A merging of two ordered lists \(x_1, \ldots, x_p \) and \(y_1, \ldots, y_q \) is said to be \textit{constrained} if it must satisfy prescribed conditions of the form "\(x_i \) precedes \(y_j \)" and "\(y_j \) precedes \(x_s \)". An algorithm is given for calculating the number of mergings which satisfy any given set of constraints. The algorithm has time complexity \(O(pq) \) but in many cases runs significantly faster. It is illustrated with examples which involve the Catalan and Fibonacci numbers.

Keywords: Merging, linear extension, Catalan, Fibonacci

AMS Classification: 68C05

1. Introduction

Let \(x_1, \ldots, x_p \) and \(y_1, \ldots, y_q \) be two sequences. A \textit{merging} of the two sequences is a sequence \(a_1, \ldots, a_{p+q} \) where each \(x_i \) and \(y_j \) occurs exactly once in the sequence, and where \(x_1, \ldots, x_p \) occur in that order (though not necessarily contiguously) and where \(y_1, \ldots, y_q \) occur in that order. It is well known that the number of mergings is given by \(\frac{(p + q)!}{p!q!} \).

We define a merging to be \textit{C-constrained} if there is a collection \(C \) of pairs \((x_i, y_j), (y_i, x_s) \) such that \(u \) occurs before \(v \) in the merging whenever \((u, v) \in C \). We shall assume that \(C \) is \textit{consistent} in the sense that at least one such merging exists.

In this article we consider the problem of calculating the number of C-constrained mergings for an arbitrary collection of constraints \(C \). Knuth gives a formula for the case of a single constraint [2, p. 191]. The general case can be formulated in the language of partially ordered sets.

Define the relation \(< \) on \(\{x_1, \ldots, x_p, y_1, \ldots, y_q\} \) by the following conditions:

(a) \(x_i < x_{i+1}, i = 1, 2, \ldots, p - 1 \),
(b) \(y_i < y_{i+1}, i = 1, 2, \ldots, q - 1 \),
(c) \(u < v \) whenever \((u, v) \in C \),
(d) all transitive consequences of (a), (b), (c).

It is easy to verify that, because \(C \) is consistent, the relation is a partial order. The partially ordered set \(Z \) has width 2 since it is covered by two chains. Furthermore, the C-constrained mergings are precisely the linear extensions of the poset. Linial [3] mentions a method in which the number of linear extensions is calculated as a determinant whose entries are certain binomial coefficients; if the determinant is evaluated by Gaussian elimination, this method has time complexity \(O(n^3) \), where \(n = p + q \). In [1], the problem of calculating the number of linear extensions of a poset of width \(k \) is solved by an algorithm of time complexity \(O(n^{k+1}) \) (\(n^4 \) if \(k = 2 \)).

We present an algorithm for solving the problem whose time complexity is \(O(pq) \). Moreover, the algorithm is a simple one, suitable for hand calculation, and in many cases its complexity is
less than \(pq \). We shall give the algorithm, justify it, and illustrate it with two examples which cast an interesting light on the Catalan numbers and Fibonacci numbers.

2. The algorithm

There is an initial preprocessing stage in which the data is organised for input to the computational part of the algorithm. In this first stage we calculate

\[a_i := \min\{t : x_i < y_t\}, \quad i = 1, 2, \ldots, p, \]
\[b_i := \max\{t : y_t < x_i\}, \quad i = 1, 2, \ldots, p. \]

For convenience we invent elements \(y_0, y_{q+1} \) which are, respectively, smaller than and greater than every other element in the poset; thus, \(a_i \) and \(b_i \) are always defined. The time required for pre-processing depends on how the data are presented. For example, a \(p \times q \) matrix \(T \) might be used, where

\[t_{ij} = \begin{cases}
1 & \text{if } x_i < y_j, \\
-1 & \text{if } y_j < x_i, \\
0 & \text{otherwise.}
\end{cases} \]

Then, \(O(p \log q) \) time would suffice since the rows of the matrix are monotonic and binary search is possible.

The computational part of the algorithm is as follows:

\[
(u_0, \ldots, u_q) := (1, 0, 0, \ldots, 0)
\]

for \(i := 1 \) to \(p \)

\[
\text{sum}(u)
\]

\[
u_j := 0 \text{ for all } j < b_i \text{ and all } j \geq a_i \quad (1)
\]

endfor

return \(\sum_i u_i \)

where \(\text{sum}(u) \) is

\[
\text{for } j := 1 \text{ to } q
\]

\[
u_j := u_j + u_{j-1}.
\]

We now prove that the algorithm computes the number of \(C \)-constrained mergings. Let \(P_i \) be the poset induced by poset \(Z \) on the elements \(x_1, \ldots, x_i, y_1, \ldots, y_q \).

Proposition. At the end of the \(i \)th iteration of the for-loop, each \(u_j \) is the number of linear extensions of \(P_i \) in which \(x_i \) lies between \(y_j \) and \(y_{j+1} \).

Proof. We use induction on \(i \), and leave the easy verification of the induction base (\(i = 1 \)) to the reader. Suppose now that \(i > 1 \) and that, at the end of the \((i-1)\)st iteration (or the beginning of the \(i \)th iteration), each \(u_j \) is the number of linear extensions of \(P_{i-1} \) in which \(x_i \) lies between \(y_{j-1} \) and \(y_{j+1} \). We shall consider \(P_i \) to be constructed from \(P_{i-1} \) in two steps.

In the first step, we incorporate the new element \(x_i \) and include the order relation \(x_{i-1} < x_i \) (and its transitive consequences) to obtain a poset \(P_i^* \). For each \(j \), every extension of \(P_i^* \) in which \(x_i \) is between \(y_j \) and \(y_{j+1} \) arises from inserting \(x_i \) into an extension of \(P_{i-1} \) in which (since \(x_{i-1} \) precedes \(x_i \)) \(x_{i-1} \) must lie between \(y_k \) and \(y_{k+1} \) for some \(k < j \). Hence, there are \(u_j^* = \sum_{k < j} u_k \) extensions of \(P_i^* \) in which \(x_i \) is between \(y_j \) and \(y_{j+1} \). Thus, statement (1) of the algorithm correctly modifies array \(u \) so that it contains numbers appropriate for \(P_i^* \).

In the second step, we obtain \(P_i \) from \(P_i^* \) by imposing relations \(y_{b_i} < x_i, x_i < y_{a_i} \) and their transitive consequences. These relations are compatible with extensions of \(P_i^* \) in which \(x_i \) lies between \(y_{b_i} \) and \(y_{a_i} \) but incompatible with the others. Thus, the number of extensions of \(P_i^* \) in which \(x_i \) is between \(y_j \) and \(y_{j+1} \) is \(u_j^* \) if \(b_i < j < a_i \) and is zero otherwise. Thus, statement (2) of the algorithm computes the numbers \(u_0, \ldots, u_q \) for \(P_i \).

At the conclusion of the for-loop, \(P_p = Z \) and hence \(u_0 + u_1 + \cdots + u_q \) is the number of linear extensions of \(Z \). \(\square \)

3. Complexity analysis

It is clear that the algorithm has time complexity \(pq \). There is a significant optimisation which, in favourable cases, sometimes reduces the execution time to \(O(p) \) although the worst case is still \(O(pq) \). Observe that, on entering the \(i \)th iteration
of the for-loop, \(u_j \) is nonzero only for \(b_{i-1} \leq j < a_i \) (we take \(b_0 = 0 \)) and, on exit, \(u_j \) will be nonzero only for \(b_i \leq j < a_i \). It is sufficient to compute the nonzero values, and the code for the optimised algorithm is

\[
(u_0, \ldots, u_q) := (1, 0, 0, \ldots, 0)
\]

for \(i := 1 \) to \(p \)

for \(j := b_{i-1} + 1 \) to \(a_i - 1 \)

\[u_j := u_j + u_{j-1} \]

endfor

endfor

return \(\left(\sum_{b_p \leq j < a_p} u_j \right) \).

4. Examples

(1) The first example is the poset whose Hasse diagram is given in Fig. 1.

![Fig. 1.](image)

It is known that the number of linear extensions of this poset is the \(p \)th Catalan number \(c_p \). The values in the array \(u \) are, in turn,

\[
1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 14, 1, 5, 14, 28, 42, 42, 1, 6, 20, 48, 90, 132, 132,
\]

where we omit trailing zeros. The algorithm produces each row of this table by partially summing the previous row and duplicating the last element. The row sums (or final elements in each row) give the sequence of Catalan numbers.

A direct proof of this fact can be obtained through the following argument. Consider the tabular array \(v_{ij}, i, j = 0, 1, 2, \ldots \) whose first row is 0, -1, -1, -1, \ldots and whose first column is 0, 1, 1, 1, \ldots, and where \(v_{ij} = v_{i-1,j} + v_{i,j-1} \) if \(i, j > 0 \). It is easy to see that the strictly lower triangular part of this tableau is the triangular array appearing above. Moreover, standard algebra shows that the ordinary two variable generating function \(V(x, y) = \sum v_{ij} x^i y^j \) is \(V(x, y) = (x - y)/(1 - x - y) \) which, upon expansion, gives

\[
v_{ij} = \binom{i+j-1}{i-1} - \binom{i+j-1}{j-1}.
\]

In particular, the numbers \(v_{i+1,i} \) (the diagonal of the triangular array) are the Catalan numbers.

(2) The second example is the poset whose Hasse diagram is given in Fig. 2.

![Fig. 2.](image)

This poset is of interest because the complement of its comparability graph is the zigzag poset shown in Fig. 3.

![Fig. 3.](image)
The number of linear extensions of the latter poset is known to be the Euler number E_{2p}. The values of the u array as produced by the algorithm are (omitting zeros)

\[
\begin{array}{cccc}
1 & 1 & 1 \\
2 & 3 & 3 \\
5 & 8 & 8 \\
13 & 21 & 21 \\
\end{array}
\]

The nonzero values r_i, s_i, s_i in its ith row satisfy

\[
\begin{align*}
r_i &= r_{i-1} + s_{i-1}, \\
s_i &= r_{i-1} + 2s_{i-1}.
\end{align*}
\]

It follows that $r_1, s_1, r_2, s_2, r_3, s_3, \ldots$ is the Fibonacci sequence F_0, F_1, F_2, \ldots and that the number of linear extensions of the poset is

\[
r_p + s_p + s_p \quad F_{2p-2} + 2F_{2p-1} = F_{2p+1}.
\]

References

