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Abstract. 

Some classical ordering problems (sorting, finding the maximum, finding the maximum and the 
minimum, finding the largest and the next largest, merging, and finding the median) are considered from 
a recursive viewpoint. If X(n) denotes an instance of size n of any one of these problems then X(n) can be 
solved by finding the solution to a number ~(n, k) of problems X(k) for some fixed k; ~(n, k) is called the 
relative complexity. Upper and lower bounds on the relative complexity are found. For the problem of 
finding the maximum, finding the maximum and the minimum, and finding the largest and the next 
largest these bounds are optimal. 
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L Introduction. 

Divide and conquer is one of the most useful paradigms in algorithm design. One 
of its key aspects is the technique of solving a problem X(n), of size n, by making use 
of solutions to problems X(k) with k < n; thus divide and conquer algorithms are 
applicable for those problems whose solution can be expressed recursively. We shall 
investigate, for several classical ordering problems X(n), the number of solutions to 
problems X(r) with r bounded by some fixed k, needed to solve X(n). In all the 
problems that we consider X(2) will be the problem of comparing two numbers. Our 
results reduce to known ones on the number of comparisons in the case k = 2. In 
various degrees of detail we shall consider the following problems: 
1. A(n): sort n elements into ascending order, 
2. B(n): find the maximum in a set of n elements, 
3. C(n): find the maximum and the minimum in a set of n elements, 
4. D(n): find the largest and the next largest in a set of n elements, 
5. E(n): merge two sorted lists of length n/2, 
6. F(n): find the medians in a set of n elements. 

All of these problems have traditionally been studied for their worst case compari- 
son complexity and substantial progress has been made on all of them. In fact, apart 
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from problem F(n), their comparison complexity has been found almost exactly in 
the sense that the worst case comparison complexity is known to be of the form 
f(n) + o(f(n)) for some known function f(n); these results may be found in [5]. The 
complexity of F(n) is known to be linear in n but the exact constant is as yet 
unknown; upper and lower bounds for F(n) are proved in [6] and [-4] respectively. 
Table 1 summarises what is known about the worst case comparison complexity 
and defines some notation which will be explained below (here, and subsequently, all 
logarithms are to base 2). 

Table 1. Relative complexity notation. 

Problem Comparison complexity Relative complexity 

A(,) 
n(n) 
c(,) 
O(n) 
E(n) 
F(,) 

n log n + O(n) 
n - - 1  
F3n/2-] 
[-n + log n - 2-] 
n - - 1  
between 2n and 3n 

~(,, k) 
fl(n, k) 
~(,, k) 
6(n, k) 
8(n, k) 
~,(,,k) 

When n = 2 all of these problems are equivalent to the problem of comparing two 
numbers. Thus, if X(n) is any one of A(n) . . . . .  E(n), the number of problems X(2) 
which have to be solved in order to solve X(n) is known almost exactly. We can 
paraphrase this statement as: the number of X(2) operations required to simulate the 
X(n) operation is known almost exactly. We now define the relative complexity 
~(n, k) of a problem X(n) to be the number of solutions to problems X(r), r < k, 
necessary to solve X(n) in the worst case. In other words ~(n, k) is the number of 
operations of the form X(r), r < k, required to simulate the operation X(n). Notice 
that ¢(n, 2) is the comparison complexity of X(n). To clarify this concept we give an 
example. 

EXAMPLE 1. Ct(4, 3) = 3. 
Suppose we have to sort 4 numbers a, b, c, d using the operations A(2) and A(3) 

(clearly, A(1)has no effect). We can begin by applying A(3) to 3 of the numbers, 
discovering say that a < b < c. In the second step we apply A(3) to a, c,d. If either 
d < a or c < d then the sorting is complete. If a < d < c then a third operation A(2) 
applied to b, d completes the sorting. This shows that ct(4, 3) < 3 and it is easy to 
verify that no algorithm which uses only the operations A(2) and A(3) can sort 
4 numbers in fewer than 3 operations in the worst case. 

General lower bounds on the relative complexity can be obtained from two 
sources: bounds for k = 2 and information theory. 

LEMMA 1. For any problem X(n) listed above, the relative complexity ~(n, k) satisfies 
~(n, k) _> ~(n, 2)/~(k, 2). 
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I~OOF. Consider an algorithm for solving X(n) which uses ~(n, k) solutions to 
problems X(r), r < k. If we solve each subproblem X(r) by using ¢(r, 2) comparison 
operations then, since ~(r, 2) _< ¢(k, 2), we shall obtain an algorithm for X(n) which 
uses at most ~(n, k)~(k, 2) comparisons. Hence ~(n, k)~(k, 2) >__ ~(n, 2). • 

Information theoretic lower bounds are derived using the principle that each 
operation can reduce the number of possibilities for the answer by at most a certain 
operation-dependent factor. The classical information theoretic lower bound on 
sorting generalises to the operation A(k) as follows: 

EXAMPLE 2. ~(n, k) > log n!/log k!. 
We begin with n! linear extensions. After t operations A(r), r _< k, the number of 

linear extensions is at least n!/k! t in the worst case. Termination cannot occur until 
n!/k! t < 1, that is, t _> log n!/log k!. 

The bound given by Lemma 1 is ~(n, k) >_ n log n/~(k, 2) which, because of Stirling's 
approximation, appears to be similar. However, k is constant so the approximation 
is not a good one. In fact the information-theoretic bound is superior in this case. 
But sometimes Lemma 1 gives the better lower bound (for example, problems B(n), 
C(n), D(n)). 

In section 2 we consider simple upper and lower bounds on the relative complex- 
ity of problems A(n), B(n), D(n), E(n), F(n). In the cases of B(n) and D(n) these bounds 
are sufficiently close that fl(n, k) is determined and 6(n, k) is determined almost 
exactly. In section 3 we consider problem C(n) in some detail and, by a linear 
programming argument, determine 7(n, k) to within a small constant. 

2. Upper bounds. 

As we have seen ~(n, k) > log n!/log k!. Two upper bounds on e(n, k) were given in 
[3], namely, 4n log n/k log k and n log n/(k - 1); the latter bound (which appears also 
in [2]) is superior up to k = 12. Thus, even the case k = 3 is not completely solved. 
For k = 3 the best algorithm known is based on a method for merging 4 lists of 
length n/4 in n applications of the A(3) algorithm. This merging algorithm always 
knows the ranking of two of the 4 maximal elements in the lists. Therefore it can 
identify the overall maximum using one A(3) operation which can then be placed on 
some output stream and removed from further consideration. The A(3) operation 
discovers, if need be, the ranking between two out of the four remaining maximal 
elements of the lists; so the process can be repeated. The execution time T(n) of 
a merge sort based on this procedure satisfies T(n) < 4T(n/4) + n from which we 

find T(n) < ½n log n. 
The problem B(n) is much easier to analyse. Lemma 1 tells us that 

fl(n, k) >_ (n - 1)/(k - 1). On the other hand, there is a natural algorithm whose 
number of B(k) operations meets this bound almost exactly: apply B(k) to the first 
k elements to get a candidate for the maximum; repeatedly (until k - 1 or fewer 
elements remain unexamined) apply B(k) to a set consisting of the current candidate 
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and k -  1 new elements to update the candidate for the maximum; apply 

B(r), r _< k, to the current candidate and the remaining unexamined elements. This 
requires 1 + [(n - k)/(k - 1)7 = [(n - 1)/(k - 1)7 operations. Thus fl(n, k) = 
V(n- 1)/(k- 1)l. 

Problem D(n) can also be solved almost exactly. The lower bound from Lemma 
1 is F(n + log n - 2)/(k + logk - 2)7 but this bound is not tight. For  observe that 
when an operation D(r), r < k, is applied to some subset of the set of n elements the 
number of elements which remain candidates for the maximum element is reduced 
by at most r - 1 < k - 1; hence at least (n - 1)/(k - 1) such operations will be 
necessary. An algorithm whose number of D(k) operations meets this bound almost 
exactly is easy to obtain and we shall describe it recursively. We divide the set of 
n elements into approximately n/k groups Gi of size k and find the largest and next 
largest elements #i, vi in each group using n/k operations D(k). Next we find the 
largest and second largest elements in the n/k-e lement  set M = {#1,/~2,...} by this 
same algorithm used recursively. If #j is the maximal element of M then #j is 
certainly the overall maximal element. If/~k is the second largest element of M, then 
the overall second largest element will be the larger of vj and/~k SO the operation D(2) 
must be applied to this pair to complete the algorithm. The total number of 
operations T(n) used by this procedure satisfies the recurrence 
T(n) < n/k + T(n/k)  + 1 the solution to which is T(n) = n/(k - 1) almost exactly. 
Thus 6(n, k) = n/(k - 1) almost exactly. 

Rather less satisfactory results are available for problem E(n). One of the merging 
procedures in [2] shows that e(n, k) < 2n/k while Lemma 1 gives the lower bound 
e(n, k) > n/(k - 1). A better lower bound is obtained from the information theoretic 

approach. Each E(k) operation has at most k/2 outcomes and so, in the worst 

case, each operation can reduce the number of possibilities for the result by at most 

a factor k/2 " Hence 

1 n 
°g (n /2 )  n 

is a lower bound for e(n, k). 
Finally in this section we consider the problem F(n) of finding the medians in a set 

of n elements. We take a naive approach merely considering how the operation F(k) 
can be used effectively in one of the standard median finding algorithms. We shall 
assume that, when applied to a set of k elements, F(k) returns not only their median 
but also the two subsets of elements which are above and below it respectively. Our 
treatment is based loosely on the SELECT algorithm in [1]. This means that we must 
have k > 5 and consider the more general problem F(n, s) of selecting the sth largest 
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element from a set of size n using F(r), r _< k, as the primitive operations (where, in 
order to avoid inconsequential details, we shall assume that k is odd and that the 
numbers are distinct). 
t. Divide the n numbers into n/k groups of size k and, with n/k applications of F(k), 

find the median of each group, 
2. By solving a problem of the type F(n/k, n/2k) find the median x of this set of 

medians, 
3~ Rank the elements into two subsets $1 = {Yl Y < x} and $2 = {YlY > x} as 

follows: if there remain at least k - i elements as yet unranked apply F(k) to this 
set augmented by x. It is easy to see that at least (k + 1)/2 elements get ranked 
with respect to x; so this step requires 2n/(k + 1) such operations. Because of the 
choice of x in the first two steps it is easy to see that IS~[ _< (3k - 1)n/4k. 

4. From the last step we shall know the exact size of $1, $2 and in which of them, and 
at which rank, the required element is to be found. Hence we can apply this 
algorithm recursively to the appropriate one of S~ and Sz. 

It follows from this description that the number T(n) of operations F(k) required 
to solve the problem F(n, s)(and hence the median problem F(n)) satisfies the 
inequality 

n ( k )  2n ((3k~k 1)n ) T(n) < -~ + T + ~ + T for all n _> no 

4(3k + 1) 
where no is some constant depending on k. Putting 0~ = (k - 3)(k + 1) we may write 

this recurrence inequality as 

( k )  n ( 4 k )  ( 3 k - 1 ) n f ° r a l l n > n °  T(n) - an <_ T - ~ + T 3k 1)n _ a  4k 

4(3k + 1) 
from which it follows that T(n) - an = o(n), that is, T(n) < (k - 3)(k + 1) n + o(n). 

Table 2. Upper and lower bounds. 

Relative complexity 

~(n, k) 
fl(n, k) 
~(,, k) 
6(n, k 

~(n, k) 

~(n, k) 

Lower bound 

n log n/log k! 
n/(k - 1) 
n/k + 2n/k(k - 1) 
n / ( k -  1) 

n 

2n/3k 

Upper bounds 

n log n/(k - 1), 4n log n/k log k 
n / ( k -  1) 
n/k + 2n/k(k - 1) 
n/(k- ~) 

2n/k 

4(3k + 1) 
n 

( k - 3 ) ( k +  1) 
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The upper bound given by this algorithm on qb(n, k) is probably far from optimal. 
Certainly it is much larger than the lower bound from Lemma 1: ?p(n,k)> 
~b(n, 2)/~b(k, 2) >_ 2n/3k. 

Table 2 summarises the lower and upper bounds on various relative complexity 
functions; only the dominant term is given in these bounds in order to display the 
degree to which the relative complexities are known almost exactly. 

3. Finding the maximum and minimum. 

In this section we consider the problem C(n), give an algorithm for solving it using 
operations C(k), and prove that the algorithm is close to optimal (thereby obtaining 
the value of ?(n, k) to within a small constant). 

The algorithm is as follows: 
1. Divide the n elements into [n/kqgroups of k elements (possibly with a final group 

of r elements, r < k) and apply C(k) to each group (and C(r) to the final group if 
necessary). There are now q = [n/k] candidates for the maximum and q can- 
didates for the minimum. 

2. With [(q - 1)/(k - 1)] applications of C(k) (one of which may be C(r) with r < k) 
reduce the number of candidates for the maximum down to one. 

3. With [(q - i)/(k - 1)] applications of C(k) (one of which may be C(r) with r < k) 
reduce the number of candidates for the minimum down to one. 

From this algorithm we obtain 

LEMMA 2. ?(n,k) < q + 2I'(q - 1)/(k - 1)]. 

Consider an arbitrary algorithm for finding both the maximum and the minimum 
in an n element set by means of C(r) operations with r < k. As the algorithm proceeds 
more and more elements are excluded as possibilities for being the maximum or 
minimum. We define the following notation: 

d :  the set of elements which remain candidates for both the minimum and the 
maximum, 

~:  the set of elements which remain candidates for the maximum only, 
~: the set of elements which remain candidates for the minimum only, 
9 :  the set of elements which are candidates for neither. 

Put  a = Id[, b = I~[, c = Ic~[, d = I~ I. 

Each C(r), r <_ k, operation results in changes to a, b, c, d which we denote by Aa, 
Ab, Ac, Ad and we shall have to consider worst case situations. 

Initially a = n and b = c = 0, while finally a = 0 and b = c = 1. This means that 
the total change to a is - n  and the total change to b + c is 2. 

The operations of the algorithm are categorised according to how many operands 
lie in d ,  how many lie in ~ ,  how many lie in c~ and how many lie in ~.  Specifically, let 
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twxyz be the number of operations in which w operands lie in (the current) d ,  
x operands lie in ~ ,  y operands lie in c~, z operands lie in 9 .  Of course, 
w + x + y + z < k .  

The total number of operations used is ~ twxr,, where the summation is over all 
quadruples (w, x, y, z) of non-negative integers which satisfy w + x + y + z < k. 

We divide the quadruples into the following disjoint sets 

E ={(w,x ,y ,z)  l ( w > 2 ) o r ( w = l a n d ( x > l o r y > l ) )  
or (w = 0 and x _> 1 and y > 1)} 

F = {(0, x, 0,z) l x _> 2} 
G = {(0, 0, y, z) l y > 2} 
H = {(1, 0, 0, z)} 
J = {(0, x, y, z) f(x, y) = (0, 1), (1, 0), (0, 0)}. 

For  a quadruple (w, x, y, z) in any of these sets the associated C(r) operation results 
in Aa = - w .  The value d(b + c) depends on the outcome of the operation and we 
must consider the worst case. The worst case outcome depends on which of the 
classes above the associated quadruple belongs to. 

For  quadruples (w, x, y, z) in E there are always two operands at least one of which, 
a say, is still a candidate for the maximum, the other, z say, still a candidate for the 
minimum. The worst case is when an element such as a is found to be a maximum 
and an element such as z is found to be a minimum in the C(r) operation. In such 
a case we have A(b + c) = - x  - y + 2. 

Similar considerations tell us that the worst case for an operation parameterised 
by a quadruple (w,x ,y , z )  in F is A(b + c) = - x  + 1; for a quadruple in G it is 
A(b + c) = - y  + 1; for a quadruple in H it is A(b + c) = 1; and for quadruples in 
J it is A(b + c) = O. 

Summing over all the operations in the algorithm to obtain the total changes to 
Aa and A(b + c) in the worst case gives the equations 

(1) E wtwxyz + E tlooz = n 
E H 

(2) ~ ( - x  - y + 2)twxyz + ~ t l o o z  + ~ ( - x  + 1)toxoz + ~ ( - y  + 1)toor~ = 2 
E H F G 

These equations are linear in the quantities twxrz and we can therefore obtain 
a lower bound on the total number ~ twxrz of C(r) operations by a technique in linear 
programming. We use the two equations to express tkooo and tOkOO + tooko in terms 
of the other t~xr~. Then we substitute for tkO00 and tokoo + tooko in the expression 

tw~r~. Elementary, though tortuous, algebra results in the following equation: 

n 2 ( n - k )  v k ( k + l - w - x - y ) - w  
twxrz + + twxrz 

- k kCk k ( k - 1 )  - -  E - {(k,  O, O, 0 ) }  

k - x  
+ Y + 

F -  {(0, k, O, 0)} 

k - y  

o-f(o,o,g,o)} k -  1 t°°Yz + 
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k(k - 1 ) -  1 

Since the coefficients in the summations on the right hand side are strictly positive 

we have 

n 2(n - k) 
t.~r~ >_ ~ + k( k - 1-----~" 

We can now prove the following. 

THEOREM 1. 

O <_ ~ ( n , k ) -  -~ + k(k < 3 +  k - - - ~  

PROOF. The linear programming argument above has shown that 

n 2(n - k) 
~,(n, k) >_ -~ + k(k 1) 

and so, in conjunction with Lemma 2, we have 

0 <_ 7(n, k) - + k(k - 1---~) 

_< 

+z/ k- - i  k - 1  k - 1  k ~  

e < 1 + 2 + 2 [n/k'~ - n/k 2 _ < 3 + - -  
k - 1  k - l "  
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