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Sets of #t X # matrices whose linear span contains only matrices of rank » — | and 0 are
investigated. To within a naturai equivalence they are characterised for n < 6. Partial
results are oblained for general a.

A k-space as defined by Westwick [7] is a vector space whose
elements are linear transformations from a space ¥ into a space W all
of which, except for the zero transformation, have the same rank k.
k-spaces have since been investigated by Beasley [3, 4] who used them
to obtain results on homomorphisms which preserve rank, and by
Atkinson and Westwick [2] who produced infinitely many examples
for certain fixed k, ¥ and W. k-spaces have also found applications in
algebraic computational complexity {6].

We shall adopt the language of matrices rather than lincar transfor-
mations. Consequently two k-spaces &, % of m X rn matrices are
regarded as equivalent if there exist non-singular matrices P, @ (which
correspond to changes of basis in V¥ and W) such that

Y = (PXQ|X €2°)

Throughout the paper we shall take the ground field to be algebra-
ically closed. Tt is rather obvious that an n-space of n X n matrices
cannot have dimension greater than 1. In view of this Westwick drew
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204 M. D, ATKINSON

special attention to the problem of characterising (n — 1)-spaces of
n X n matrices. We shall call these spaces exactly singular spaces;
their elements are of rank precisely # — | or zero. Using the dimen-
sion theorem of algebraic geometry Westwick showed that exactly
singular spaces must have dimension at most 4. He also proved that
for n = 2,3,4 their dimensions are at most 2, 3, 2 respectively; the last
of these results required quite a tricky argument. Finally, for each odd
n, he gave an example of a 3-dimensional exactly singular space.

In this paper we shall introduce a new technique for studying
exactly singular spaces. We use it to prove a general result on
partitioned matrices and to settle the cases n = 5,6. Before this
however we shall summarise some of the more elementary facts about
exactly singular spaces.

It is evident that a l-dimensional exactly singular space is equiva-
lent to the space generated by the # X » matrix 7,_, ® 0, and so it is
essentially unique. A 2-dimensional exactly singular space determines,
via a fixed basis A, B, a homogeneous matrix pencil A4 + pB. The
Kronecker theory of pencils shows that there is an equivalent pencil
of the form L) @ £ with p + g = n— 1 (see [5] for the notation and
theory). Note that this pencil has (p#, u# 'A, ..., A7%,0,0,...,0) as
a left null vector and (0,0, ..., 0, u?% u77'A, ..., A9 as a right null
vector. For each n there are exactly n inequivalent 2-dimensional
exactly singular spaces, one for eachpin 0 < p<n— 1.

Westwick defined a k-space £ to be essentially decomposable if for
some /i, j with i + j = k every matrix of an equivalent space % had

the form
0

He showed (Corollary 2.2 of [7])

LemMMA | Every decomposable exactly singudar space has dimension at
most 2.

We now define some notation which will be used throughout this
paper.

Suppose % is an exactly singular space of n X n matrices. Let
Ay, A,, ... bea basis of Z, let x;,x,, ... beindependent transcen-
dentals over the ground field and define

X =214,
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a generic point of the linear variety #". Since rank X =1 — 1 X has
both a left null row-vector u and a right null column-vector v. The
components of these vectors may be taken to be homogeneous
polynomials in x|, x,, ... . We shall choose u and v so that the total
degrees p and ¢ of their components are minimal. It is easy to see that
any other left null row-vector with polynomial components must be a
polynomial multiple of u (similarly for right null column-vectors).

Since uP 'PX =0 for any non-singular matrix P, uP lis the
minimal left null vector for PX. Thus the null vectors of spaces
equivalent to 2~ are related to u and v by applying a non-singular
matrix with entries in the ground field. Moreover the generic matrix X
depends on the basis chosen for 27, Any other basis will give a
generic matrix whose transcendentals xi,x%, ... are related to x,
X5, ... by a non-singular linear substitution x’ = x7. Equivalences
and changes of basis may often be used to simplify the components of
u and v.

LemMa 2 If dim&" > 2 then
Dptg=n—1

(il) every specialisation x—>§&, with §+0, specialises w and v fo
HON-ZEro veclors,

(iti) all 2-dimensional subspaces of 2" are equivalent,

(iv} every specialisation x—>§, where £ is a generic point of a 2-
dimensional linear variety, specialises u (or v) to a vector whose poiyno-
niial components span a linear space of dimension p + 1 (or g + 1) over
the ground field.

Proof The adjoint of X has polynomial components of degree
a — 1 (or 0). The adjoint has rank 1, since rank X = n — |, and so may
be written

adjX=r's

where r is a column vector and s is a row vector. Clearly r and s may
be taken to have polynomial components, From the equation X -
adj X = 0 it follows that r is a right null column-vector for X and so is
a polynomial multiple of v, Similarly s {s a polynomial multiple of u.
Consequently

ptrtg<n-—1



266 M. D. ATKINSON

Each 2-dimensional subspace of 2" has a generic point 3£4; where
§1,€,,. .. are linear expressions in two transcendentals {,7. Con-
versely if £,,&,, ... are linear expressions in {,% which are not all
mulfiples of a single expression, then 34, is a generic point of a
2-dimensional subspace of &°.

Now consider a 2-dimensional subspace % of 2 for which u(¢,,
£, ... ) (and ¥(§,&,, . . . ) are non-zero (so their components are of
degree p (and g) in { and ). ¥ is also an exactly singular space and,
according to the Kronecker theory, its generic point is equivalent to a
matrix :

Lrer,

where a,b are the degrees of its minimal degree left and right null
vectors. Since u(£,4,,...) and v(§,,&, ... ) are left and right null
vectors of this matrix we have a < p,b < ¢, and so

n—l=a+b<p+tg<n—1

This proves statement (i) and also proves that p=a, ¢ =25 and,
neglecting scalar factors, adj X = v - u. Statement (ii) foliows from this
equation; for if a specialisation x— £ specialises u to 0 it specialises
adjX to 0 and therefore rank(3§,4,) < n — 1; hence 3EA; =0 and
hence § = 0. Statement (iii) also follows for the above argument shows
that the Kronecker form of every 2-dimensional subspace % is
defined by L/ & I,.

Finally to prove statement (iv) note that the specialisation in
question specialises u to a vector u* whose components are polynomi-
als in two variables { and 5 of total degree p. When the 2-dimensional
linear variety is transformed to Kronecker canonical form the vector
u* is transformed by an # X »# non-singular matrix in the ground field
to a vector ‘

({P,gp"]'q, trr {np—l’np’oio’ ey )

Since the components of this vector span a linear space of dimension
p + 1 the same is true of the components of u*.

PROPOSITION  Let 2 be an exactly singular space for which
y=l4 0
C B
is a non-trivial partitioning with A and B both square. Then
(i) at least one of A and B is singular,
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(ii) if A and B are both singular then dimZ" < 1,
(iii) in any case, dimZ" < 2.

Proof (i) 0= detX = detA - det B and so one of det4 and det B is
zZero.

(i) Suppose that both A and B are singular and that dimZ" > 2.
Clearly both are generic matrices of exactly singular spaces of, say,
a X g and b X b matrices and these spaces have dimension dimZ".
Let s be a minimal left null vector of 4. Then (5,0, ..., 0) is a left
null vector of X and by Lemma 2 its components are of degree at
most a — 1. Hence p € ¢ — 1. Similarly g < b~ 1. Thenn —1=p +
g<a—1+b—1=n-2, acontradiction.

(ili} Suppose, without loss in generality, that A is singular; again A
is a generic matrix for an exactly singular space. Let t be a right null
veclor of A and consider the product

[A O] ¢ 0] |0 0

C BJLO [ ct B

(here the second and third matrices are of size n X (b + 1}). By
Sylvester’s inequality

4 0 . t 0
rank + rank < n + rank[ Ct BY.
[ C B ] {0 1] =7 [cts]

Consider an arbitrary specialisation x— £ = 0. In such a specialisation
t remains non-zero (Lemma 2} and so

rank[CtB]?n—l+b+1*nxb.

Hence rank{Ct B]="b under this specialisation.

The variety % whose generic point is [Ct B] (in affine 5{b + 1) —
space) is irreducible and of dimension at most dim £, However since
B is a generic point of a variety of the same dimension as Z” we have
dim% = dim.4£", But % has no non-zero intersection with the varicty
of b % (& + 1) matrices of rank less than b and this latter variety has
dimension b(b + 1) — 2 ({7} Theorem 2.1). Hence dimZ = dim%
< 2.

LEMMA 3 If one of p and q is zero then dim < 2,

Proof I p =0 then every matrix of 2" has a common left null
vector. Therefore 2" is decomposable (with i=n—1, j=0) and
Lemma 1 applies.
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LemMMa 4 If one of p and q is | then dim & < 3 with equality only if
n =3 when, to within equivalence, 2" is unigtee.

Proof 1t is known that, when n = 3, there is precisely one exactly
singular space of dimension 3 or more ([1], p. 313). Therefore to prove
the lemma it suffices to consider a 3-dimensional exactly singular
space &, assume that p = [, and deduce that » = 3.

The components of the left null vector v of X are linear expressions
in variables x|, x,, x;, and so the components span a space of dimen-
sion at most 3. Replacing 2 by an equivalent space we may take
u= (i), 4y, 10,0,0, ..., 0). From X = 0 we find that

<[}

where Y is a 3 X n matrix satisfying u¥ = 0. The linear space % of
3 X n matrices determined by Y is a 2-space. It cannot be decompos-
able or Z" itself would be decomposable contradicting Lemma [. By
p. 314 of [1] % is equivalent to a space whose matrices have entries in
the first 3 columns only. Thus 2 is equivalent to a space of parti-
tioned matrices of the form

5]

By the proposition this partition is degenerate and so n = 3.

This result allows Westwick’s theorem on n =4 to be deduced
immediately; since p + ¢ = 3 one of p and ¢ is 0 or 1. We turn now to
other small values of .

Let n=75o0r 6, Then p + g =4 or 5 and so one of p and g, p say, is
at most 2, However the cases p = 0,1 are dealt with by the results
above and if the exactly singular space has dimension 3 or more they
do not arise. So in our discussion of n = 5,6 we may take p = 2.

Let (uy,u,, .. . ) be the left null vector of X. Each y; is a quadratic
form in the variables x;,x,, ... . We shall consider the space gener-
ated by these quadratic forms.

Lemva 5 If dim&” > 3, then dimduy,u,, ... > >4

Proof We replace " by an equivalent space chosen so that the
left null vector of the new 2" is (w1, ..., 4,;,0,. .., 0) with all
Ui, iy, ..., H, independent, Then we have

{3
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where Y is a 4 X # matrix satisfying
(i iy, o U4)Y =0,

Thus ¥ determines a space % of matrices all of which have rankd —
1 (or 0). Notice that % cannot be decomposable or else 27 would also
be decomposable and, as dim 2" > 3, this is impossible. Now suppose
for a contradiction that d < 4. Thus % is an indecomposable space of
d X n matrices all of the same rank d — 1 < 3. Such spaces were
determined as consequences of Theorem C of [1] and all of them had
linear left null vectors; this is the required contradiction.

THEORBM A All exactly singular spaces of 5 X 5 matrices have dimen-
sion at most 3, To within equivalence there is precisely one 3-
dimensional exactly singular space of 5 X 5 matrices.

Proof We continue to use the notation introduced above. Suppose
first that £ is a 4-dimensional exactly singular space of 55
matrices. The quadratic forms u, may be represented by symmetric
4 X 4 matrices U, since
X
v oy X2
;= (X, X5, X5, X4}; X5
X4

By the previous lemma (U, ..., Usy is 5-dimensional and, by [7]
Theorem 2.1, musl contain a non-zero matrix of rank 1 or 2. By a
non-singular change of variables we may take the corresponding form
to be either x2 or x,x,. If we now form the 3-dimensional subspace of
& obtained by specialising x, to 0 we obtain an exactly singular
space with a left null vector with at most 4 non-zere components and
this contradicts the previous lemma.

To prove the second part of the theorem we suppose that £ is a
3-dimensional exactly singular space of 5 X 5 matrices. The matrices
U, introduced above are now symmetric 3 X 3 matrices and generate
a S-dimensional space %. We shall characterise 2" by first
characterising % .

The entries of every matrix [yl=U &€ % satisfy 3 lincar relations
uy = ;. However % is of codimension 4 in the space of all 33
matrices and so its matrix entries satisfy one more linear relation
which may be written

trace(BU) = 0.
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But then
trace(B'U) = trace( U'B) = trace( UB) = trace( BU) =0

and so trace((B + BN)U) = 0, i.e. we may take B to be symmetric.

Choose a non-singular matrix P such that PBP7 is diagonal with
I’'s and O’s on the diagonal, replace U,,..., U; by PT'UP, i
=1,..., 5 and change variables so that the matrices PT"'U,-P again
represent the components of the null vector. Thus we may take the
null vector components to be represented by symmetric matrices U/
which have trace(BU) = 0 with B diagonal.

We can now deduce that 8= {. For if rank B =1 or 2 then the
matrices of % have the forms

]

respectively. In either case if we consider the subspace of & obtained

by specialising x; to 0 we find that its null vector has components

which span a space of dimension at most 2, contradicting lemma 2.
As a basis for % we can take

0 1 01|00 O[O0 TI[]l O0O[[0OOC O
1 0 0|0 0 1[0 0 0,jO0 —1 O[O0 1 0

})

—y

0 0 0;|0 T O]J|1 0 0|0 0 Of]0 0 —1
and then the null vector is

= {x.x e wI_ 222
U= (XX, XX, X X3, X] — X3,X5 — x3).

The columns of X are linear functions of x|, x,, x; and are orthogo-
nal to u. A typical column

( DXy, 2 bix;, e, 2, A, eixi) i

of X therefore satisfies
X X Dy X E XXy D Bx XX D 6,
. . . 2, -
+H(x} — x]) D dx+ (x5 — xD) D ex;=0.
This identity gives rise to 10 linear equations (one for each cubic
monomial) in the 15 unknowns a,, ..., e;. The equations are inde-
pendent and so the solution space is 5-dimensional.

On the other hand the columns of X are linearly independent (over
the ground field) since £ is indecomposable. Thus the columns of X
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are a basis for the solution space. Different bases correspond to
equivalent matrices XP (P nonsingular with entries in the ground
field) and so correspond to equivalent spaces, Thus 2 is unique.

THEOREM B Every exactly singular space of 6 X 6 matrices has dimen-
sion at most 2,

Proof We shall maintain the previous notation and shall suppose
for a contradiction that &" is a 3-dimensional exactly singular space
of 6 X 6 matrices.

Note first that the space generated by the components of the left
null vector u cannot be 5-dimensional. I it were, then the arguments
used in the proof of the previous theorem would show that some
space equivalent to 2~ has generic matrix of the form

and, by the proposition, this is impossible. The components of u
therefore generate the space of all quadratic forms in the variables
Xy, X, x5 and u may be taken to be

202 2
(X75%3 5 X3, X1 X5, XpX3, X3 ).

Every column of the generic matrix X is orthogonal to u. The
condition that a typical column

( Z LR 2 bix; s Z i E dix;, Z € ;s Z fixi) i

be orthogonal to u gives rise, as in the previous proof, to 10 indepen-
dent linear equations this time in 18 unknowns. The solution space of
this system is 8-dimensional and the following 8 columns are a basis
for it: '
0 0 Xy Xy 0 0 0 0
Xy 0 0 0 X5 0 0 0
0 X, 0 0 0 Xy 0 0
0



272 M. D. ATKINSON

The 6 columns of X (which are independent since £ is indecom-
posable) span a subspace of the 8-dimensional space generated by
these 8 columns. Thus we have

SP=X
where § is the 6 X 8 matrix displayed above and P is an 8 X 6 matrix
with entries in the ground field. By virtue of this equation we may, for
each specialisation of x,,x,,x,, regard P as a linear mapping from
the row space of the specialised S to the row space of the specialised
X (a member of 27).

Considered as a mapping on row vectors P has a 2-dimensional
kernel generated say by vectors e,f of length 8. We shall show that,
for some non-zero specialisation, {e, I non-irivially intersects the row
space of the specialised §. This will give us a contradiction for the
specialised § will have rank at most 5 (the specialised u is a left null
vector) and P will not transform its row space faithfully; thus the
corresponding specialised X will have rank at most 4.

A vector g belongs to the row space of S if and only if it is
orthogonal to all the right null vectors of S. These null vectors are
spanned by the column vectors

0 X5 0
0 0 x|
X, 0 0
—x; 0 0
0 —x 0
0 0 — Xy
—-X, X 0
0 —x;, x

(and these vectors remain independent in all non-zero specialisations).
Hence the condition that g belongs to the row space of § when
specialised according to the specialisation x — £ is

—€1gt 68— §524=0
—€Egs+$2(g7ﬁg3) +£&8, =0
Sz 68 +&85=0

Hence the sought for non-zero specialisation can be found provided
that the matrix of coefficients G is singular for some non-zero
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g € (e, ). Such a matrix G can be found for if g = ce + Bf then

—ae; — fif; eyt fBfy —aey — Bfy
G=| —aes— ffs oe; + fBf; — aeg — fify ae; + fAf;
ae, + fif, —oeg— Bfg aeg + By

=akF + fiF

and because E,F are independent they have a non-zero singular
linear combination. This completes the proof.
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