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Abstract
We consider permutations of a multiset which do not contain certain ordered
patterns of length 3. For each possible set of patterns we provide a structural
description of the permutations avoiding those patterns, and in many cases a
complete enumeration of such permutations according to the underlying multi-

set.



1 Background

Let a = (a1,...,am) and g = (b1,...,b,) be two sequences of numbers. The
sequence « is said to be contained in § as a pattern (or be involved in ) if
there is a subsequence b;,,... ,b; (with i3 < i3 < -+ < i) of B which is
order isomorphic to «; in other words, a, < a; if and only if b;, < b;. If §
does not contain a we say that 8 avoids . This notion has surfaced many
times over the last few years in both combinatorial and computing settings, see
[3,4,5,9, 13, 14, 15, 16] for example, where attention has focused on the case
that the sequences in question have distinct elements (in which case they are
generally taken to be permutations of {1,2,...}). In all those works a central
problem has been to determine the number of permutations of each length that
avoid all patterns from some given set.

In this paper we take a more general point of view by considering permu-
tations of a multiset 1912%2 ... k® . Such permutations are sequences of length
a1 + as + - - -+ ag which contain a; occurrences of ¢ for each 1 < i < k. Hitherto
this generalisation has hardly been considered; indeed, the only substantial work
that we know of is the thesis of Alex Burstein [6] in which he mainly considers
words in some finite alphabet that avoid sets of patterns. Yet the generalisa-
tion to multisets is entirely natural. For example, one of the chief sources of
pattern-avoiding sequences are those sequences which a particular data struc-
ture is capable of sorting (see [2, 7, 8, 15]); it seems sensible to allow the input
to such structures to be arbitrary sequences. Another reason for generalising

to multisets is that 1t allows techniques that are unavailable in the permutation



case (in other words, we come across techniques that are not just generalisations
of permutation techniques).

Burstein’s work is a follow-up to the paper [10] in which the authors consid-
ered permutations that avoid the various sets of permutations of length 3. For
each such set they gave a formula for the number of permutations of length n.
Since there are 6 permutations of length 3 there are at most 2° different sets to
consider but, in fact, they did not need to look at nearly as many as this; they
first grouped them into symmetry classes (under 8 natural symmetries) and
handled each symmetry class in turn. Burstein carried out a similar analysis
and counted words of length n in a k letter alphabet.

The aim of this paper is to do the same with permutations of an arbitrary
multiset 191292 .. . k% . So, we define S(ay,...,ax) to be the number of permu-
tations of 191292 ... k® which avoid every permutation in the set S. We would
like to find a formula for S(ay,...,ax) or at least a generating function, or a
recurrence, when S consists of length 3 permutations only.

The generating functions we shall work with have the form

201,02 »0k
E Slay, ..., ax)2{ 252 . xk.

0<ay,az,... ,ax
In some cases even the generating function is out of reach, and we shall have
to be content with a recurrence relation for S(ay, ..., ax) that enables it to be

computed numerically.



2 Symmetry classes

Suppose S is a set of permutations in S,,, thought of as sequences of length n.
We let ST denote the set of reversals of the permutations of S and let S denote
the (n+1)-complement of S’ (in which every symbol 7 gets replaced by n+1—1).
Then, by considering the effect of reversal and (k + 1)-complement on the class

S(a1,as, ... ,a;) it is easily seen that

S(ay, ..., ax) = SR(al,... , ak)
and

S(ay,...,ax) = S(ak, ..., a1).

So if we have solved the enumeration problem for the set S and all possible
ai,as, ... we shall have a solution for S¥ and S.

In the case that S is a set of permutations of length 3 the operations of
reversal and complement break the set of possibilities for S into classes with

representatives as follows:



Class name | Permutations | Enumeration

Aq {123} Catalan numbers
A, {132} Catalan numbers
B, {123,132} gn-1

B, {123,231} (5) +1

Bs {123,321} zero for n > 4
By {132,213} on=1

Bs {132,231} gn-1

Bs {132,312} gn-1

Cq {123,132,213} | Fibonacci numbers
Oy (123,132,231} | n

Cs {123,132,312} | n

Cy {123,132,321} | zero for n > 4
Cs {123,231,312} | n

Cs (132,213,231} | n

This table also gives the enumeration results for the classes of ordinary
permutations of length n that avoid each permutation of the class. It omits
those sets S with |S| > 4; we shall summarise the (rather easy) results in those
cases towards the end of the paper.

From now on let N denote the size a1 + ... + a; of the multiset § =
191292 . k. We now consider the various possibilities for S in turn. In our

analysis we shall usually have the tacit assumption that a; > 0 for each i (on the



grounds that, if any symbol ¢ does not occur, we can rename the symbols and
reduce the value of k). We depart from this assumption in those cases where we
wish to consider a generating function, since the algebraic relationships become

somewhat less complicated when we allow some a; = 0. Also, we often tacitly

(11+(l2) )

assume that k > 3 since we always have S(a1) = 1 and S(a1,as) = ( .

3 Cases of type A
Lemma 1 Aj(a1) =1 and for k > 2,

Al(al, . ,ak) =
a;—1

Ai(ay +as,as, ... a5) + ZAl(al—q,ag—l,...,ak) for as >1
q=0

Aq(ay,as, .., a) for as = 0.
Proo¥:  Assume ay > 1 since the result for as = 0 follows by simple rela-
belling. Let ¢ be any permutation of & avoiding 123 in which all the 2’s in ¢
come before all the 1’s. Let o’ be the sequence obtained from ¢ by replacing
all the 1’s by 2’s. Then ¢ is a 123-avoiding permutation of 291132 . k% Con-
versely, for any 123-avoiding permutation ¢’ of 291792 | k% we can construct
a sequence o of the type considered above by replacing the last a; 2’s in ¢’ by
1’s. Hence the total number of elements of Aj(a1,as,...,ax) with all the 2’s
before all the 1’s is Ay (a1 + as, as, ..., ag).

Next consider a permutation ¢ of § avoiding 123 and containing at least
one occurrence of a 1 before a 2. By considering the last occurrence of 2 in o

and the last 1 preceding this 2 we obtain a unique decomposition o = 011022«



where a contains no 2’s and o5 contains no 1’s. But then, because o contains
no 123 pattern, a has the form a = 17 for some ¢ > 0.

Let the sequence ¢ = 01103 be obtained by removing the uniquely deter-
mined final substring 219 from ¢. Clearly ¢ has no 123 pattern either and so
is one of the Ay(a; — q,a2 — 1,as,...,a;) 123-avoiding permutations of the
sequence 19179282~1 | ok,

Conversely, from any one of these latter permutations & we can obtain a
sequence of Aq(aq,as,as,...,ax) that has at least one occurrence of a 1 before
a 2 merely by appending 219 to & (since this cannot introduce a 123 pattern).
Therefore the total number of sequences in A;(ay, as, as, ..., ag) which do not

have all their 1’s before all their 2’s is

a;—1
Al(al_QaGQ_la"' aak)
q=0

which proves the result. |
The recurrence in this lemma arises from a division into two cases the first
of which is handled by an argument that only applies in the context of multi-
sets. Thus, in one respect at least, the multiset problems are easier than the
permutation problems. We shall see several examples of this in the following
sections.
In [1] it was proved that As(a1,as,as,...,ax) satisfies exactly the same

recurrence as in the previous lemma, and therefore it follows that
Ai(ar, az, a3, ... ax) = Az(ar,az,as,... ,ag).

Also in [1] an explicit formula was given for the multi-variate generating



function

a a a
E As(ar, ... ,ak)z 25® .z,
ax

a1,a2,...,
It was observed to be a symmetric function, and hence that As(a1,as, ..., ax)
must be symmetric in its arguments. We now give a direct proof of a more

general result.

Theorem 2 Let r be fired and let (a1, ... ,ax) be the number of permutations
of the multiset 19122 .. k% that avoid 1,2,... 7+ 1. Then e(as,...,ax) is a

symmetric function.

Proor: We recall the definition of the Schur function sy(z) where A =
(A1,...,Ay) with Ay > ... > X is a partition of n and z = (z1,22,...) is a

set of indeterminates. We have

S)\IE :L‘T
T

where the sum is over all semistandard Young tableaux T of shape A and z”
denotes the type enumerator z7'z3* ... of T (in other words, the entries of T
comprise the multiset 1912%2 .. .). By definition, the coefficients of sy tell us
how many semistandard Young tableau of shape A there are for each possible
multiset of entries.

Next, let fy denote the number of standard Young tableaux on the set
1,2,...,n ="\ of shape A. Then fys) enumerates the pairs (S, T) of Young

tableaux of shape A according to each possible multiset of entries for 7' and

where S has entries 1,2,...,n.
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Now put F,(z) = ZA sxfa where the sum 1s over partitions with maximum
part at most r. Since the Schur functions are symmetric (Theorem 7.10.2 of
[11]) so also is E,.(z).

However, applying the Robinson-Schensted-Knuth correspondence to two-
line arrays with first line 1,2, ..., n and second line a permutation of 1#12%2 ., k%
gives a one-to-one correspondence between permutations of 191292 .. k% that
have no increasing subsequence of length » 4+ 1 and the Young tableau pairs
(S, T) introduced above. Consequently the coefficients of F,(z) enumerate these

permutations for each multiset, and the theorem follows. |

4 Cases of type B

4.1 B = {123,132}

Let o be a permutation of & that avoids the elements of B;. Suppose first that
all the 2’s of o precede all the 1’s. By a similar argument to that given in the
proof of Lemma 1 there are Bj(a1 + aa,as, ... ,ax) possibilities for o. In the
contrary case (at least one 1 followed by a 2 somewhere) we may write o as
alB with no 1’s in a and at least one 2 in 3. Then # must consist of 1’s and

2’s alone and a can be any permutation avoiding the permutations of By. This

case contributes 222:1 <a1+:_1)B1(a2 — u,as,...) permutations so
Bi(ai,as,...,a5) = Bi(ar+as,as, ..., a5+
as
ar+u—1
Z( ! ) )Bl([lQ_u,[lg,...,ak). (1)
u=1

11



If k = 2 then, of course, By (a1, as) = (al+a2). When k£ = 3 we may simplify the

ay

binomial summation to obtain:

Bi(ai, az,as) = <a1 +22+a3> 3 <a2:—a3> n <a1 —1-22 —|—a3>.
3 3 ,

However, such a simple form does not exist for k > 4.

The recurrence (1) allows By (a1, as, ... ,ax) to be computed in stages. Sup-
pose, forsomeiin k, k—1,...,2 we have found By (a1+as+...+a;,aiq1,...,ak)
and all By(j, @it1,...,ak) with 1 < j < as+...+a;. We can then use the recur-

rence to compute the analogous quantities in which 7 is replaced by 7z — 1. The
cost of each such stage is O(a;(az + ...+ a;-1)) and the total cost is therefore
O(N?).

Since the recurrence for Bj still holds when we allow any a; = 0 it can be
viewed as a relationship concerning the generating functions by for B;. Recall

that:

bp(z1,22,... %K) = Z Bi(ay, ... ax)z{"zy? .. xlk

0<ay,az,...,ax

but for notational simplicity we may drop the subscript k& which can be inferred
from the number of variables in the list of arguments.

The first term of the recurrence is the coefficient of 33‘1“ . ~.Z‘Zk n

z1b(x1, 23, ..., 25) — Tab(w2, 23,. .., Tk)

1 — T3

as can easily be seen by setting ¢ = a1 +as and considering the expression above

as:

12



Now, note that:

e = ()

so the summation term in the recurrence is precisely the coefficient of 27 - - - 2*
in:

(ii (:ta) I(f(—xz)“) by, 3, ..., 28).

a=0u=1
If the summation on u were from 0, the inner sum would be z{/(1 — z5)*, and

the whole summation would equal

1—1‘2
71)(232,1‘3, . ,:L‘k).
1-— r|1 — I3

However, the extra terms added for u = 0 contribute precisely

1

1—1‘1

b(za, x3,...,2K)

to the actual sum. Putting all this information together we obtain:

x
b(zy,2q,...28) = ﬁb(mhl‘s,...,mk)
1— &2
—2 I —x 1
- b(: ,
+<m1_$2+1—l‘1—1‘2 1—:L‘1) (Iz,(lﬁg, ’;)gk)

4.2 B, = {123,231}

Let o be a permutation of § that avoids the permutations of By. Consider the
positions of the k’s and (k — 1)’s in o. Suppose first that all the k’s precede
the & — 1’s. In this case we can replace the k’s by k£ — 1’s without creating a
forbidden pattern. So there are By(a1,as, ..., ak—2, ax—1+ag) sequences of this

type. Now suppose that some k — 1 precedes a k. Take the first £ — 1 and the

13



final k. All the symbols that are less than k£ — 1 must appear between this pair,

and they must occur in descending order. So we have:
o=k (k—1)°(k —2)%-2...2%2 151 (k — 1)%,

Since 1 < b < ag_; and 1 < ¢ < ai there are ax_jax sequences of this type.

Thus
Bsy(ay,as, ... ax) = Ba(ay,as, ..., ax_2,ap_1 + ax) + ar_1ay.

“1+92) and so we get inductively that:

Moreover By(ai,as) = ( a1

aq

B2(a1,a2,...,ak):<a1+a2+.”+ak)+ Z a;a;.

4.3 Bs; = {123,321}

Let o be a permutation of S that avoids the permutations of Bs. It is a special
case of the Erdds-Szekeres lemma that at most 4 distinct symbols can occur in
o so the only cases of interest are when there are three or four distinct symbols.
First consider the case that only symbols 1,23 occur in o. Then for some

consisting only of 1’s and 3’s:
o= 24[2%27Y, (2)

for some 0 < u < ag (since, once a 1 or a 3 occurs, all the symbols of the
complementary type must occur before the next 2, but then all the 1’s and 3’s

must occur in this block). So the number of sequences of this type is:

a; +a
B3((11,(12,(13):((12+1)< ! 3).

aq

14



Now suppose that o contains 1,2,3,4. If somewhere a 3 follows a 2 then no 4
may follow that 3, nor may a 4 precede the 2, since in that case there would be
no legal place for any 1. So all the 4’s, and symmetrically all the 1’s must lie
between all the 2’s and all the 3’s. On the other hand, any pattern of 1’s and
4’s between the 2’s and 3’s is allowed. A similar argument also holds if, in o, a

2 follows a 3. Thus:

BS(ala az, as, Cl4) = <a1 + a4) .

aq

4.4 B, = {132,213}

Let o be a permutation of § avoiding the permutations of B,. We divide the
analysis into two cases. The first is that all the 1 symbols come before all the
2 symbols. Then because 132 is avoided there are no other symbols between
the 1 and 2 symbols and o is a1?'2%23 with neither a nor # containing any
symbols 1,2. There are B4(1,as,...,ar) sequences of this type (to obtain a
correspondence, replace the central block by a single 2, then subtract 1 from
every symbol).

The second case is that some 1 symbol is to the right of some 2 symbol.
Since 213 is avoided there can only be symbols 2 (if any) to the right of the
rightmost 1 symbol. If there is no final symbol 2 so that ¢ ends in 1 we can
count these as By(a; — 1,a2,...,ar). But if there is a 2 symbol at the end
then o must end with a block of mixed 1 and 2 symbols that includes all the 1

symbols. There are (‘“f_jl_z) By(az — j, as, ..., ag) such sequences in which j of

15



the 2’s occur in this block. In all we have

B4([11,[12,... ,[lk) = B4(1,[13,...,(1k)+B4(£l1—1,[12,... ,[lk)
as al + 9 .
+Z< 1]_-71 >B4(a2—j,a3,...,ak)—B4(a3,...,ak)
j=1

where the subtractive final term is because the sequences of the form al1%12%2
have been counted twice.
A simplification can be made by replacing a; by r and writing this equation

as

By(r,as,...,a5) — Ba(r—1,a9,...,a) =

as rj—2 .
B4(1,a3,...,ak)—B4(a3,...,ak)+Z< ,J )B4(a2—],a3,...,ak).

Summing from r = 1 to a; and rearranging terms gives

B4(CL1,(I2, e ,Clk) = CllB4(1,£l3, e ,Clk) — CllB4(£l3, e ,Clk)
asz ai + i1 .
+Z<1 jj >B4(¢12—j,a3,~~~,flk)
7=0

where a standard binomial identity has been used to simplify the final term.
Notice that the symmetry operation “complement reverse” preserves B4 and

SO

B4((11,(12, . ,ak) = B4(ak,ak_1, . ,(11).

The generating function computation (done for By above and C; below) is a
little more complicated in this case because of the “1” in the recurrence. We have
to define the generating functions f (1, ..., zx) as before together with the gen-

erating function gg_1(za, ..., xx) associated with the numbers B(1, aq, ..., ax).

16



However, the complications are controllable and give the equations:

1—=x

fe(@i,. o mk) = fooi(@,2a,.028) + ———— o1 (@9, .., 2p1)
1-— r1 — X2
1 r1X2
—fr-2(23,... , 7k) o + =021 = 23)
r1x
+!]k—2(€E3,~~~ 12

,Tg) (= 21)7(1 = 2a)’

(1 —za)gr—1(xa, ..., 2x) = gr-2(xs3,... Tx)

—fk_Q(I‘g, ... ,Ik) +fk_1(;r2, S ,;L‘k).

4.5 Bs; = {132,231}

Let ¢ be a permutation of § avoiding 132 and 231. If ¥ > 2 and ¢ and j are
distinct symbols less than £ no symbol k£ can occur between them. Therefore

o = k¥ 1k " for some 0 < ug < ag. Iterating this argument we find
o= k" (k— 1)kt 382 p3aeTUs [ (k — 1)k TR pk Tk (3)

for some 0 < uy < ay and p a permutation of 1%12%2. Since every such sequence

avolds 132 and 231 we have

Bs(ar, ... ay) = <“1 +“2) ﬁ(at +1).

4.6 B = {132,312}

Let o be a permutation of § that avoids the permutations of Bs. We consider
two cases. In the first case all the 2 symbols occur before all the 1 symbols. Here
there is a one-to-one correspondence with permutations of 2911923493 k% ag

in the B analysis.

17



In the second case the last 2 symbol is preceded (somewhere) by a 1 symbol

and we write
o= a2p

where 2 € § and a = a;lay. Since o avoids 312, oy contains no symbol larger
than 2. Since ¢ avoids 132, a3 contains no symbol larger than 2 and also g is
non-decreasing in the symbols 3,4, ... k. Hence in o the symbols 2, ... | k occur

in natural increasing order. Recall that N = |o|. There are (i\i) permutations

N;lag)

of 1%12% k% 1in which 2,...,k occur in increasing order. Of these (
have all their 2 symbols at the start (i.e. do not have a symbol 1 before a symbol

o=

N N —a
B6(a1""’ak):BG(a1+a21a3a~~~,ak)+< )—( 2).

aq aq

2). So this case accounts for ( ) sequences. Therefore

Now we iterate this recurrence to obtain

k-1 k-2
N N —a,
Bg(al,...,ak): (N)— E < N, +1)

where N, denotes Y ,_, a;.

5 Cases of type

5.1 C, ={123,132,213}

We suppose first that o is a permutation of & avoiding 123,132,213 and that
each of ap_1 and ay is positive. Since o avoids 123 and 213 the rightmost

symbol k& cannot be preceded by any two distinct symbols i, 7 that are less than

18



k. Furthermore, if there is a symbol less than k& and preceding k then that
symbol has to be £ — 1 (since o avoids 132). We may therefore write o = akp
where a only contains u symbols k£ —1 for some 0 < u < ax_1 and a; — 1 symbols
k. Moreover the symbols in # can be arranged in any permutation avoiding the

elements of C;. Hence

Ap—1 _1+
Cilar,... ax) =Y. <“’“ “)cl(al,... Jap_1 — ). (4)
u=0

u
This recurrence allows C1 (a1, ... ,ax) to be computed in O(>"; a;_1a;) steps.
Foreach i =1,..., k we compute all Cy (a1, ..., a;_1,j) forj = 0,...,a; having

precomputed all the binomial coefficients.

We now compute a recurrence for the generating function of C4, as we did
for By above. Let ¢ be the required generating function. Then, applying the
same technique as we applied to the second part of the recurrence for the class
B1, would suggest that ¢ satisfies:

1 — 2k

c(xzy,xa, ... ,25) = e(zy, 29, ..., 2K_1).

1-— T — k-1
However, this is incorrect as the recurrence given for C fails in the case ag_1 = 0

as it would imply that:
Cy(a, ..., ak-2,0,a;) = C(a1,...,a5_2)
whereas in fact:
Cy(ai, ..., ak-2,0,a;) = C(a1,...,ax_2,ax).

We can deal with this by noting that the terms in the generating function for

which ag_1 = 0 can be isolated by setting zp_1 = 0. So we need to subtract

19



these erroneous terms and then add terms corresponding to the correct version.

This gives:
1 —zp_y
e(zy, xa,...,25) = mc(ml,xz,...,xk_l)
—Tp — T
1
— e(zy, 22, ..., 2k_2) + c(x1,29,. .., Th_2, Tk).
l—éL‘k

5.2 C,={123,132,231}

To handle the case C'; we impose the extra condition that sequences of the
form (3) should avoid 123. If p = 2921% then u; = a; for all ¢ with perhaps
one exception; this accounts for 1 + Zf::,) a; sequences. On the other hand, if

p #£ 2%21% then all u; = a; and there are (al(j'l@) — 1 such sequences. Hence

k

+
Cy(ay, ..., a5) = <£l1a a2> +Zdt~
1

t=3
5.3 (= {123,132,312}
Let o be a permutation of 19122 .. k% avoiding 123,132,312. Assume that
the largest symbol k& occurs at least once. Then any two symbols less than &

have to occur in non-increasing order. Thus ¢ is a merge of the sequences k®*

and (k — 1)*-1...2%21% Therefore

a1+a2+-~~+ak)

ag

Cg(al,...,ak):<

5.4 C,={123,132,321}

This case is like case Bz with the extra condition that permutations ¢ must

avoid 132. Suppose ¢ only has symbols 1,2, 3 and we have equation (2). Then,

20



if there are any 2’s at the end of o, all the 3’s must precede the 1’s. So the

sequence is one of:
2%2q or 2927439112 for u > 1,

where « is any permutation of 1913%3. This gives:

+
Ca(ay,as, az) = <a1 a3> + asy

aq

again we get:
Ca(b1,b3) = Ca(b1,0,b5), Ca(b1) = Ca(b1,0,0).

In the case where all four symbols occur, the 2’s must not be at the beginning,
for a 3 at the end with a 4 in the middle produces the pattern 132. So all the 3’s
are at the beginning and all the 2’s at the end. Then all the 4’s must precede

all the 1’s to avoid 132. So there is only one legitimate sequence in this case:
3(134(14 101 2(12
and

Cy(ay, az,az,as) = 1.

5.5 C5={123,231,312}

Suppose that & > 2 and let ¢ be a permutation of & avoiding 123,231,312 in
which at least three different symbols occur, including both 1 and k. Then,
either ¢ is non-increasing or we can find 7, 5 which are consecutive in ¢ and

t < j. Such a pair is called an ascent of 0. Then, because of the avoided

21



patterns, we must have ¢ = 1 and j = k. So all ascents of ¢ have the form
1k. There cannot be more than one ascent since if ¢ = alkf1ky it is easy to
see that a symbol equal to neither 1 or £ cannot belong to any of «, 3,v. The
avoidance of 312 implies that all the symbols preceding the ascent are no larger
than any of the symbols following it. Now it follows that ¢ is a cyclic shift of

the unique non-increasing sequence on §. Hence

Cs(al,...,ak):a1+a2_|_..._|_ak.

5.6 (g ={132,213,231}

This is a specialisation of the case Bs and so we consider sequences of the form
(3) that avoid 213. We put ¢ = apf. If p = 1%12%2 the 213 restriction implies
that @ > b for all @ € @ and b € 5. Such sequences are determined by |a| and
so there are 1 + Zf::,) a; of them. However, if p £ 191292 then 3 is empty and

there are (‘“:’2) — 1 such sequences. Consequently

k

+ as
Cs(ay, ..., ax) = (ala a?) +Zat~
1

t=3

22



6 Mopping up

Class name | Basis Enumeration, & > 3

Dy {123,132,213, 231} (1Fe=)

Do {123,132,231, 312} ag +1

Ds {132,213,231, 312} 2

Da {123,132,213, 321} azg+ 1ifk =3, 1ifk=4,0if k > 4
Ds {123,231,132, 321} 2ifk=3,0if k>3

Dg {123,213,231, 321} (k) ifk=3,0if k>3

Ey {123,132,213,231,312} | 1

E, {123,132,213,231,321} | 1ifk=3,0if k > 3

These formulae are all easily obtainable either directly or from the previous

analysis with further conditions imposed.

We now have fairly good formulae for all cases except for B, B4, C1, for

which we have recurrences, both for the actual values, and for the associated

generating functions.
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