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THE RANKS OF m x n x(mn-2) TENSORS*

M. D. ATKINSON" AND S. LLOYDS"

Abstract. It is shown that there is essentially only one m n (ran-2) tensor of rank mn- 1. It is
also proved that, except for this tensor, all m n p tensors with p <= mn- 2 have rank at most mn- 2.
The main tool is Kronecker’s theory of matrix pencils which has already been applied directly by Ja’Ja’
[SIAM J. Comput., 8 (1979), pp. 443-462] to study the ranks of rn n 2 tensors. We show that each
nondegenerate rn n (rnn 2) tensor is determined by a related m n 2 tensor and apply the Kronecker
theory to this related tensor.
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A classical problem in algebraic computational complexity is to determine the
minimal number of nonscalar multiplications required to evaluate some set Yi. aijkxyj,

k 1,2,..., p, of bilinear forms in noncommuting variables xl,.’ ’, x,,, yl,"’", yn.
This number can be variously described as the complexity of the set, the rank of the
defining 3-tensor (aijk) or as the minimal number of rank 1 matrices whose linear
span contains the m n matrices Ak (ajk), k 1,2, , p [2].

The problem is rather trivial if p 1 when the complexity is simply the matrix
rank of A 1. It has also been completely solved if p 2 for algebraically closed fields
by the Kronecker theory of matrix pencils (see [31 which also summarizes Kronecker’s
results). For p >-3 there is no corresponding theory and it seems unlikely that the
tensor rank can in general be described in terms of simpler invariants of the tensor.

When working with some unknown m n p tensor defined by m n matrices
A 1, , Ap it is common to assume that the tensor is nondegenerate (3-nondegenerate
in the terminology of [4], i.e., the matrices are linearly independent). If the tensor
was degenerate it would reduce to one of size smaller than m n p. The assumption
of nondegeneracy obviously implies that p <= mn; moreover, if p ran, the tensor rank
is rnn. The observations in this paper centre on nondegenerate tensors over algebrai-
cally closed fields which have p just less than ran. The case p mn- 1 has already
been treated in [1], where it was shown that every m n (ran- 1) tensor has rank
at most mn- 1 (and hence the nondegenerate tensors have rank precisely mn- 1). It
then follows that a nondegenerate rn n (ran 2) tensor has rank mn 1 or mn 2.
We shall classify those m n (ran 2) tensors of rank mn- 1. Somewhat surprisingly
it turns out that, among the infinitely many different tensors, only one of them has
this rank. As a consequence we shall prove that every m n (ran- 3) tensor has
rank at most mn- 2 (this result was given in [1] but the proof, which at that time
required very extensive calculations, was omitted). Both of these results depend on
the following proposition for which we require two definitions:

1. A space of m n matrices is said to be perfect if it is generated (as a vector
space) by rank 1 matrices. (Notice that the above remarks imply that spaces of
dimension mn or rnn 1 are necessarily perfect.)

2. Two spaces , of m n matrices are said to be equivalent if there exist
nonsingular rn m, n n matrices P, Q such that

PQ {PXQ" X }.

* Received by the editors August 25, 1981.
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612 M.D. ATKINSON AND S. LLOYD

PROPOSITION If is a vector space of m x n matrices of dimension mn- 2, then
is perfect unless it is equivalent to the space of all matrices (xi/) for which xl1 + X22 0

and x 12 0.
The lemmas which lead up to the proof of this proposition all use the same

general technique and notation. Let b be the bilinear mapping on the space of all
m n matrices defined by

b (X, Y) trace (XY’)

(where Y’ denotes the transpose of Y). With respect to 4 every k-dimensional space
of m n matrices has an annihilator space ,’* of dimension mn- k, namely

* {Y: b(X, Y) 0}.

Of course ** . Also, a routine check shows that, if P and Q are nonsingular, the
annihilator of PQ is (p,)-.(Q,)-I and hence equivalent spaces have equivalent
annihilators. We eventually exploit this fact to prove the proposition by taking * to
be defined by a pencil in Kronecker canonical form. In preparation for this our first
three technical lemmas consider special cases for *; these special cases are the
building blocks of a general Kronecker canonical form. Note that the annihilator of
the exceptional space in the proposition is generated by EI +E22 and E12 (where, in
general, Eq is the matrix with a 1 in the (i,/’) position and zeros elsewhere).

LEMMA 1. Lets be the (rE + r 2)-dimensional space of r x (r + 1) matrices whose
annihilator is defined by the matrix pencil

Then sg is perfect.

Lr =aX +flY

a /3 0

Proof. By definitionM is the set of all matrices (ai/) for which Y’.-- a, Y’._ ai./
0. An obvious calculation verifies that the following r2+ r- 2 matrices are all rank 1,
linearly independent and satisfy the conditions for membership of M"

{Ei" /’, + 1 /}

U{Eu +Ei,i+x +Ei,i+2-Ei+x,i-Ei+a,i+a -Ei+1,i+2" 1,2," r- 1}

I-J{Eii-Ei,i+l +Ei,i+2 +Ei+x,i-Ei+,i+x +Ei+l,i+2" 1,2,’--, r-l}.

Similarly the transposed space " of (r + 1) r matrices is also perfect.
LEMMA 2. Let be the space of r x r matrices whose annihilator is defined by the

matrix pencil

Then, if r 2, is perfect.
Proof. The notation is intended to include the case r- 1 when the lemma holds

for trivial reasons. If r 2 is not perfect (and this is why the proposition has an
exceptional space). We now take r > 2. In this case is the set of all (ai) for which

i=x a, 2..i=1 ai.i+a 0 and M has dimension r2 2. The following set is a basis of
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RANKS OF m n (ran- 2) TENSORS 613

rank 1 matrices"

{Eo" #i, + 1 #]}

{Eu +Ei,i+l +Ei,i+2 -Ei+l,i-Ei+l,i+l -Ei+l,i+2 1,2," r-2}

[..J{gu-gi,i+l +gi,i+2 +gi+l,i-Ei+l,i+l +Ei+l,i+2: 1,2,’’’ ,r-2}

[-J{Er-2,r-1 -Er-2,r +Er-l,r-1 -Er-l,r +Er,r-1 -Err}.

LEMMA 3. Let be the space of 4 x 4 matrices whose annihilator is defined by the
matrix pencil

J(A) @Yu(/z aX +/3Y

+3x 3 0 0
0 a +3A 0 0
0 0 a +3tt fl
0 0 0

Then sg is perfect.
Proof. s is the set of all 44 matrices which satisfy y,.4=laii=

h (a1 + a22) 4-/ (a33 4- a44) 4- a 12 4- a34 0. The following set is a basis of rank 1 matrices:

{Eo.: i, (i,/’) # (1,2) or (3, 4)}

1

U 0
0 0
0 0
0 0
0 0

0
0 0 0 0

,0 1 0 1

% O0 /x-h 0 %’-10

0 1 0 1 0

! -1 0
0 0

1 -1 1
0 0 0

-1 1 -1
-1 1

LEMMA 4. Let be a space of m x n matrices of dimension mn- 1 or mn- 2 all
partitioned in some fixed way as [’ D] where A is an r s matrix. Suppose that
contains all m n matrices of the form [ ] and suppose also that the subspace, {[’ ] e} is perfect but not of dimension rs. Then itself is perfect.

Proof. Let

{[ ]} (a subspace of by hypothesis),

: {[ g]},
1 {[ ]" [ g] e for some

Then and both have dimension at least (m -r)(n -s)-2. In fact is perfect.
For if this were not the case would have dimension (m -r)(n -s)- 2 and so would
be equal to . But then would be the image of under the linear mapping
[ g] [ g] and @ would be its kernel from which we would obtain
; it wouqd follow that M had dimension rs contradicting the hypotheses.

Consequently we may take a basis of consisting of all Ei , a basis of rank
1 matrices of M (since M is perfect), together with certain matrices of the form [ ],
where each matrix D has rank 1. These latter matrices [ ] may not have rank 1
and to complete the proof we show that by adding a suitable matrix in M to every
such matrix we can obtain a new basis of consisting entirely of rank 1 matrices.
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614 M.D. ATKINSON AND S. LLOYD

Consider then any one of these basis matrices [Ao g]. If [0A 0] ’ we may replace
[0A g] in the basis by [ 0]-[0A 0]=[ 0]. If [0A 0] then (, [’ 0])has dimension
rs or rs- 1 and so is perfect, generated say by the basis of 4 and one further rank 1
matrix [0 0]. Then we have [ 0] 0[0 0] + [0s ] with [ 0] s4, 0 .0, and hence [0A 0

0[ff o]+[oS 0]. Since OT and D each have rank 1 we may let OT UlVl, D u2v2 for
suitable column vectors Ul, u2 and row vectors vl, v2. The matrix M [u2][VlV2] has
rank 1 and

D U2Vx 0 0

Consequently [ o] can be replaced in the basis by M. Since this can be done for
each of the basis matrices [" ] the proof is complete.

Proof of proposition. We begin by replacing T by an equivalent space chosen so
that T* is spanned by two matrices which define a pencil in Kronecker canonical form
[3] without any infinite elementary divisors. By hypothesis the pencil decomposition
is not of the form

+/3X / 0112(X)0 aX +/Y a

0 0

and therefore we may take it to be

c
X2 +t3 0 Y:’

where the subpencil aX1 +Y1 is one of the pencils which figure in Lemmas 1,2,3.
By definition of W* the space contains all matrices of the form [ ] and the
subspace 4 of all [o o] in g has, as its annihilator, the space defined by the pencil
aX1 +/3 Y1. therefore satisfies the conditions of Lemma 4 and consequently is perfect.

An immediate consequence of the proposition is that any nondegenerate rn n x
(ran 2) tensor of rank mn- 1 is equivalent to the one defined by the mn 2 matrices
{Ell +E22}J{Eii: (i, ]) r (1, 1), (1, 2), (2, 2)}. In fact the assumption of nondegeneracy
can be dropped. For suppose A 1, ’, A,,,,-2 are linearly dependent matrices defining
some degenerate m n x(mn-2) tensor. Then the annihilator of the space
(A 1,"" ", A,,,-2) is of dimension more than 2, and it is easy to prove that it contains
a two-dimensional subspace not equivalent to the one generated by Ell +E22 and
E12. Hence (A 1,’", Amn-2) is contained in a perfect space of dimension mn -2 and
so its tensor cannot have rank more than mn- 2. In particular, every m x n (ran 3)
tensor has rank at most mn- 2.

Finally we note that the assumption about algebraic closure cannot in general be
omitted. For example, with m n 2, the two-dimensional space of all matrices [-b b]
contains no real rank 1 matrix so, over the real field, is neither perfect nor equivalent
to the one generated byE +E22 and El2.

Our results can be summarized as follows: For m x n (mn -2) tensors which do
not reduce to smaller tensors we have completely solved the ranking problem in the
case of algebraically closed fields. Hitherto the only other nontrivial class of tensors
for which the ranking problem had been solved was the case of m x n x 2 tensors [3].
Both solutions rely on Kronecker’s theory of pencils but apply it in very different ways.
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RANKS OF m n (ran 2) TENSORS 615

REFERENCES

[1] M. D. ATKINSON AND N. M. STEPHENS, On the maximal multiplicative complexity o] a family of
bilinear forms, Linear Algebra and Appl., 27 (1979), pp. 1-8.

[2] R. W. BROCKETT AND O. DOBKIN, On the optimal evaluation of a set ofbilinear forms, Linear Algebra
and Appl., 19 (1978), pp. 207-235.

[3] J. JA’JA’, Optimal evaluation of pairs of bilinear forms, this Journal, 8 (1979), pp. 443-462.
[4] J. KRUSKAL, Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to

arithmetic complexity and statistics, Linear Algebra and Appl., 18 (1977), pp. 95-138.

D
ow

nl
oa

de
d 

11
/2

5/
12

 to
 1

39
.8

0.
2.

18
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


