
RESEARCH CONTRIBUTIONS

Programming
Techniques
and Data Structures

Min-Max Heaps and
Ian Munro
Editor Generalized Priority Queues

M. D. ATKINSON, J.-R. SACK, N. SANTORO, and T. STROTHOTTE

ABSTRACT: ,4 simple implementation of double-
ended priority queues is presented. The proposed
structure, called a min-max heap, can be built in linear
time; in contrast to conventional heaps, it allows both
FindMin and FindMax to be performed in constant
time; Insert, DeleteMin, and DeleteMax operations can
be performed in logarithmic time.

Min-max heaps can be generalized to support other
similar order-statistics operations efficiently (e.g.,
constant time FindMedian and logarithmic time
DeleteMedian); furthermore, the notion of min-max
ordering can be extended to other heap-ordered
structures, such as leftist trees.

1. INTRODUCTION
A (single-ended) priority queue is a data type sup-
porting the following operations on an ordered set of
values:

1) find the maximum value (FindMax);
2) delete the maximum value (DeleteMax);
3) add a new value x (Insert(x)).

Obviously, the priority queue can be redefined by
substituting operations 1) and 2) with FindMin and
DeleteMin, respectively.

Several structures, some implicitly stored in an
array and some using more complex data structures,
have been presented for implementing this data
type, including max-heaps (or min-heaps) [8, 121.

This research was supported in part by the National Science and Engineering
Council of Canada under Grants A2419. A2415. and A0332.

01986 ACMOOOl-0782/86/1000-0996 75a:

996 Communications of the ACM

Conceptually, a max-heap is a binary tree having the
following properties:

a) heap-shape: all leaves lie on at most two adja-
cent levels, and the leaves on the last level occupy
the leftmost positions; all other levels are complete.

b) max-ordering: the value stored at a node is
greater than or equal to the values stored at its chil-
dren.

A max-heap of size n can be constructed in linear
time and can be stored in an n-element array; hence
it is referred to as an implicit data structure [g].
When a max-heap implements a priority queue,
FindMax can be performed in constant time, while
both DeleteMax and Insert(x) have logarithmic time.

We shall consider a more powerful data type, the
double-ended priority queue, which allows both
FindMin and FindMax, as well as DeleteMin,
DeleteMax, and Insert(x) operations. An important
application of this data type is in external quicksort
[5, p, 1621.

A traditional heap does not allow efficient imple-
mentation of all the above operations; for example,
FindMin requires linear (instead of constant) time in
a max-heap. One approach to overcoming this in-
trinsic limitation of heaps, is to place a max-heap
“back-to-back” with a min-heap as suggested by Wil-
liams [8, p. 6191. This leads to constant time Find
either extremum and logarithmic time to Insert an
element or Delete one of the extrema, but is some-
what trickier to implement than the method follow-
ing.

October 1986 Volume 29 Number 10

Research Contributions

In this article, we present a new and different
generalization of a heap. Our structure, called a
min-max heap, is based on the heap structure under
the notion of min-max ordering: values stored at
nodes on even (odd) levels are smaller than or equal
to (respectively, greater than) values stored at their
descendants.

The proposed structure can be constructed in lin-
ear time and both FindMin and FindMax can be
performed in constant time; all other operations re-
quire logarithmic time. Furthermore, no additional
pointers are required; that is, the data structure can
be stored in situ.

The structure can also be generalized to support
the operation Find(k) (determine the kth smallest
value in the structure) in constant time and the op-
eration Delete(k) (delete the kth smallest value in the
structure) in logarithmic time, for any fixed value
(or set of values) of k. As an example, we describe
the min-max-median structure. The notion of min-
max ordering can be extended to other structures
based on the max- or (min-)ordering, such as leftist
trees, generating a new (and more powerful) class-of
data structures [7].

2. MIN-MAX HEAPS
Given a set S of values, a min-max heap on S is a
binary tree T with the following properties:

1) T has the heap-shape
2) T is min-max ordered: values stored at nodes on

even (odd) levels are smaller (greater) than or equal
to the values stored at their descendants (if any)
where the root is at level zero. Thus, the smallest
value of S is stored at the root of T, whereas the
largest value is stored at one of the root’s children;
an example of a min-max heap is shown in Figure 1
(p. 998).

A min-max heap on n elements can be stored in
an array A[1 . . . n]. The ith location in the array will
correspond to a node located on level L(log,i)l in the
heap. A max-min heap is defined analogously; in
such a heap, the maximum value is stored at the
root, and the smallest value is stored at one of the
root’s children.

It is interesting to observe that the Hasse diagram
for a min-max heap (i.e., the diagram representing
the order relationships implicit within the structure)
is rather complex in contrast with the one for a
traditional heap (in this case, the Hasse diagram is
the heap itself); Figure 2 (p. 998) shows the Hasse
diagram for the example of Figure 1.

Algorithms processing min-max heaps are very
similar to those corresponding to conventional
heaps. Creating a min-max heap is accomplished by
an adaption of Floyd’s [4] linear-time heap construc-
tion algorithm. Floyd’s algorithm builds a heap in a

bottom-up fashion. When the algorithm examines
the subtree rooted at A[i] then both subtrees of A[i]
are max-ordered, whereas the subtree itself may not
necessarily be max-ordered. The TrickleDown step
of his algorithm exchanges the value at A[i] with the
maximum of its children. This step is then applied
recursively to this maximum child to maintain the
max-ordering. In min-max heaps, the required or-
dering must be established between an element, its
children, and its grandchildren. The procedure must
differentiate between min- and max-levels. The re-
sulting description of this procedure follows:

procedure TrickleDown
- - i is the position in the array

if i is on a min level then
TrickleDownMin(i)

else
TrickleDownMax(i)

endif

procedure TrickleDownMin(i)
if A[i] has children then

m := index of smallest of the
children and grandchildren
(if any) of A[i]

if A[m] is a grandchild of A[i] then
if A[m] < A[i] then

swap A[i] and A[m]
if A[m] > A[parent(m)] then

swap A[m] and A[parent(m)]
endif
TrickleDownMin(m)

endif
else {A[m] is a child of A[i]]

if A[m] < A[i] then
swap A[i] and A[m]

endif
endif

The procedure TrickleDownMax is the same except
that the relational operators are reversed. The opera-
tions DeleteMin and DeleteMax are analogous to
deletion in conventional heaps. Specifically, the re-
quired element is extracted and the vacant position
is filled with the last element of the heap. The min-
max ordering is maintained after applying the
TrickleDown procedure.

An element is inserted by placing it into the first
available leaf position and then reestablishing the
ordering on the path from this element to the root.
An efficient algorithm to insert an element can be
designed by examining the Hasse diagram (recall
Figure 2). The leaf-positions of the heap correspond
to the nodes lying on the middle row in the Hasse
diagram. To reestablish the min-max ordering, the

October 1986 Volume 29 Number 10 Communications of the ACM 997

Research Contributions

min level

max level

min level

max level

min level

FIGURE 1. Sample of a Min-Max
Heap. The heap condition
alternates between minimum and
maximum from level to level.

new element is placed into the next available leaf
position, and must then move up the diagram to-
ward the top, or down toward the bottom, to ensure
that all paths running from top to bottom remain
sorted. Thus the algorithm must first determine
whether the new element should proceed further
down the Hasse diagram (i.e., up the heap on max-
levels) or up the Hasse diagram (i.e., up the heap on
successive min-levels). Once this has been deter-
mined, only grandparents along the path to the root
of the heap need be examined-either those lying
on min-levels or those lying on max-levels.

The algorithms are as follows:

procedure BubbleUp
- - i is the position in the array

if i is on a min-level then
if i has a parent cand A[i] >

A[parent(i)] then
swap A[i] and A[parent(i)]
BubbleUpMax(parent(i))

else

FIGURE 2. Hasse Diagram for
Min-Max Heap of Figure 1.

BubbleUpMin(i)
endif

else
if i has a parent cand A[i] <

A[parent(i)] then
swap A[i] and A[parent(i)]
BubbleUpMin(parent(i))

else
BubbleUpMax(i)

endif
endif

procedure BubbleUpMin(i)
if A[i] has grandparent then

if A[i] < A[grandparent(i)] then
swap A[i] and A[grandparent(i)]
BubbleUpMin(grandparent(i))

endif
endif

The cand (conditional and) operator in the above
code evaluates its second operand only when the

Commutlicatiom of the ACM October 1986 Volume 29 Number 10

first operand is true. BubbleUpMax is the same as
BubbleUpMin except that the relational operators
are reversed.

From the similarity with the traditional heap algo-
rithms, it is evident that the min-max heap algo-
rithms will exhibit the same order of complexity (in
terms of comparisons and data movements). The
only difference rests with the actual constants: for
construction and deletion the constant is slightly
higher, and for insertion the constant is slightly
lower. The value of the constant for each operation

is summarized in Table I: the reader is referred to
[2] for a detailed derivation of these values. All loga-
rithms are base 2.

TABLE I. Worst-Case Complexities for Mb-Heaps
and Min-Max Heaps

Create
Insert
DeleteMin
DeleteMax

211 7n/3
log(rz + 1) 0.5 log(n + 1)
2 @l(n) 2.5 log(n)
0.5 n + log(ll) 2.5 log(n)

Slight improvements in the constants can be ob-
tained by employing a technique similar to the one
used by Gonnet and Munro [S] for traditional heaps.
The resulting new values are shown in Table II;
again, details of the derivation can be found in [2].
In Table II the function g(x) is defined as follows:
g(x) = 0 for x 5 1 and g(a) = g(flog(?z)l) + 1.

3. ORDER-STATISTICS TREES
The min-max heap structure can also be generalized
to perform efficiently the operations Find(k) (locate
the kth smallest value in the structure) and Delete(k)
(delete that value) for any predetermined set K =
Ik,,..., k,,j of values of k. This new structure, called
an order-statistics tree, also allows optimal processing
of range queries of the form List[k, . . k,]: find all
elements in the structure whose rank is between k;
and k, (for ki < kj).

Observe that, if we are interested only in the op-
erations Insert, FindMedian, and DeleteMedian, then
the problem is easily solved using two separate tra-
ditional heaps (a min-heap on the values greater
than the median and a max-heap on the values
smaller than the median). However, it is not difficult
to see that, as soon as we require just the additional
operations FindMin and DeleteMin, solutions em-
ploying traditional heaps do not yield efficient per-
formance. On the other hand, data structures such
as balanced binary search trees, 2-3 trees, AVL trees
(which do yield the desired performance) require
O(n log n) creation time.

Our solution, the min-vu-median (or mmm) heap,
is simple and efficient. An mmm-heap is a binary
tree with the following properties:

a) The median of all elements is located at the
root.

An order-statistics tree on a set S of values and for b) The left subtree of the root is a min-max heap
a specified set K = {k,, . , k,,] of rank values, where HI of size r((n - 1)/2)1, containing elements less
k; < ki+l, is a structure comprised of a one-dimen- than or equal to the median. The right subtree is a

Research Contributions

sional array V[O..m + l] and m + 1 min-max heaps
T,,, . (T,,; element V[i] contains the k;th smallest
element in S (if any), and T, contains the elements
whose rank is greater than V(i] and smaller than
v[i + l] (where V[O] = --oo and V[m + l] = +m).

Using the properties of min-max heaps, an order-
statistics tree can be constructed in linear time, any
Find operation (on the specified set of ranks) can be
performed in constant time, the Insert operation and
any Delete operation (on the specified set of ranks)
can be performed in logarithmic time, and any range
query (where the range is from elements of the rank
set) can be answered in time proportional to the
query result. Since kl, . , k,,, are fixed in value, an
order-statistics tree can be stored implicitly in an
array. The interested reader is referred to [3] for a
detailed description and analysis of this structure as
well as a practical application.

To illustrate this structure (as well as the versatil-
ity of min-max heaps) we shall consider the problem
of designing a structure which, in addition to the
operations of a double-ended priority queue, sup-
ports the operations FindMedian (in constant time)
and DeleteMedian (in logarithmic time).

TABLE II. Running Times of Improved Algorithms for Mb-Heaps and Min.Max Heaps

Create
Insert
DeleteMin
DeleteMax

n n 1.625 n 2.15.. n
log(i1 + 1) 0.5 log(n + 1) WWn + 1)) WWn + 1))
Wll) log(n) log(n) + g(n) 1.5 log(n) + log(log(n))
log(4 log(n) 0.5 n + log(log(n)) 1.5 log(n) + log(log(n))

October 1986 Volume 29 Number 70 Communications of the ACM 999

Research Contributions

max-min heap H, of size L((n - 1)/2)J containing
only elements greater than or equal to the median.

An mmm-heap can be stored in an array A, such
that the median is at location A[l], the minimum at
location A[Z], and the maxirnum at location A[3].
The algorithm to construct an mmm-heap on n ele-
ment is as follows:

1. Find the median of all n elements using any
one of the known linear-time algorithms (e.g., [l,
p. 981). Partition the elements into two sets, S,, S, of
sizes T((n - 1)/2)1, L((n - 1)/2)J, respectively, such
that SI contains only elements less than or equal to
the median and S, contains only elements greater
than or equal to the median.

2. Construct a min-max heap Hl of the elements
in S, and a max-min heap H, of the elements in S,.

To find successive medians efficiently we main-
tain the balancae between the sizes of HI and H,,
denoted by) HI) and JH, 1, respectively. Since we
are considering the upper median, we must keep
eitherIH,I=IH,IorjH,I=jH,I+l.Theopera-
tion DeleteMedian consists of extracting either the
minimum of H, or the maximum of HI, depending
on which mairrtains this balance. DeleteMin is per-
formed by extracting the minimum of HI, followed
by a rebalancing if necessary: if (HI 1 has become too
small, the median is inserted into HI and the mini-
mum of H, is extracted to become the new median.
Similarly, a DeleteMax is performed by extracting
the maximum of H,, and performing a rebalancing if
necessary.

With the exception of the creation, the opera-
tions on mmm-heaps reduce to operations on the
min-max heap 1~1 or the max-min heap H,. Thus
insertions and deletions can be performed in loga-
rithmic time. The creation uses an initial median-
finding process, which requires linear time, so the
overall creation time is also linear. The exact com-
plexities can be calculated from Table I.

4. CONCLUDING REMARKS
The min-max heap structure is based on the idea of
alternating the relations “greater than or equal to
all descendants” and “smaller than or equal to all
descendants” between consecutive tree levels; the
order relation implied is herein referred to as min-
max ordering and can be applied to a number of
structures implementing priority queues, such as
P-trees, leftist-trees (see [7] for details).

We have presented efficient algorithms for imple-

lems for further research. We are currently investi-
gating whether the techniques for merging heaps
presented in [lo, 111 can be extended to merge min-
max heaps. This would require the data structures
to explicitly store pointers and to no longer be im-
plicit.

Acknowledgment. We would like to thank G. J. E.
Rawlins and J. M. Robson for their comments on an
earlier draft of this article. We also thank the ref-
erees for their helpful suggestions.

REFERENCES
1. Aho. A.V., Hopcroft, J.E., and Ullman, J.D. The Design and Analysis of

Computer Algorithms. Addison Wesley, Reading, Mass., 1974.
2. Atkinson. M.D., Sack, J.-R.. Santoro, N., and Strothotte, Th. An effi-

cient. implicit double-ended priority queue. Tech. Rep. SCS-TR-55,
School of Computer Science, Carleton University, Ottawa, Ont..
Canada, Ju!y 1984.

3. Atkinson. M.D., Sack, J.-R., Santoro, N., and Strotbotte, Th. Min-max
heaps, order-statistic trees and their application to the Course-
Marks problem. In Proceedings of Nineteenth Conference on Informa-
tion and Syskm Sciences, Baltimore, Md., (Mar. 19851. 160-165.

4. Floyd, R.W. Algorithm 245, Treesort3. Commun. ACM 7. 12 (Dec.
1964),701.

5. Gannet, G.H. Handbook ofAlgorithms and Data Structures. Addison-
Wesley, Reading, Mass.. 1984.

6. Gannet, G. H., and Munro, J.I. Heaps on heaps. In Proceedings of the
ICALP, Aarhus, 9 (July 1982), 282-291.

7. Hasham, A. A new class of priority queue organizations, Master’s
thesis, School of Comput. Sci.. Carleton University, Ottawa, Ont.,
Canada, 1986.

8. Knuth, D.E. The Art of Computer Programming, Vol. 111 Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.

9. Munro, J.I., and Suwanda, H. Implicit data structures for fast search
and update. In Proceedings SIGACT, Atlanta Ga., 11 (Apr. 1979),
108-117: also \CSS 22, 2 (Oct. 1980), 236-250.

10. Sack, J.-R., and Strothotte, Th. An algorithm for merging heaps. Acta
Inform. 22,(1985), 171-186.

11. Strothotte, Th.. and Sack, J.-R. Heaps in heaps. Congressus Numeran-
tium, 49 (1985). 223-235.

12. Williams, J.W.J. Algorithm 232. Commun. ACM 7, 6 (June 1964),
347-348.

CR Categories and Subject Descriptors: E.l [Data]: Data Structures-
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms: Algorithms
Additional Key Words and Phrases: heaps, min-max ordering, order-

statistics trees, priority queues

Received 7/84; revised 5/86; accepted 6/86

Authors’ Present Addresses: M. D. Atkinson, J.-R. Sack, and N. Santoro,
School of Computer Science, Carleton University, Ottawa, Ont.. Canada
KIS 5B6. T. Strothotte, Abteilung fiir Dialogsysteme, lnstitut fiir Infor-
matik, Universitzt Stuttgart, Stuttgart, Federal Republic of Germany.

mentating an implicit double-ended priority queue
using min-max heaps. The cost of maintaining a
min-max heap is comparable to that of maintaining
a conventional heap. The algorithms presented in
this article open up a number of interesting prob-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

loo0 Communications of the ACM Ocfober 1986 Volume 29 Number 10

