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ABSTRACT: ,4 simple implementation of double- 
ended priority queues is presented. The proposed 
structure, called a min-max heap, can be built in linear 
time; in contrast to conventional heaps, it allows both 
FindMin and FindMax to be performed in constant 
time; Insert, DeleteMin, and DeleteMax operations can 
be performed in logarithmic time. 

Min-max heaps can be generalized to support other 
similar order-statistics operations efficiently (e.g., 
constant time FindMedian and logarithmic time 
DeleteMedian); furthermore, the notion of min-max 
ordering can be extended to other heap-ordered 
structures, such as leftist trees. 

1. INTRODUCTION 
A (single-ended) priority queue is a data type sup- 
porting the following operations on an ordered set of 
values: 

1) find the maximum value (FindMax); 
2) delete the maximum value (DeleteMax); 
3) add a new value x (Insert(x)). 

Obviously, the priority queue can be redefined by 
substituting operations 1) and 2) with FindMin and 
DeleteMin, respectively. 

Several structures, some implicitly stored in an 
array and some using more complex data structures, 
have been presented for implementing this data 
type, including max-heaps (or min-heaps) [8, 121. 
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Conceptually, a max-heap is a binary tree having the 
following properties: 

a) heap-shape: all leaves lie on at most two adja- 
cent levels, and the leaves on the last level occupy 
the leftmost positions; all other levels are complete. 

b) max-ordering: the value stored at a node is 
greater than or equal to the values stored at its chil- 
dren. 

A max-heap of size n can be constructed in linear 
time and can be stored in an n-element array; hence 
it is referred to as an implicit data structure [g]. 
When a max-heap implements a priority queue, 
FindMax can be performed in constant time, while 
both DeleteMax and Insert(x) have logarithmic time. 

We shall consider a more powerful data type, the 
double-ended priority queue, which allows both 
FindMin and FindMax, as well as DeleteMin, 
DeleteMax, and Insert(x) operations. An important 
application of this data type is in external quicksort 
[5, p, 1621. 

A traditional heap does not allow efficient imple- 
mentation of all the above operations; for example, 
FindMin requires linear (instead of constant) time in 
a max-heap. One approach to overcoming this in- 
trinsic limitation of heaps, is to place a max-heap 
“back-to-back” with a min-heap as suggested by Wil- 
liams [8, p. 6191. This leads to constant time Find 
either extremum and logarithmic time to Insert an 
element or Delete one of the extrema, but is some- 
what trickier to implement than the method follow- 
ing. 
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In this article, we present a new and different 
generalization of a heap. Our structure, called a 
min-max heap, is based on the heap structure under 
the notion of min-max ordering: values stored at 
nodes on even (odd) levels are smaller than or equal 
to (respectively, greater than) values stored at their 
descendants. 

The proposed structure can be constructed in lin- 
ear time and both FindMin and FindMax can be 
performed in constant time; all other operations re- 
quire logarithmic time. Furthermore, no additional 
pointers are required; that is, the data structure can 
be stored in situ. 

The structure can also be generalized to support 
the operation Find(k) (determine the kth smallest 
value in the structure) in constant time and the op- 
eration Delete(k) (delete the kth smallest value in the 
structure) in logarithmic time, for any fixed value 
(or set of values) of k. As an example, we describe 
the min-max-median structure. The notion of min- 
max ordering can be extended to other structures 
based on the max- or (min-)ordering, such as leftist 
trees, generating a new (and more powerful) class-of 
data structures [7]. 

2. MIN-MAX HEAPS 
Given a set S of values, a min-max heap on S is a 
binary tree T with the following properties: 

1) T has the heap-shape 
2) T is min-max ordered: values stored at nodes on 

even (odd) levels are smaller (greater) than or equal 
to the values stored at their descendants (if any) 
where the root is at level zero. Thus, the smallest 
value of S is stored at the root of T, whereas the 
largest value is stored at one of the root’s children; 
an example of a min-max heap is shown in Figure 1 
(p. 998). 

A min-max heap on n elements can be stored in 
an array A[1 . . . n]. The ith location in the array will 
correspond to a node located on level L(log,i)l in the 
heap. A max-min heap is defined analogously; in 
such a heap, the maximum value is stored at the 
root, and the smallest value is stored at one of the 
root’s children. 

It is interesting to observe that the Hasse diagram 
for a min-max heap (i.e., the diagram representing 
the order relationships implicit within the structure) 
is rather complex in contrast with the one for a 
traditional heap (in this case, the Hasse diagram is 
the heap itself); Figure 2 (p. 998) shows the Hasse 
diagram for the example of Figure 1. 

Algorithms processing min-max heaps are very 
similar to those corresponding to conventional 
heaps. Creating a min-max heap is accomplished by 
an adaption of Floyd’s [4] linear-time heap construc- 
tion algorithm. Floyd’s algorithm builds a heap in a 

bottom-up fashion. When the algorithm examines 
the subtree rooted at A[i] then both subtrees of A[i] 
are max-ordered, whereas the subtree itself may not 
necessarily be max-ordered. The TrickleDown step 
of his algorithm exchanges the value at A[i] with the 
maximum of its children. This step is then applied 
recursively to this maximum child to maintain the 
max-ordering. In min-max heaps, the required or- 
dering must be established between an element, its 
children, and its grandchildren. The procedure must 
differentiate between min- and max-levels. The re- 
sulting description of this procedure follows: 

procedure TrickleDown 
- - i is the position in the array 

if i is on a min level then 
TrickleDownMin(i) 

else 
TrickleDownMax(i) 

endif 

procedure TrickleDownMin(i) 
if A[i] has children then 

m := index of smallest of the 
children and grandchildren 
(if any) of A[i] 

if A[m] is a grandchild of A[i] then 
if A[m] < A[i] then 

swap A[i] and A[m] 
if A[m] > A[parent(m)] then 

swap A[m] and A[parent(m)] 
endif 
TrickleDownMin(m) 

endif 
else {A[m] is a child of A[i]] 

if A[m] < A[i] then 
swap A[i] and A[m] 

endif 
endif 

The procedure TrickleDownMax is the same except 
that the relational operators are reversed. The opera- 
tions DeleteMin and DeleteMax are analogous to 
deletion in conventional heaps. Specifically, the re- 
quired element is extracted and the vacant position 
is filled with the last element of the heap. The min- 
max ordering is maintained after applying the 
TrickleDown procedure. 

An element is inserted by placing it into the first 
available leaf position and then reestablishing the 
ordering on the path from this element to the root. 
An efficient algorithm to insert an element can be 
designed by examining the Hasse diagram (recall 
Figure 2). The leaf-positions of the heap correspond 
to the nodes lying on the middle row in the Hasse 
diagram. To reestablish the min-max ordering, the 
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FIGURE 1. Sample of a Min-Max 
Heap. The heap condition 
alternates between minimum and 
maximum from level to level. 

new element is placed into the next available leaf 
position, and must then move up the diagram to- 
ward the top, or down toward the bottom, to ensure 
that all paths running from top to bottom remain 
sorted. Thus the algorithm must first determine 
whether the new element should proceed further 
down the Hasse diagram (i.e., up the heap on max- 
levels) or up the Hasse diagram (i.e., up the heap on 
successive min-levels). Once this has been deter- 
mined, only grandparents along the path to the root 
of the heap need be examined-either those lying 
on min-levels or those lying on max-levels. 

The algorithms are as follows: 

procedure BubbleUp 
- - i is the position in the array 

if i is on a min-level then 
if i has a parent cand A[i] > 

A[parent(i)] then 
swap A[i] and A[parent(i)] 
BubbleUpMax(parent(i)) 

else 

FIGURE 2. Hasse Diagram for 
Min-Max Heap of Figure 1. 

BubbleUpMin(i) 
endif 

else 
if i has a parent cand A[i] < 

A[parent(i)] then 
swap A[i] and A[parent(i)] 
BubbleUpMin(parent(i)) 

else 
BubbleUpMax(i) 

endif 
endif 

procedure BubbleUpMin(i) 
if A[i] has grandparent then 

if A[i] < A[grandparent(i)] then 
swap A[i] and A[grandparent(i)] 
BubbleUpMin(grandparent(i)) 

endif 
endif 

The cand (conditional and) operator in the above 
code evaluates its second operand only when the 
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first operand is true. BubbleUpMax is the same as 
BubbleUpMin except that the relational operators 
are reversed. 

From the similarity with the traditional heap algo- 
rithms, it is evident that the min-max heap algo- 
rithms will exhibit the same order of complexity (in 
terms of comparisons and data movements). The 
only difference rests with the actual constants: for 
construction and deletion the constant is slightly 
higher, and for insertion the constant is slightly 
lower. The value of the constant for each operation 

is summarized in Table I: the reader is referred to 
[2] for a detailed derivation of these values. All loga- 
rithms are base 2. 

TABLE I. Worst-Case Complexities for Mb-Heaps 
and Min-Max Heaps 

Create 
Insert 
DeleteMin 
DeleteMax 

211 7n/3 
log(rz + 1) 0.5 log(n + 1) 
2 @l(n) 2.5 log(n) 
0.5 n + log(ll) 2.5 log(n) 

Slight improvements in the constants can be ob- 
tained by employing a technique similar to the one 
used by Gonnet and Munro [S] for traditional heaps. 
The resulting new values are shown in Table II; 
again, details of the derivation can be found in [2]. 
In Table II the function g(x) is defined as follows: 
g(x) = 0 for x 5 1 and g(a) = g(flog(?z)l) + 1. 

3. ORDER-STATISTICS TREES 
The min-max heap structure can also be generalized 
to perform efficiently the operations Find(k) (locate 
the kth smallest value in the structure) and Delete(k) 
(delete that value) for any predetermined set K = 
Ik,,..., k,,j of values of k. This new structure, called 
an order-statistics tree, also allows optimal processing 
of range queries of the form List[k, . . k,]: find all 
elements in the structure whose rank is between k; 
and k, (for ki < kj). 

Observe that, if we are interested only in the op- 
erations Insert, FindMedian, and DeleteMedian, then 
the problem is easily solved using two separate tra- 
ditional heaps (a min-heap on the values greater 
than the median and a max-heap on the values 
smaller than the median). However, it is not difficult 
to see that, as soon as we require just the additional 
operations FindMin and DeleteMin, solutions em- 
ploying traditional heaps do not yield efficient per- 
formance. On the other hand, data structures such 
as balanced binary search trees, 2-3 trees, AVL trees 
(which do yield the desired performance) require 
O(n log n) creation time. 

Our solution, the min-vu-median (or mmm) heap, 
is simple and efficient. An mmm-heap is a binary 
tree with the following properties: 

a) The median of all elements is located at the 
root. 

An order-statistics tree on a set S of values and for b) The left subtree of the root is a min-max heap 
a specified set K = {k,, . , k,,] of rank values, where HI of size r((n - 1)/2)1, containing elements less 
k; < ki+l, is a structure comprised of a one-dimen- than or equal to the median. The right subtree is a 
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sional array V[O..m + l] and m + 1 min-max heaps 
T,,, . ( T,,; element V[i] contains the k;th smallest 
element in S (if any), and T, contains the elements 
whose rank is greater than V(i] and smaller than 
v[i + l] (where V[O] = --oo and V[m + l] = +m). 

Using the properties of min-max heaps, an order- 
statistics tree can be constructed in linear time, any 
Find operation (on the specified set of ranks) can be 
performed in constant time, the Insert operation and 
any Delete operation (on the specified set of ranks) 
can be performed in logarithmic time, and any range 
query (where the range is from elements of the rank 
set) can be answered in time proportional to the 
query result. Since kl, . , k,,, are fixed in value, an 
order-statistics tree can be stored implicitly in an 
array. The interested reader is referred to [3] for a 
detailed description and analysis of this structure as 
well as a practical application. 

To illustrate this structure (as well as the versatil- 
ity of min-max heaps) we shall consider the problem 
of designing a structure which, in addition to the 
operations of a double-ended priority queue, sup- 
ports the operations FindMedian (in constant time) 
and DeleteMedian (in logarithmic time). 

TABLE II. Running Times of Improved Algorithms for Mb-Heaps and Min.Max Heaps 

Create 
Insert 
DeleteMin 
DeleteMax 

n n 1.625 n 2.15.. n 
log(i1 + 1) 0.5 log(n + 1) WWn + 1)) WWn + 1)) 
Wll) log(n) log(n) + g(n) 1.5 log(n) + log(log(n)) 
log(4 log(n) 0.5 n + log(log(n)) 1.5 log(n) + log(log(n)) 
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max-min heap H, of size L((n - 1)/2)J containing 
only elements greater than or equal to the median. 

An mmm-heap can be stored in an array A, such 
that the median is at location A[l], the minimum at 
location A[Z], and the maxirnum at location A[3]. 
The algorithm to construct an mmm-heap on n ele- 
ment is as follows: 

1. Find the median of all n elements using any 
one of the known linear-time algorithms (e.g., [l, 
p. 981). Partition the elements into two sets, S,, S, of 
sizes T((n - 1)/2)1, L((n - 1)/2)J, respectively, such 
that SI contains only elements less than or equal to 
the median and S, contains only elements greater 
than or equal to the median. 

2. Construct a min-max heap Hl of the elements 
in S, and a max-min heap H, of the elements in S,. 

To find successive medians efficiently we main- 
tain the balancae between the sizes of HI and H,, 
denoted by ) HI ) and JH, 1, respectively. Since we 
are considering the upper median, we must keep 
eitherIH,I=IH,IorjH,I=jH,I+l.Theopera- 
tion DeleteMedian consists of extracting either the 
minimum of H, or the maximum of HI, depending 
on which mairrtains this balance. DeleteMin is per- 
formed by extracting the minimum of HI, followed 
by a rebalancing if necessary: if ( HI 1 has become too 
small, the median is inserted into HI and the mini- 
mum of H, is extracted to become the new median. 
Similarly, a DeleteMax is performed by extracting 
the maximum of H,, and performing a rebalancing if 
necessary. 

With the exception of the creation, the opera- 
tions on mmm-heaps reduce to operations on the 
min-max heap 1~1 or the max-min heap H,. Thus 
insertions and deletions can be performed in loga- 
rithmic time. The creation uses an initial median- 
finding process, which requires linear time, so the 
overall creation time is also linear. The exact com- 
plexities can be calculated from Table I. 

4. CONCLUDING REMARKS 
The min-max heap structure is based on the idea of 
alternating the relations “greater than or equal to 
all descendants” and “smaller than or equal to all 
descendants” between consecutive tree levels; the 
order relation implied is herein referred to as min- 
max ordering and can be applied to a number of 
structures implementing priority queues, such as 
P-trees, leftist-trees (see [7] for details). 

We have presented efficient algorithms for imple- 

lems for further research. We are currently investi- 
gating whether the techniques for merging heaps 
presented in [lo, 111 can be extended to merge min- 
max heaps. This would require the data structures 
to explicitly store pointers and to no longer be im- 
plicit. 
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mentating an implicit double-ended priority queue 
using min-max heaps. The cost of maintaining a 
min-max heap is comparable to that of maintaining 
a conventional heap. The algorithms presented in 
this article open up a number of interesting prob- 
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