Linear and Multilinear Algebra, 1984, Vol. 16, pp. 263-273 0308-1087/84/1604-0263 \$20.00/0 © 1984 Gordon and Breach Science Publishers, Inc. and OPA Ltd. Printed in the United States of America

## A Problem of Westwick on *k*-Spaces

M. D. ATKINSON\*

School of Computer Science, Carleton University, Ottawa, Canada, KIS 5B6

(Received October 4, 1983; in final form October 29, 1983)

Sets of  $n \times n$  matrices whose linear span contains only matrices of rank n-1 and 0 are investigated. To within a natural equivalence they are characterised for  $n \le 6$ . Partial results are obtained for general n.

A k-space as defined by Westwick [7] is a vector space whose elements are linear transformations from a space V into a space W all of which, except for the zero transformation, have the same rank k. k-spaces have since been investigated by Beasley [3, 4] who used them to obtain results on homomorphisms which preserve rank, and by Atkinson and Westwick [2] who produced infinitely many examples for certain fixed k, V and W. k-spaces have also found applications in algebraic computational complexity [6].

We shall adopt the language of matrices rather than linear transformations. Consequently two k-spaces  $\mathscr{Z}$ ,  $\mathscr{Y}$  of  $m \times n$  matrices are regarded as *equivalent* if there exist non-singular matrices P, Q (which correspond to changes of basis in V and W) such that

$$\mathcal{Y} = \{ PXQ \, | \, X \in \mathcal{X} \}$$

Throughout the paper we shall take the ground field to be algebraically closed. It is rather obvious that an n-space of  $n \times n$  matrices cannot have dimension greater than 1. In view of this Westwick drew

<sup>\*</sup>This research was supported by the Natural Science and Engineering Research Council of Canada under Grant No. A2419.

special attention to the problem of characterising (n-1)-spaces of  $n \times n$  matrices. We shall call these spaces exactly singular spaces; their elements are of rank precisely n-1 or zero. Using the dimension theorem of algebraic geometry Westwick showed that exactly singular spaces must have dimension at most 4. He also proved that for n=2,3,4 their dimensions are at most 2,3,2 respectively; the last of these results required quite a tricky argument. Finally, for each odd n, he gave an example of a 3-dimensional exactly singular space.

In this paper we shall introduce a new technique for studying exactly singular spaces. We use it to prove a general result on partitioned matrices and to settle the cases n = 5, 6. Before this however we shall summarise some of the more elementary facts about exactly singular spaces.

It is evident that a 1-dimensional exactly singular space is equivalent to the space generated by the  $n \times n$  matrix  $I_{n-1} \oplus 0_1$  and so it is essentially unique. A 2-dimensional exactly singular space determines, via a fixed basis A, B, a homogeneous matrix pencil  $\lambda A + \mu B$ . The Kronecker theory of pencils shows that there is an equivalent pencil of the form  $L_p^T \oplus L_q$  with p+q=n-1 (see [5] for the notation and theory). Note that this pencil has  $(\mu^p, \mu^{p-1}\lambda, \ldots, \lambda^p, 0, 0, \ldots, 0)$  as a left null vector and  $(0,0,\ldots,0,\mu^q,\mu^{q-1}\lambda,\ldots,\lambda^q)^T$  as a right null vector. For each n there are exactly n inequivalent 2-dimensional exactly singular spaces, one for each p in  $0 \le p \le n-1$ .

Westwick defined a k-space  $\mathscr{Z}$  to be essentially decomposable if for some i, j with i + j = k every matrix of an equivalent space  $\mathscr{Y}$  had the form

$$\begin{bmatrix} i \times j & \\ & 0 \end{bmatrix}$$

He showed (Corollary 2.2 of [7])

LEMMA 1 Every decomposable exactly singular space has dimension at most 2.

We now define some notation which will be used throughout this paper.

Suppose  $\mathscr{X}$  is an exactly singular space of  $n \times n$  matrices. Let  $A_1, A_2, \ldots$  be a basis of  $\mathscr{X}$ , let  $x_1, x_2, \ldots$  be independent transcendentals over the ground field and define

$$X = \sum x_i A_i$$

a generic point of the linear variety  $\mathscr{X}$ . Since rank X = n - 1 X has both a left null row-vector u and a right null column-vector v. The components of these vectors may be taken to be homogeneous polynomials in  $x_1, x_2, \ldots$ . We shall choose u and v so that the total degrees p and q of their components are minimal. It is easy to see that any other left null row-vector with polynomial components must be a polynomial multiple of  $\mathbf{u}$  (similarly for right null column-vectors).

Since  $uP^{-1}PX = 0$  for any non-singular matrix P,  $uP^{-1}$  is the minimal left null vector for PX. Thus the null vectors of spaces equivalent to  $\mathscr{Z}$  are related to u and v by applying a non-singular matrix with entries in the ground field. Moreover the generic matrix X depends on the basis chosen for  $\mathscr{Z}$ . Any other basis will give a generic matrix whose transcendentals  $x'_1, x'_2, \ldots$  are related to  $x_1, x_2, \ldots$  by a non-singular linear substitution v' = v. Equivalences and changes of basis may often be used to simplify the components of v and v.

Lemma 2 If  $\dim \mathcal{Z}' \ge 2$  then

- (i) p + q = n 1,
- (ii) every specialisation  $x \rightarrow \xi$ , with  $\xi \neq 0$ , specialises **u** and **v** to non-zero vectors,
  - (iii) all 2-dimensional subspaces of 2 are equivalent,
- (iv) every specialisation  $\mathbf{x} \rightarrow \boldsymbol{\xi}$ , where  $\boldsymbol{\xi}$  is a generic point of a 2-dimensional linear variety, specialises  $\mathbf{u}$  (or  $\mathbf{v}$ ) to a vector whose polynomial components span a linear space of dimension p+1 (or q+1) over the ground field.

**Proof** The adjoint of X has polynomial components of degree n-1 (or 0). The adjoint has rank 1, since rank X=n-1, and so may be written

$$adj X = r \cdot s$$

where r is a column vector and s is a row vector. Clearly r and s may be taken to have polynomial components. From the equation  $X \cdot \operatorname{adj} X = 0$  it follows that r is a right null column-vector for X and so is a polynomial multiple of v. Similarly s is a polynomial multiple of u. Consequently

$$p+q\leqslant n-1.$$

Each 2-dimensional subspace of  $\mathscr{X}$  has a generic point  $\sum \xi_i A_i$  where  $\xi_1, \xi_2, \ldots$  are linear expressions in two transcendentals  $\zeta, \eta$ . Conversely if  $\xi_1, \xi_2, \ldots$  are linear expressions in  $\zeta, \eta$  which are not all multiples of a single expression, then  $\sum \xi_i A_i$  is a generic point of a 2-dimensional subspace of  $\mathscr{X}$ .

Now consider a 2-dimensional subspace  $\mathscr{Y}$  of  $\mathscr{Z}$  for which  $\mathbf{u}(\xi_1, \xi_2, \dots)$  (and  $\mathbf{v}(\xi_1, \xi_2, \dots)$ ) are non-zero (so their components are of degree p (and q) in  $\zeta$  and  $\eta$ ).  $\mathscr{Y}$  is also an exactly singular space and, according to the Kronecker theory, its generic point is equivalent to a matrix

$$L_a^T \oplus L_b$$

where a, b are the degrees of its minimal degree left and right null vectors. Since  $\mathbf{u}(\xi_1 \xi_2, \dots)$  and  $\mathbf{v}(\xi_1, \xi_2, \dots)$  are left and right null vectors of this matrix we have  $a \le p, b \le q$ , and so

$$n-1=a+b\leqslant p+q\leqslant n-1.$$

This proves statement (i) and also proves that p=a, q=b and, neglecting scalar factors, adj  $X=\mathbf{v}\cdot\mathbf{u}$ . Statement (ii) follows from this equation; for if a specialisation  $\mathbf{x}\to\boldsymbol{\xi}$  specialises  $\mathbf{u}$  to 0 it specialises adj X to 0 and therefore rank( $\sum \xi_i A_i$ ) < n-1; hence  $\sum \xi_i A_i = 0$  and hence  $\boldsymbol{\xi}=0$ . Statement (iii) also follows for the above argument shows that the Kronecker form of every 2-dimensional subspace  $\mathscr Y$  is defined by  $L_p^T \oplus L_q$ .

Finally to prove statement (iv) note that the specialisation in question specialises u to a vector  $\mathbf{u}^*$  whose components are polynomials in two variables  $\xi$  and  $\eta$  of total degree p. When the 2-dimensional linear variety is transformed to Kronecker canonical form the vector  $\mathbf{u}^*$  is transformed by an  $n \times n$  non-singular matrix in the ground field to a vector

$$(\zeta^p,\zeta^{p-1}\eta,\ldots,\zeta\eta^{p-1},\eta^p,0,0,\ldots)$$

Since the components of this vector span a linear space of dimension p + 1 the same is true of the components of  $\mathbf{u}^*$ .

PROPOSITION Let & be an exactly singular space for which

$$X = \left[ \begin{array}{cc} A & 0 \\ C & B \end{array} \right]$$

is a non-trivial partitioning with A and B both square. Then
(i) at least one of A and B is singular,

- (ii) if A and B are both singular then  $\dim \mathcal{Z} \leq 1$ ,
- (iii) in any case,  $\dim \mathcal{Z}' \leq 2$ .

*Proof* (i)  $0 = \det X = \det A \cdot \det B$  and so one of  $\det A$  and  $\det B$  is zero.

- (ii) Suppose that both A and B are singular and that  $\dim \mathscr{Z} \geq 2$ . Clearly both are generic matrices of exactly singular spaces of, say,  $a \times a$  and  $b \times b$  matrices and these spaces have dimension  $\dim \mathscr{Z}$ . Let s be a minimal left null vector of A. Then  $(s,0,\ldots,0)$  is a left null vector of X and by Lemma 2 its components are of degree at most a-1. Hence  $p \leqslant a-1$ . Similarly  $q \leqslant b-1$ . Then  $n-1=p+q \leqslant a-1+b-1=n-2$ , a contradiction.
- (iii) Suppose, without loss in generality, that A is singular; again A is a generic matrix for an exactly singular space. Let t be a right null vector of A and consider the product

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix} \begin{bmatrix} \mathbf{t} & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ c\mathbf{t} & B \end{bmatrix}$$

(here the second and third matrices are of size  $n \times (b+1)$ ). By Sylvester's inequality

$$\operatorname{rank}\begin{bmatrix} A & 0 \\ C & B \end{bmatrix} + \operatorname{rank}\begin{bmatrix} \mathbf{t} & 0 \\ 0 & I \end{bmatrix} \leq n + \operatorname{rank}[C\mathbf{t} B].$$

Consider an arbitrary specialisation  $x \rightarrow \xi \neq 0$ . In such a specialisation t remains non-zero (Lemma 2) and so

$$rank[Ct B] \ge n - 1 + b + 1 - n = b.$$

Hence rank [Ct B] = b under this specialisation.

The variety  $\mathscr{Y}$  whose generic point is [Ct B] (in affine b(b+1) – space) is irreducible and of dimension at most dim  $\mathscr{X}$ . However since B is a generic point of a variety of the same dimension as  $\mathscr{X}$  we have dim  $\mathscr{Y} = \dim \mathscr{X}$ . But  $\mathscr{Y}$  has no non-zero intersection with the variety of  $b \times (b+1)$  matrices of rank less than b and this latter variety has dimension b(b+1)-2 ([7] Theorem 2.1). Hence dim  $\mathscr{X} = \dim \mathscr{Y} \leq 2$ .

LEMMA 3 If one of p and q is zero then dim  $\leq 2$ .

**Proof** If p = 0 then every matrix of  $\mathscr{Z}$  has a common left null vector. Therefore  $\mathscr{Z}$  is decomposable (with i = n - 1, j = 0) and Lemma 1 applies.

LEMMA 4 If one of p and q is 1 then  $\dim \mathcal{Z}' \leq 3$  with equality only if n = 3 when, to within equivalence,  $\mathcal{Z}'$  is unique.

**Proof** It is known that, when n = 3, there is precisely one exactly singular space of dimension 3 or more ([1], p. 313). Therefore to prove the lemma it suffices to consider a 3-dimensional exactly singular space  $\mathscr{X}$ , assume that p = 1, and deduce that n = 3.

The components of the left null vector  $\mathbf{u}$  of X are linear expressions in variables  $x_1, x_2, x_3$ , and so the components span a space of dimension at most 3. Replacing  $\mathscr{Z}$  by an equivalent space we may take  $\mathbf{u} = (u_1, u_2, u_3, 0, 0, \dots, 0)$ . From uX = 0 we find that

$$x = \begin{bmatrix} Y \\ Z \end{bmatrix}$$

where Y is a  $3 \times n$  matrix satisfying uY = 0. The linear space  $\mathscr{Y}$  of  $3 \times n$  matrices determined by Y is a 2-space. It cannot be decomposable or  $\mathscr{Z}$  itself would be decomposable contradicting Lemma 1. By p. 314 of [1]  $\mathscr{Y}$  is equivalent to a space whose matrices have entries in the first 3 columns only. Thus  $\mathscr{Z}$  is equivalent to a space of partitioned matrices of the form

$$\begin{bmatrix} 3 \times 3 & 0 \end{bmatrix}$$

By the proposition this partition is degenerate and so n = 3.

This result allows Westwick's theorem on n = 4 to be deduced immediately; since p + q = 3 one of p and q is 0 or 1. We turn now to other small values of n.

Let n = 5 or 6. Then p + q = 4 or 5 and so one of p and q, p say, is at most 2. However the cases p = 0, 1 are dealt with by the results above and if the exactly singular space has dimension 3 or more they do not arise. So in our discussion of n = 5, 6 we may take p = 2.

Let  $(u_1, u_2, \ldots)$  be the left null vector of X. Each  $u_i$  is a quadratic form in the variables  $x_1, x_2, \ldots$ . We shall consider the space generated by these quadratic forms.

Lemma 5 If dim  $\mathscr{X} \ge 3$ , then dim $\langle u_1, u_2, \dots \rangle > 4$ .

**Proof** We replace  $\mathscr{Z}$  by an equivalent space chosen so that the left null vector of the new  $\mathscr{Z}$  is  $(u_1, u_2, \ldots, u_d, 0, \ldots, 0)$  with all  $u_1, u_2, \ldots, u_d$  independent. Then we have

$$X = \left[ \begin{array}{c} Y \\ Z \end{array} \right]$$

where Y is a  $d \times n$  matrix satisfying

$$(u_1,u_2,\ldots,u_d)Y=0.$$

Thus Y determines a space  $\mathscr{Y}$  of matrices all of which have rank d-1 (or 0). Notice that  $\mathscr{Y}$  cannot be decomposable or else  $\mathscr{Z}$  would also be decomposable and, as  $\dim \mathscr{Z} > 3$ , this is impossible. Now suppose for a contradiction that  $d \le 4$ . Thus  $\mathscr{Y}$  is an indecomposable space of  $d \times n$  matrices all of the same rank  $d-1 \le 3$ . Such spaces were determined as consequences of Theorem C of [1] and all of them had linear left null vectors; this is the required contradiction.

THEOREM A All exactly singular spaces of  $5 \times 5$  matrices have dimension at most 3. To within equivalence there is precisely one 3-dimensional exactly singular space of  $5 \times 5$  matrices.

**Proof** We continue to use the notation introduced above. Suppose first that  $\mathscr{X}$  is a 4-dimensional exactly singular space of  $5 \times 5$  matrices. The quadratic forms  $u_i$  may be represented by symmetric  $4 \times 4$  matrices  $U_i$  since

$$u_i = (x_1, x_2, x_3, x_4) U_i \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

By the previous lemma  $\langle U_1, \ldots, U_5 \rangle$  is 5-dimensional and, by [7] Theorem 2.1, must contain a non-zero matrix of rank 1 or 2. By a non-singular change of variables we may take the corresponding form to be either  $x_4^2$  or  $x_3x_4$ . If we now form the 3-dimensional subspace of  $\mathscr{Z}$  obtained by specialising  $x_4$  to 0 we obtain an exactly singular space with a left null vector with at most 4 non-zero components and this contradicts the previous lemma.

To prove the second part of the theorem we suppose that  $\mathscr{X}$  is a 3-dimensional exactly singular space of  $5 \times 5$  matrices. The matrices  $U_i$  introduced above are now symmetric  $3 \times 3$  matrices and generate a 5-dimensional space  $\mathscr{U}$ . We shall characterise  $\mathscr{X}$  by first characterising  $\mathscr{U}$ .

The entries of every matrix  $[u_{ij}] = U \in \mathcal{U}$  satisfy 3 linear relations  $u_{ij} = u_{ji}$ . However  $\mathcal{U}$  is of codimension 4 in the space of all  $3 \times 3$  matrices and so its matrix entries satisfy one more linear relation which may be written

$$trace(BU) = 0.$$

But then

$$\operatorname{trace}(B^T U) = \operatorname{trace}(U^T B) = \operatorname{trace}(U B) = \operatorname{trace}(B U) = 0$$

and so trace $((B + B^T)U) = 0$ , i.e. we may take B to be symmetric.

Choose a non-singular matrix P such that  $PBP^T$  is diagonal with 1's and 0's on the diagonal, replace  $U_1, \ldots, U_5$  by  $P^{T^{-1}}U_iP$ ,  $i=1,\ldots,5$  and change variables so that the matrices  $P^{T^{-1}}U_iP$  again represent the components of the null vector. Thus we may take the null vector components to be represented by symmetric matrices U which have trace (BU) = 0 with B diagonal.

We can now deduce that B = I. For if rank B = 1 or 2 then the matrices of  $\mathcal{U}$  have the forms

$$\begin{bmatrix} 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \text{ or } \begin{bmatrix} y & \cdot & \cdot \\ \cdot & -y & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$

respectively. In either case if we consider the subspace of  $\mathscr{Z}$  obtained by specialising  $x_3$  to 0 we find that its null vector has components which span a space of dimension at most 2, contradicting lemma 2.

As a basis for \( \mathscr{U} \) we can take

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

and then the null vector is

$$\mathbf{u} = (x_1 x_2, x_2 x_3, x_1 x_3, x_1^2 - x_2^2, x_2^2 - x_3^2).$$

The columns of X are linear functions of  $x_1, x_2, x_3$  and are orthogonal to u. A typical column

$$\left(\sum a_i x_i, \sum b_i x_i, \sum c_i x_i, \sum d_i x_i, \sum e_i x_i\right)^T$$

of X therefore satisfies

$$x_1 x_2 \sum a_i x_i + x_2 x_3 \sum b_i x_i + x_1 x_3 \sum c_i x_i + (x_1^2 - x_2^2) \sum d_i x_i + (x_2^2 - x_3^2) \sum e_i x_i = 0.$$

This identity gives rise to 10 linear equations (one for each cubic monomial) in the 15 unknowns  $a_1, \ldots, e_3$ . The equations are independent and so the solution space is 5-dimensional.

On the other hand the columns of X are linearly independent (over the ground field) since  $\mathcal{Z}$  is indecomposable. Thus the columns of X

are a basis for the solution space. Different bases correspond to equivalent matrices XP (P nonsingular with entries in the ground field) and so correspond to equivalent spaces. Thus  $\mathscr{Z}$  is unique.

Theorem B Every exactly singular space of  $6 \times 6$  matrices has dimension at most 2.

**Proof** We shall maintain the previous notation and shall suppose for a contradiction that  $\mathscr{Z}$  is a 3-dimensional exactly singular space of  $6 \times 6$  matrices.

Note first that the space generated by the components of the left null vector  $\mathbf{u}$  cannot be 5-dimensional. If it were, then the arguments used in the proof of the previous theorem would show that some space equivalent to  $\mathscr{X}$  has generic matrix of the form

$$\begin{bmatrix} & & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \vdots & \ddots & \vdots \end{bmatrix}$$

and, by the proposition, this is impossible. The components of u therefore generate the space of all quadratic forms in the variables  $x_1, x_2, x_3$  and u may be taken to be

$$(x_1^2, x_2^2, x_3^2, x_1x_2, x_2x_3, x_3x_1).$$

Every column of the generic matrix X is orthogonal to  $\mathbf{u}$ . The condition that a typical column

$$\left(\sum a_i x_i, \sum b_i x_i, \sum c_i x_i, \sum d_i x_i, \sum e_i x_i, \sum f_i x_i\right)^T$$

be orthogonal to u gives rise, as in the previous proof, to 10 independent linear equations this time in 18 unknowns. The solution space of this system is 8-dimensional and the following 8 columns are a basis for it:

The 6 columns of X (which are independent since  $\mathscr{Z}$  is indecomposable) span a subspace of the 8-dimensional space generated by these 8 columns. Thus we have

$$SP = X$$

where S is the  $6 \times 8$  matrix displayed above and P is an  $8 \times 6$  matrix with entries in the ground field. By virtue of this equation we may, for each specialisation of  $x_1, x_2, x_3$ , regard P as a linear mapping from the row space of the specialised S to the row space of the specialised X (a member of  $\mathcal{Z}$ ).

Considered as a mapping on row vectors P has a 2-dimensional kernel generated say by vectors  $\mathbf{e}$ ,  $\mathbf{f}$  of length 8. We shall show that, for some non-zero specialisation,  $\langle \mathbf{e}, \mathbf{f} \rangle$  non-trivially intersects the row space of the specialised S. This will give us a contradiction for the specialised S will have rank at most 5 (the specialised S is a left null vector) and S will not transform its row space faithfully; thus the corresponding specialised S will have rank at most 4.

A vector g belongs to the row space of S if and only if it is orthogonal to all the right null vectors of S. These null vectors are spanned by the column vectors

$$\begin{array}{cccccc}
0 & x_3 & 0 \\
0 & 0 & x_1 \\
x_2 & 0 & 0 \\
-x_3 & 0 & 0 \\
0 & -x_1 & 0 \\
0 & 0 & -x_2 \\
-x_1 & x_2 & 0 \\
0 & -x_2 & x_3
\end{array}$$

(and these vectors remain independent in all non-zero specialisations). Hence the condition that g belongs to the row space of S when specialised according to the specialisation  $x \rightarrow \xi$  is

$$-\xi_1 g_7 + \xi_2 g_3 - \xi_3 g_4 = 0$$

$$-\xi_1 g_5 + \xi_2 (g_7 - g_8) + \xi_3 g_1 = 0$$

$$\xi_1 g_2 - \xi_2 g_6 + \xi_3 g_8 = 0$$

Hence the sought for non-zero specialisation can be found provided that the matrix of coefficients G is singular for some non-zero

 $g \in \langle e, f \rangle$ . Such a matrix G can be found for if  $g = \alpha e + \beta f$  then

$$G = \begin{bmatrix} -\alpha e_7 - \beta f_7 & \alpha e_3 + \beta f_3 & -\alpha e_4 - \beta f_4 \\ -\alpha e_5 - \beta f_5 & \alpha e_7 + \beta f_7 - \alpha e_8 - \beta f_8 & \alpha e_1 + \beta f_1 \\ \alpha e_2 + \beta f_2 & -\alpha e_6 - \beta f_6 & \alpha e_8 + \beta f_8 \end{bmatrix}$$

$$= \alpha E + \beta E$$

and because E, F are independent they have a non-zero singular linear combination. This completes the proof.

## References

- [1] Atkinson, M. D., Primitive spaces of matrices of bounded rank II, J. Austral. Math. Soc. 34 (1983), 306-315.
- [2] Atkinson, M. D. and Westwick, R., Spaces of linear transformations of equal rank, Linear and Multilinear Algebra 13 (1983), 231-239.
- [3] Beasley, L. B., Spaces of matrices of equal rank, *Linear Algebra and Appl.* 38 (1981), 227-237.
- [4] Beasley, L. B., Linear transformations which preserve fixed rank, Linear Algebra and Appl. 40, (1981), 183-187.
- [5] Gantmacher, F. R., The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
- [6] Lloyd, S., Computation of bilinear forms and canonical forms of tensors, Ph.D. thesis, Cardiff, 1980.
- [7] Westwick, R., Spaces of linear transformations of equal rank, Linear Algebra and Appl. 5 (1972), 49-64.

