
Information Processing Letters 24 (1987) 289-292 16 March 1987
North-Holland

C O M P U T I N G T H E N U M B E R O F M E R G I N G S W I T H C O N S T R A I N T S

M.D. A T K I N S O N and H.W. C H A N G

School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Communicated by E.C.R. Hehner
Received 9 May 1986
Revised 13 June 1986

A merging of two ordered lists x 1 Xp and Yl,--. ,Yq is said to be constrained if it must satisfy prescribed conditions of the
form "x i precedes yj" and "y, precedes xs". An algorithm is given for calculating the number of mergings which satisfy any
given set of constraints. The algorithm has time complexity O(pq) but in many cases runs significantly faster. It is illustrated
with examples which involve the Catalan and Fibonacci numbers.

Keywords: Merging, linear extension, Catalan, Fibonacci

A MS Classification: 68C05

1. Introduction

Let x x , . . . , x p and Yl,---,Yq be two sequences.
A merging of the two sequences is a sequence
a l , . . . , a p+ q where each xi and yj occurs exactly
once in the sequence, and where x t , . . . , Xp occur in
that order (though not necessarily cont iguously)
and where Yl ,yq occur in that order. It is well
k n o w n that the n u m b e r of mergings is given by
(p + q) ! /p !q! .

We define a merg ing to be C-constrained if
there is a col lect ion C of pairs (x i, yj), (Yr, x s)
such that u occurs before v in the merg ing
whenever (u, v) ~ C. We shall assume that C is
consistent in the sense that at least one such
merging exists.

In this article we consider the p rob l em of
calculating the n u m b e r of C-const ra ined mergings
for an arbitrary col lect ion of const ra in ts C. K n u t h
gives a formula for the case of a single const ra in t
[2, p. 191]. The general case can be fo rmula ted in
the language of part ial ly ordered sets.

Define the relat ion < on {Xx,. . . ,Xp, Yt ,Yq}

by the following condi t ions:
(a) X i < Xi+l, i = 1, 2 , p -- 1,
(b) Yi < Yi+ 1, i = 1, 2 q - 1,
(c) u < v whenever (u, v) ~ C,
(d) all transit ive consequences of (a), (b), (c).
It is easy to verify that, because C is consistent,

the relat ion is a part ial order. The part ial ly ordered
set Z has width 2 since it is covered by two chains.
Fu r the rmore , the C-const ra ined mergings are pre-
cisely the l inear extensions of the poset . Linial [3]
men t ions a m e t h o d in which the n u m b e r of linear
extensions is calculated as a de te rminan t whose
entr ies are certain binomial coefficients; if the
de t e rminan t is evaluated by Gauss ian el imination,
this m e t h o d has t ime complexi ty O(n3), where
n = p + q. In [1], the p rob lem of calculat ing the
n u m b e r of linear extensions of a poset of width k
is solved by an a lgor i thm of t ime complexi ty
O(n k • k) (n 4 if k = 2).

We present an a lgor i thm for solving the prob-
lem whose t ime complexi ty is O(pq). Moreover,
the a lgor i thm is a simple one, suitable for hand
calculat ion, and in m a n y cases its complexi ty is

0020-0190/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 289

Volume 24, Number 5 INFORMATION PROCESSING LETrERS 16 March 1987

less than pq. We shall give the algorithm, just ify it,
and illustrate it with two exam~leg which cast an
interesting light on the Catalan numbers and
Fibonacci numbers.

2. The algorithm

There is an initial preprocessing stage in which
the data is organised for input to the computa-
t ional part of the algorithm. In this first stage we
calculate

ai := min{ t :xi < yt } , i = 1, 2 , . . . , p ,

bi := max{ t : yt < xi }, i = 1, 2 , . . . , p .

Fo r convenience we invent elements Y0, Yq÷ t which
are, respectively, smaller than and greater than
every other e lement in the poset; thus, a i and b i
are always defined. The t ime required for pre-
processing depends on how the data are presented.
For example, a p × q matr ix T might be used,
where

1 i f x i < Y j,

t~j= - 1 i f y j < x i,

0 otherwise.

Then, O(p log q) t ime would suffice since the rows
of the matr ix are mono ton ic and binary search is
possible.

The computa t ional par t of the algorithm is as
follows:

(U 0 , . . . , U q) : ~

for i : = l t o p
sum(u)
u j : = 0 for

endfor

(1, 0, 0 , . . . , 0)

a l l j < b i and a l l j >~ a i

(1)
(2)

poset induced by poset Z on the elements x~, . . . , x i,

Yl,.--,Yq"

Proposition. At the end of the ith iteration of the
for-loop, each uj is the number of linear extensions
of Pi in which x i lies between yj and Yj+I-

Proof. We use induct ion on i, and leave the easy
verification of the induction base (i = 1) to the
reader. Suppose now that i > 1 and that, at the
end of the (i - 1)st i teration (or the beginning of
the ith iteration), each uj is
extensions of Pi-1 in which
and Yj+x. We shall consider
f rom Pi- 1 in two steps.

the number of linear
xi_ 1 lies between yj
Pi to be constructed

In the first step, we incorporate the new ele-
men t x i and include the order relation xi_ 1 < x i
(and its transitive consequences) to obtain a poset
Pi*- For each j, every extension of P* in which x i
is between yj and yj÷ 1 arises f rom inserting x i into
an extension of P i - t in which (since x i_ 1 precedes

xi) x i- 1 must lie between Yk and Yk + 1 for some
* = Y"k < j U k extensions of k < j. Hence, there are uj

Pi* in which x i is between yj and yj+p Thus,
s ta tement (1) of the algorithm correctly modifies
ar ray u so that it contains numbers appropriate
for Pi*-

In the second step, we obtain Pi f rom Pi* by
imposing relations Yb, < Xi, Xi < Ya, and their tran-
sitive consequences. These relations are compati-
ble with extensions of Pi* in which x i lies between
Yb, and ya, but incompatible with the others. Thus,
the number of extensions of Pi* in which x i is

* if b i ~<j < a i and is zero between yj and Yj+I is uj
otherwise. Thus, s tatement (2) of the algorithm
computes the numbers u 0 , . . . , U q for Pi-

At the conclusion of the for-loop, Pp = Z and
hence u 0 + u 1 + • • • +Uq is the number of linear
extensions of Z. []

where sum(u) is 3. Complexity analysis

for j -'= 1 to q
Uj : = Uj 4- U j _ 1 .

We now prove that the algori thm computes the
number of C-constra ined mergings. Let Pi be the

It is clear that the algorithm has t ime complex-
ity pq. There is a significant optimisat ion which,
in favourable cases, sometimes reduces the execu-
t ion time to O(p) al though the worst case is still
O(pq). Observe that, on entering the ith i teration

290

Volume 24, Number 5 INFORMATION PROCESSING LETTERS 16 March 1987

of the for-loop, uj is nonzero only for bi_ 1 ~<j <
ai_ 1 (we take b 0 = 0) and, on exit, Uj will be
nonzero only for bi~< j < a i. It is sufficient to
compute the nonzero values, and the code for the
optimised algorithm is

(u0 , . . . ,Uq) -'= (1, 0, 0 , . . . ,0)
for i : = l t o p

fo r j := bi_ 1 + l to a i - l
uj : = u j + U j _ 1

endfor
endfor

bp~<j<ap

4. Examples

(1) The first example is the poset whose Hasse
diagram is given in Fig. 1.

~yp

xp

y~

p =q = n

Fig. 1.

It is known that the number of linear exten-
sions of this poset is the pth Catalan number Cp.
The values in the array u are, in turn,

where we omit trailing zeros. The algorithm pro-
duces each row of this table by partially summing
the previous row and duplicating the last element.
The row sums (or final elements in each row) give
the sequence of Catalan numbers.

A direct proof of this fact can be obtained
through the following argument. Consider the tab-
ular array vii, i, j = 0, 1, 2 , . . . whose first row is
0, - 1 , - 1 , - 1 , . . . and whose first column is
0, 1, 1, 1 and where Vij = Vi_ 1 j ' q - V i j--1 if
i, j > 0. It is easy to see that the strictly lower
triangular part of this tableau is the triangular
array appearing above. Moreover, standard alge-
bra shows that the ordinary two variable gener-
ating function V(x, y) = E v i j x i y j is V(x, y) =
(x - y)/(1 - x - y) which, upon expansion, gives

Vij= i - 1 k j - 1 "

In particular, the numbers vi+ 1 i (the diagonal of
the triangular array) are the Catalan numbers.

(2) The second example is the poset whose
Hasse diagram is given in Fig. 2.

Xp
Yp

I

i

p=q

Yl

Fig. 2.

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132

. °

This poset is of interest because the comple-
ment of its comparabil i ty graph is the zigzag poset
shown in Fig. 3.

Fig. 3.

291

Volume 24, Number 5 INFORMATION PROCESSING LETTERS 16 March 1987

The number of linear extensions of the latter
poset is known to be the Euler n u m b e r E2p. The
values of the u array as p roduced by the algori thm
are (omitt ing zeros)

1 1 1
2 3

5
3
8 8

13 21 21

The nonzero values r i, s i, si in its ith row satisfy

ri ~--- r i _ l + S i_ l , si = r i _ l + 2 S i _ l .

I t f o l l o w s t h a t r 1, sl , r2, s 2, r3, s 3 is the

Fibonacci sequence F0, I::1, F 2 and that the
n u m b e r of linear extensions of the poset is

rp + Sp + Sp = F2p_ 2 + 2F2p_ 1 = F2p+l .

References

[1] M.D. Atkinson and H.W. Chang, Extensions of partial
orders of bounded width, Tech. Rept. SCS-TR-83, Dept. of
Computer Science, Carleton Univ., 1985.

[2] D.E. Knuth, Sorting and Searching (Addison-Wesley,
Reading, MA, 1973).

[3] N. Linial, The information-theoretic bound is good for
merging, SIAM J. Comput. 13 (1984) 795-801.

292

