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A merging of two ordered lists x 1 . . . . .  Xp and Yl,--. ,Yq is said to be constrained if it must satisfy prescribed conditions of the 
form "x  i precedes yj" and "y, precedes xs". An algorithm is given for calculating the number of mergings which satisfy any 
given set of constraints. The algorithm has time complexity O(pq) but in many cases runs significantly faster. It is illustrated 
with examples which involve the Catalan and Fibonacci numbers. 
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1. Introduction 

Let x x , . . . , x  p and  Yl,---,Yq be two sequences.  
A merging of the two sequences is a sequence 
a l , . . . ,  a p+ q where  each xi and  yj occurs exactly 
once  in the sequence,  and  where  x t , . . . ,  Xp occur  in 
that  order  ( though  not  necessarily cont iguously)  
and  where Yl . . . .  ,yq occur  in that  order.  It  is well 
k n o w n  that  the n u m b e r  of mergings  is given by 
(p + q) ! /p !q! .  

We define a merg ing  to be  C-constrained if 
there is a col lect ion C of pairs  (x i, yj), (Yr, x s) 
such that  u occurs  before  v in the merg ing  
whenever  (u, v ) ~  C. We shall assume that  C is 
consistent in the sense that  at least one  such 
merging  exists. 

In  this article we consider  the p rob l em of 
calculating the n u m b e r  of C-const ra ined mergings  
for an arbitrary col lect ion of const ra in ts  C. K n u t h  
gives a formula  for the case of  a single const ra in t  
[2, p. 191]. The  general  case can  be fo rmula ted  in 
the language of part ial ly ordered  sets. 

Define the relat ion < on {Xx,. . . ,Xp, Yt . . . .  ,Yq} 

by the  following condi t ions:  
(a) X i < Xi+l, i = 1, 2 . . . .  , p  -- 1, 
(b) Yi < Yi+ 1, i = 1, 2 . . . . .  q - 1, 
(c) u < v whenever  (u, v) ~ C, 
(d) all transit ive consequences  of (a), (b), (c). 
It  is easy to verify that, because C is consistent,  

the relat ion is a part ial  order. The  part ial ly ordered 
set Z has width  2 since it is covered by two chains. 
Fu r the rmore ,  the C-const ra ined mergings  are pre- 
cisely the l inear extensions of the poset .  Linial [3] 
men t ions  a m e t h o d  in which the n u m b e r  of linear 
extensions  is calculated as a de te rminan t  whose 
entr ies  are certain binomial  coefficients; if the 
de t e rminan t  is evaluated by Gauss ian  el imination,  
this m e t h o d  has t ime complexi ty  O(n3), where 
n = p  + q. In [1], the p rob lem of calculat ing the 
n u m b e r  of linear extensions of a poset  of width  k 
is solved by an a lgor i thm of t ime complexi ty  
O(n  k • k) (n 4 if k = 2). 

We  present  an a lgor i thm for solving the prob-  
lem whose  t ime complexi ty  is O(pq). Moreover,  
the a lgor i thm is a simple one, suitable for hand  
calculat ion,  and  in m a n y  cases its complexi ty  is 
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less than pq. We shall give the algorithm, just ify it, 
and  illustrate it with two exam~leg which cast an 
interesting light on the Catalan numbers  and 
Fibonacci  numbers.  

2. The algorithm 

There is an initial preprocessing stage in which 
the data  is organised for input  to the computa-  
t ional part  of  the algorithm. In this first stage we 
calculate 

ai := min{ t  :xi  < yt } , i =  1, 2 , . . . , p ,  

bi := max{ t  : yt < xi }, i =  1, 2 , . . . , p .  

Fo r  convenience we invent  elements Y0, Yq÷ t which 
are, respectively, smaller than  and greater than 
every other  e lement  in the poset; thus, a i and b i 
are always defined. The  t ime required for pre- 
processing depends  on how the data  are presented. 
For  example, a p × q matr ix  T might be used, 
where  

1 i f x i < Y  j, 

t~j= - 1  i f y j < x  i, 

0 otherwise.  

Then,  O(p log q) t ime would  suffice since the rows 
of  the matr ix are mono ton ic  and binary search is 
possible. 

The computa t ional  par t  of  the algorithm is as 
follows: 

( U 0 , . . . , U q )  : ~  

for i : = l t o p  
sum(u) 
u j : = 0  for 

endfor 

(1, 0, 0 , . . . ,  0) 

a l l j  < b i and  a l l j  >~ a i 

(1) 
(2) 

poset  induced by poset  Z on the elements x~, . . . ,  x i, 

Yl,.--,Yq" 

Proposition. At the end of the ith iteration of the 
for-loop, each uj is the number of linear extensions 
of Pi in which x i lies between yj and Yj+I- 

Proof.  We use induct ion on i, and leave the easy 
verification of the induction base (i = 1) to the 
reader.  Suppose now that i > 1 and that, at the 
end of the (i - 1)st i teration (or the beginning of 
the ith iteration), each uj is 
extensions of Pi-1 in which 
and Yj+x. We shall consider 
f rom Pi- 1 in two steps. 

the number  of linear 
xi_ 1 lies between yj 
Pi to be constructed 

In  the first step, we incorporate  the new ele- 
men t  x i and include the order relation xi_ 1 < x i 
(and its transitive consequences) to obtain a poset 
Pi*- For  each j, every extension of P* in which x i 
is between yj and yj÷ 1 arises f rom inserting x i into 
an extension of P i - t  in which (since x i_ 1 precedes 

xi)  x i-  1 must  lie between Yk and Yk + 1 for some 
* = Y"k < j U k extensions of k < j. Hence, there are uj 

Pi* in which x i is between yj and yj+p Thus, 
s ta tement  (1) of  the algorithm correctly modifies 
ar ray  u so that it contains numbers  appropriate  
for Pi*- 

In the second step, we obtain Pi f rom Pi* by 
imposing relations Yb, < Xi, Xi < Ya, and  their tran- 
sitive consequences. These relations are compati-  
ble with extensions of Pi* in which x i lies between 
Yb, and ya, but  incompatible  with the others. Thus, 
the number  of extensions of Pi* in which x i is 

* if b i ~<j < a i and is zero between yj and Yj+I is uj 
otherwise. Thus, s tatement  (2) of  the algorithm 
computes  the numbers  u 0 , . . . , U q  for Pi- 

At  the conclusion of the for-loop, Pp = Z and 
hence  u 0 + u 1 + • • • +Uq is the number  of linear 
extensions of Z. [] 

where  sum(u) is 3. Complexity analysis 

for j -'= 1 to q 
Uj : =  Uj 4- U j _  1 . 

We now prove that  the  algori thm computes  the 
number  of C-constra ined mergings. Let Pi be the 

It is clear that the algorithm has t ime complex- 
ity pq. There is a significant optimisat ion which, 
in favourable cases, sometimes reduces the execu- 
t ion time to O(p) al though the worst  case is still 
O(pq). Observe that, on entering the ith i teration 
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of the for-loop, uj is nonzero only for bi_ 1 ~<j < 
ai_ 1 (we take b 0 = 0  ) and, on  exit, Uj will be 
nonzero only for bi~< j < a i. It is sufficient to 
compute  the nonzero values, and the code for the 
optimised algorithm is 

(u0 , . . .  ,Uq) -'= (1, 0, 0 , . . .  ,0) 
for i : = l  t o p  

fo r j  := bi_ 1 + l to a i - l 
uj : = u j  + U j _  1 

endfor 
endfor 

bp~<j<ap 

4. Examples 

(1) The first example is the poset whose Hasse 
diagram is given in Fig. 1. 

~yp 

xp 

y~ 

p =q = n 

Fig. 1. 

It is known that the number  of linear exten- 
sions of this poset is the pth Catalan number  Cp. 
The values in the array u are, in turn, 

where we omit  trailing zeros. The algorithm pro- 
duces each row of this table by partially summing 
the previous row and duplicating the last element. 
The row sums (or final elements in each row) give 
the sequence of Catalan numbers.  

A direct proof  of this fact can be obtained 
through the following argument.  Consider the tab- 
ular array vii, i, j = 0, 1, 2 , . . .  whose first row is 
0, - 1 ,  - 1 ,  - 1 , . . .  and whose first column is 
0, 1, 1, 1 . . . . .  and  where Vij = Vi_ 1 j ' q - V  i j--1 if 
i, j > 0. It is easy to see that the strictly lower 
triangular part  of  this tableau is the triangular 
array appearing above. Moreover, standard alge- 
bra shows that the ordinary two variable gener- 
ating function V(x, y ) = E v i j x i y  j is V(x, y ) =  
(x - y)/(1 - x - y) which, upon  expansion, gives 

Vij= i - 1  k j - 1  " 

In particular, the numbers  vi+ 1 i (the diagonal of 
the triangular array) are the Catalan numbers. 

(2) The second example is the poset whose 
Hasse diagram is given in Fig. 2. 

Xp 
Yp 

I 

i 

p=q 

Yl 

Fig. 2. 

1 
1 1  
1 2  2 
1 3  5 5 
1 4 9 14 14 
1 5 14 28 42 42 
1 6 20 48 90 132 132 

. . . . . . . .  ° . . . . . . . .  

This poset is of  interest because the comple- 
ment  of its comparabil i ty graph is the zigzag poset 
shown in Fig. 3. 

Fig. 3. 
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The number  of linear extensions of the latter 
poset  is known to be the Euler n u m b e r  E2p. The 
values of the u array as p roduced  by  the algori thm 
are (omitt ing zeros) 

1 1 1  
2 3  

5 
3 
8 8 

13 21 21 

The nonzero values r i, s i, si in its ith row satisfy 

ri ~--- r i _ l  + S i_ l ,  si = r i _ l  + 2 S i _ l  . 

I t  f o l l o w s  t h a t  r 1, sl ,  r2, s 2, r3, s 3 . . . .  is the 

Fibonacci  sequence F0, I::1, F 2 . . . .  and that  the 
n u m b e r  of linear extensions of the poset is 

rp + Sp + Sp = F2p_ 2 + 2F2p_ 1 = F2p+l .  
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