
SPACES OF MATRICES OF BOUNDED RANK

By M. D. ATKINSON and N. M. STEPHENS

[Received 28 October 1977]

IN this paper we shall consider matrices over a field F and shall prove the
following result:

THEOREM. Let M be a 2-dimensional space o /mxn matrices with the
property that rank (X) *£ k < \F\ for every XeM. Then there exist two
integers r, s, O^r, s *£ fc with r + s = k, and two non-singular matrices P, Q
such that, for all XeM, PXQ has the form

Notice that a matrix of the above form necessarily has rank at most k
and so, apart from the restriction \F\ > fc, our theorem essentially charac-
terises such 2-dimensional subspaces. We may interpret the matrices as
the matrices of linear transformations or of bilinear forms and this gives
the following two equivalent forms of the theorem valid for finite dimen-
sional vector spaces:

COROLLARY 1. Let Jibe a 2-dimensional space of linear transformations
from a vector space U to a space V such that rank (X)s£ k < \F\ for every
XeM. Then there exist subspaces U0^U, V0^V such that
[U: L/0] + dim {V0)=k and L/0X=£ Vo for every XeM.

COROLLARY 2. Let M be a 2-dimensional space of bilinear forms on
UxV to F such that rank(X)«= k<\F\ for every XeM. Then there exist
subspaces U0=5U, V0=sV such that [U: l/0] + [V: Vo]= k and
([/„, Vo)X = {0} for all XeM.

Our interest in this result stems from its application to computational
complexity [1] but conditions like those of the theorem have been studied
before [2,3]. Indeed in [3] the conclusion of our theorem is proved under
the stronger assumptions rank (X) = k for all Xe M and F is algebraically
closed. However our result, besides being more general, has a shorter
proof.

We note that, in general, the conditions in the theorem cannot be
weakened. The condition \F\ > k is necessary on account of the space
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generated by 1 and 1 over GF(2) and the condition
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dim (M) = 2 is necessary on account of the 3-dimensional space of 3 x 3
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skew-symmetric matrices over any field. In each of these examples all the
matrices clearly have rank at most 2 but a small amount of calculation
reveals that the spaces do not satisfy the conclusion of the theorem.

Proof of Theorem. We work with a basis of M (consisting of two matrices
A, B) and show that row and column operations may be applied to bring
A and B simultaneously to the required form. We shall assume, by
induction on fc, that the result is already established for smaller values
(the base, k = 0, of the induction is vacuous; the case k = 1 can also be
proved easily and in this case M can be of arbitrary dimension).

We may assume that M contains a matrix of rank precisely k and by
row and column operations we may take it to be

A =
o

with Ao a fc x fc non-singular matrix. Let B complete {A} to a basis of M
and let

B = G]
where C is a fc x fc matrix.

Then G = 0. For suppose it contained a non-zero entry x. Then by
performing certain row and column operations which leave A invariant
we may reduce all the other entries in the row and column containing x to
zero. It is then clear that rank (AA - B) 3= rank (AA0 - C) + 1 for all A. But,
as Ao is non-singular, the equation det(AAo-C) = 0 has at most fc
distinct solutions. So, as |.F|>fc, we can choose A so that AA0—C is
non-singular and then rank (AA-B)^ fc + 1, a contradiction.

Now let u = rank (D), v = rank (E). Apply row and column operations
to bring B to the form
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where Do, Eo are non-singular uX-u, v x v matrices respectively. These
row and column operations will affect A but it will still have the form

I ) for some possibly different k x fc non-singular matrix Ao.

We partition the matrix B as
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and we let X denote the submatrix of A which corresponds to Y. Since
Do, Eo have ranks u, v respectively it is clear that, for any non-
zero A and for any fi, rank(/xA + AB)5=u + u + rank(/xX+AY). Hence
rank(/xX+AY)=£/c-u-u for all non-zero A. If u = 0 then the
result is already established with r = 0, s = k. Otherwise we have
rank (tiX+AY) =sfc-u- v <k for all ft and all non-zero A. If this in-
equality could be established also in the case A = 0 then the induction
hypothesis would apply to (X, Y). Then there would be row and column
operations which simultaneously reduced X, Y to the form

with p + q = k-u — v. These row and column operations could be induced
by row and column operations on A and B and the theorem would follow
with r = p + u, s = q + v.

Thus, to complete the proof, we have to show that rank (X) =£ h =
k-u-v. Suppose that this is not so. Then let Z be an (h +1)x(h +1)
non-singular minor of X and let W be the corresponding minor of Y.
Then, because nX+ Y has rank at most h for all fi, we have

det(f/,Z+W) = 0

for all /x e F. But since Z is non-singular this equation has at most
h + 1 *£ k distinct roots and this contradicts \F\ > k.
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