sub-
space I/, of U of dimension at most r, and so we would obtain dim V < \r(r — 1).
In particular S(<j>) contains transformations of rank r and therefore p(5(<#>)) = r.

Checking the requirements for primitivity we have condition (i) immediately
from V = (</>((/, U)). Condition (ii) is also easy for if it did not hold there would
be a non-zero vector u G U such that (j>(u, U) = 0 and it would follow that
dim V = dim«<K£/, U))) < {r(r - 1).

The initial observation of this proof can be rephrased as

(ker <j>u: <f>u has rank r} generates U

so requirement (iii)' holds. Finally suppose V has a 1-dimensional subspace Vu

such that all the compositions

<t>u
UV

have rank at most r — 1. Applying Lemma 1 to the bilinear mapping TT<$> shows
that dim V/Vx < jr(r — 1) and hence dim V =£ 1 + \r{r — 1). This contradiction
proves that there can be no such subspace F, , and so requirement (iv) holds.

By arguing along the lines followed by Atkinson and Westwick (to appear) one
can show without much difficulty that, with two alternating bilinear mappings ^>,
and 4>2 subject to the conditions above, we have S(<f>,) equivalent to S(<j>2) if and
only if the Lie algebras /.(<£,) and L(<j>2) are isomorphic. Appealing to the results
of Gauger (1973), especially Section 2 and Theorem 7.8, we can obtain (over an
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algebraically closed field) infinitely many inequivalent primitive spaces S(<j>)
provided that n — dim V satisfies

1 + kr{r~ 1 ) < « < \r(r+ 1) and

(r+ I)2 <[±r(r+ 1) - n]n + 1.

3. Classification

In the previous section it was shown that, if dimU = r + 1, d i m F > 1 +
^r(r — 1) and </>: U X £/ -» F is an alternating bilinear mapping whose image
spans V, then S(<j>) is a primitive space. In this section we prove the following
strong converse.

THEOREM B. Let % be a primitive space of m X n matrices with p(%) — r and
n > 1 + \r(r — 1). Then m — r+\= dim9C and 9C is a matrix representation of
a space S(<j>)for some alternating bilinear mapping defined onan(r + X)-dimensional
vector space.

The key to this theorem is a lemma which may have implications in other
investigations of this type.

LEMMA 3. Suppose that all linear combinations of the matrices ['$'%] and [£%]
have rank at most r.

Then D = 0 and CAkB = 0, k = 0,1,2,....

PROOF. That D = 0 and CB = 0 was proved by Flanders (1962) but our proof
would not be shortened significantly by assuming these facts. The lemma will
hold provided that, for every submatrix of [£ %] of the form [*v

d] where u is a row
of C and v is a column of B, we have d = 0 and uAkv = 0, k = 0,1,2,
Consequently it suffices to consider this special case.

If X is transcendental over the ground field the matrix

\A-\I V]
u d\

is singular, so there exists some non-zero row (r + l)-vector [x, a] (x being an
r-vector) with the property

Among the vectors which satisfy this equation we choose one whose components
are polynomials in A of least degree e < r. We may put x = x0 + Ax, + • • • +Acxe
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and a = ao + Xa, + • • • +Xeae where each xt is an /--vector and each a, is a scalar.
Substituting in the equations

x(A - XI) + au = 0 and xv + ad - 0

and equating powers of X to zero we obtain

(1) x0A = -aou
xxA — x0 — axu

XtA =Xe-\

and
(2) xov + aod=0

xp + aed - 0.

The final equations of (1) and (2) give aed = 0. By the minimality of e and since
xt = 0 we have ae ¥= 0. Thus d = 0 and so
(3) x,« = 0, i = 0 , l , . . . , e .

The penultimate equation in (1) together with ae ¥= 0 gives u G (* e - i ) - This
estabUshes the first step of an induction in which we prove that

(4) uAkG(x0,xi,...,xe_i), A: = 0 , 1 , 2 , —

If this holds for some fixed k then

uAk+l G (x0A, xxA,... ,xt_xA) C (u,xo,xl,...,xe_2)

C (xo,xu...,xe_x) since M e ( J C E _ , ) .

The lemma now follows from (3) and (4).

PROOF OF THEOREM B. Theorem A and the inequality n > 1 + \r(r — 1) show
that m = r + 1. By hypothesis, 9C contains a matrix of rank r and so, replacing 9C
with an equivalent space, we may take [^Q] G 9C. Let Ax, A2,... be a basis for
9C, let x,, x2, • • • be independent transcendentals and put X = 2 x(At, a generic
matrix of rank r. Since every linear combination of X = [* %] and [fr®] has rank
at most r, Lemma 3 tells us that d = 0 and uAkB = 0, A: = 0 ,1 ,2 , . . . .

Notice next that rank B = r — 1. Certainly rank B < r — 1 since « ^ 0 and
rank X = r. On the other hand if rank 2? < r — 1 the same will be true pf_ every
specialisation B of B and therefore the matrices of % will have the form [£ $] with
rank B < r — 1. But, since the space of matrices B has the 'row condition' of
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Atkinson and Lloyd (1981), Lemma 6 of that paper shows that n < r +
{(r — l)(r — 2) = 1 + {-r(r — 1) which is a contradiction.

Because rank B = r — 1 the equation uB = 0 shows that u generates the null
space of B (regarding B as an operator defined on row r-vectors). However
uAB = 0 also and so uA, being in the null space of B, has the form uA = Xu.

We wish to show that A is a linear function of *,, x2, Suppose that this is
not so and put uA = [qx, q2,...,qr], u = [«,, u2,.. -,ur]. Then each qt is quadratic
in JC,, x2,..., each M, is linear and we have qt = AM,. Suppose «, and Uj are
non-zero. Since qtUj — qjUt and, by assumption, u, does not divide qt, we must
have M, and Uj are constant multiples of one another. Thus every M, is a constant
multiple of some non-zero linear function w and consequently there exists a
constant non-singular matrix Q such that XQ has the form

-[ D
"[0 - - -0

But then rank D < r — 1 and this remains true for every specialisation of X to a
matrix of 9C; thus % is not primitive. This contradiction proves that X is linear.

Now put v = v(x{, x2,...) = [«, —X] an (r + l)-vector with linear compo-
nents and observe that

M ] = [uA -Xu,uB] = 0.
Because t> is linear the mapping 6: % -» £/, where £/ is the space of all row
(r + 1)-vectors, defined by the rule

is a linear mapping. By specialising the equation vX = 0 we obtain 0(A)A — 0
for all A G %.

We claim that 6 is one-to-one and onto. Note first that whenever rank A — r we
necessarily have 6(A) ¥= 0. For suppose, to the contrary, that 6(A) = 0 and let B
be an arbitrary matrix of %. Then 0 = 6{B)B and 0 = [6(A + B)](A + B) =
0{B)A + 6(B)B together give 6(B)A = 0. Thus the image of 6 is contained in the
kernel of A and hence the image of 0 is 1-dimensional. But this means that every
matrix of % has a fixed vector in its null space contradicting the primitivity of %.

We now show that 0 is onto. We have just proved that, for all A G % of rank r,
ker A = 0((A)) C Im0. By requirement (iii)' in the definition of primitivity we
have

U= ( k e r ^ : ^ G%andrank^ = r ) c l m 0 .
Finally 0 is one-to-one. Suppose that 0(̂ 4) = 0 for some A G %. Then by the

argument given above d(B)A = 0 for all B G %. Thus the entire image of 6 is
contained in the kernel of A and, since 6 is onto, A — 0.
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Let V be the space of /j-vectors containing the images of U under the matrices
in %. Define a mapping <#>: U X U -» Fby

<>(«,, u2) = u2(0~l(u1)) for all u,, u2 G U.

Obviously <j> is bilinear and, since M,(0~ 1 (U, ) ) = 0, </> is also alternating. From the
construction it is evident that % can be identified with a matrix representation of
S(4>) and this completes the proof.

4. Low rank spaces

The results of the previous sections allow primitive spaces of matrices of rank
at most 2 to be classified immediately. From Theorem A such a space must
consist of 3 X 3 matrices. Theorem B then shows that the space must be a matrix
representation of a space S(<f>), where <j> is an alternating bilinear mapping on
U X I/onto V(Uand Fboth being 3 dimensional). Modulo automorphisms of U
and V <f> is unique and one can choose bases of U and V so that S(<j>) is
represented by the space of all 3 X 3 skew-symmetric matrices.

The classification of primitive spaces of matrices of rank at most 3 presents
only slightly more difficulty and we have the following theorem which extends a
result of Lloyd (1980).

THEOREM C. Let %be a primitive space of matrices with p(9C) = 3. Then one of
9C and %T (the space of transposed matrices) has the form S(<j>) where <J>:
U X U -» V is an alternating bilinear mapping, dim U = 4 and dim V = 4, 5 or 6.

PROOF. Theorem A shows that 9C is a space of m X n matrices where one of m
and n is 4 and the other is 4, 5 or 6. By replacing 9C with 9Cr if necessary we may
take m = 4. The cases n = 5, 6 are then handled by Theorem B and it is only
when m = n = 4 that additional argument is required.

In this case we replace 9C by an equivalent space chosen so that [frfi] £% and,
as in the proof of Theorem B, let

X =

be a generic matrix (that is, Al,A2,... is a basis for 9C and xl,x2,... are
independent transcendentals). The equations uAkv — 0, k = 0 , 1 , 2 , . . . , may be
recast in the form

u
uA

uA2 [V, Av,A2v,...] = 0 .
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It then follows (from Sylvester's inequality, for example) that

19]

rank
u

uA + rank[u, Av,... ] < 3.

Replacing 9C by %T if necessary we may take

rank
u

uA = 1

and so uA G («>, say uA = Xu. This equation also occurs in the proof of
Theorem B and we complete the proof of Theorem C by repeating the argument
of Theorem B from that point on.

In order to obtain an explicit list of all the inequivalent primitive spaces of
matrices with p(9C) = 3 it would be sufficient, in view of Theorem C, to
determine all the alternating bilinear mappings from U X U into V (whose image
spans V) when dimf/ = 4 and dim V = 4, 5 or 6. Such a determination (at least
for dim V = 4) depends upon the ground field and is easiest to obtain when the
field is algebraically closed. In this case the different mappings have been listed,
in characteristics different from 2, by Gauger (1973), see Section 5 and Theorem
7.12. They can be described by the linear dependence relations which hold
between the vectors ^>{et, e7), where e,, e2, e3, e4 is a basis for U. The possibilities
are

(a) dim V = 6 and no dependence relations (other than those implied by
</>(e,, et) = 0 and bilinearity),

, e2) + <He3, <?4) = 0,(b) dim V = 5 and
(c) dim V = 5 and </>(e,, e2) = 0,
(d) dim V = 4 and <
(e) dim V = 4 and <J

, e2) = <f>(e3, e4) = 0,
, e2) = <j>(ex, e4) + </>(e2, e3) = 0,

(f) dim V = 4 and </>(e,, e2) = <£(<?,, e3) = 0.
We may omit the last of these possibilities for it gives rise to a space

which is not primitive. The others give inequivalent primitive spaces and, together
with the transposed spaces, there are 10 primitive spaces in all with p(9C) = 3.

Finally we can obtain a result on /--spaces: spaces of matrices all, except for
zero, having the same rank r. Westwick (1972) divided such spaces into two kinds,
those which are essentially decomposable (they satisfy Theorem A with ^ the zero
space of 0 X 0 matrices) and those which are not. The indecomposable r-spaces
seem to be less abundant than the decomposable ones. There are no indecom-
posable 1-spaces. It follows from Theorem A and the remarks at the beginning of
this section that, to within equivalence, the space of 3 X 3 skew-symmetric
matrices is the only indecomposable 2-space.
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Over algebraically closed fields the indecomposable 3-spaces can also be found.
The determination of the primitive spaces of matrices of rank at most 3 together
with Theorem A provides a description of all spaces of matrices of rank at most 3.
Routine calculations can then be done to find those which are indecomposable
and contain no matrix of rank 1 or 2. There are just 8 possibilities which we can
list as follows.

(i) m = 4, n = 6: space (a) above,
(ii) m = 4, n = 5: space (b) above,
(iii) m = 4, n = 6: 3-dimensional subspace of (i),
(iv) m = 4, n = 5: 3-dimensional subspace of (ii).

the other 4 possibilities are transposes of these.
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