
BIT31 (1991). 194-201.

T H E R E C U R S I V E S T R U C T U R E O F

S O M E O R D E R I N G P R O B L E M S

M. D. ATKINSON

School of Computer Science, Carleton University, Ottawa, Ontario, Canada KIS 5B6

Abstract.

Some classical ordering problems (sorting, finding the maximum, finding the maximum and the
minimum, finding the largest and the next largest, merging, and finding the median) are considered from
a recursive viewpoint. If X(n) denotes an instance of size n of any one of these problems then X(n) can be
solved by finding the solution to a number ~(n, k) of problems X(k) for some fixed k; ~(n, k) is called the
relative complexity. Upper and lower bounds on the relative complexity are found. For the problem of
finding the maximum, finding the maximum and the minimum, and finding the largest and the next
largest these bounds are optimal.

AMS Classification numbers: 06A10, 68C05

L Introduction.

Divide and conquer is one of the most useful paradigms in algorithm design. One
of its key aspects is the technique of solving a problem X(n), of size n, by making use
of solutions to problems X(k) with k < n; thus divide and conquer algorithms are
applicable for those problems whose solution can be expressed recursively. We shall
investigate, for several classical ordering problems X(n), the number of solutions to
problems X(r) with r bounded by some fixed k, needed to solve X(n). In all the
problems that we consider X(2) will be the problem of comparing two numbers. Our
results reduce to known ones on the number of comparisons in the case k = 2. In
various degrees of detail we shall consider the following problems:
1. A(n): sort n elements into ascending order,
2. B(n): find the maximum in a set of n elements,
3. C(n): find the maximum and the minimum in a set of n elements,
4. D(n): find the largest and the next largest in a set of n elements,
5. E(n): merge two sorted lists of length n/2,
6. F(n): find the medians in a set of n elements.

All of these problems have traditionally been studied for their worst case compari-
son complexity and substantial progress has been made on all of them. In fact, apart

Received July 1990. Revised February 1991.

THE RECURS1VE STRUCTURE OF SOME ORDERING PROBLEMS 195

from problem F(n), their comparison complexity has been found almost exactly in
the sense that the worst case comparison complexity is known to be of the form
f(n) + o(f(n)) for some known function f(n); these results may be found in [5]. The
complexity of F(n) is known to be linear in n but the exact constant is as yet
unknown; upper and lower bounds for F(n) are proved in [6] and [-4] respectively.
Table 1 summarises what is known about the worst case comparison complexity
and defines some notation which will be explained below (here, and subsequently, all
logarithms are to base 2).

Table 1. Relative complexity notation.

Problem Comparison complexity Relative complexity

A(,)
n(n)
c(,)
O(n)
E(n)
F(,)

n log n + O(n)
n - - 1
F3n/2-]
[-n + log n - 2-]
n - - 1
between 2n and 3n

~(,, k)
fl(n, k)
~(,, k)
6(n, k)
8(n, k)
~,(,,k)

When n = 2 all of these problems are equivalent to the problem of comparing two
numbers. Thus, if X(n) is any one of A(n) E(n), the number of problems X(2)
which have to be solved in order to solve X(n) is known almost exactly. We can
paraphrase this statement as: the number of X(2) operations required to simulate the
X(n) operation is known almost exactly. We now define the relative complexity
~(n, k) of a problem X(n) to be the number of solutions to problems X(r), r < k,
necessary to solve X(n) in the worst case. In other words ~(n, k) is the number of
operations of the form X(r), r < k, required to simulate the operation X(n). Notice
that ¢(n, 2) is the comparison complexity of X(n). To clarify this concept we give an
example.

EXAMPLE 1. Ct(4, 3) = 3.
Suppose we have to sort 4 numbers a, b, c, d using the operations A(2) and A(3)

(clearly, A(1)has no effect). We can begin by applying A(3) to 3 of the numbers,
discovering say that a < b < c. In the second step we apply A(3) to a, c,d. If either
d < a or c < d then the sorting is complete. If a < d < c then a third operation A(2)
applied to b, d completes the sorting. This shows that ct(4, 3) < 3 and it is easy to
verify that no algorithm which uses only the operations A(2) and A(3) can sort
4 numbers in fewer than 3 operations in the worst case.

General lower bounds on the relative complexity can be obtained from two
sources: bounds for k = 2 and information theory.

LEMMA 1. For any problem X(n) listed above, the relative complexity ~(n, k) satisfies
~(n, k) _> ~(n, 2)/~(k, 2).

196 M . D . ATKINSON

I~OOF. Consider an algorithm for solving X(n) which uses ~(n, k) solutions to
problems X(r), r < k. If we solve each subproblem X(r) by using ¢(r, 2) comparison
operations then, since ~(r, 2) _< ¢(k, 2), we shall obtain an algorithm for X(n) which
uses at most ~(n, k)~(k, 2) comparisons. Hence ~(n, k)~(k, 2) >__ ~(n, 2). •

Information theoretic lower bounds are derived using the principle that each
operation can reduce the number of possibilities for the answer by at most a certain
operation-dependent factor. The classical information theoretic lower bound on
sorting generalises to the operation A(k) as follows:

EXAMPLE 2. ~(n, k) > log n!/log k!.
We begin with n! linear extensions. After t operations A(r), r _< k, the number of

linear extensions is at least n!/k! t in the worst case. Termination cannot occur until
n!/k! t < 1, that is, t _> log n!/log k!.

The bound given by Lemma 1 is ~(n, k) >_ n log n/~(k, 2) which, because of Stirling's
approximation, appears to be similar. However, k is constant so the approximation
is not a good one. In fact the information-theoretic bound is superior in this case.
But sometimes Lemma 1 gives the better lower bound (for example, problems B(n),
C(n), D(n)).

In section 2 we consider simple upper and lower bounds on the relative complex-
ity of problems A(n), B(n), D(n), E(n), F(n). In the cases of B(n) and D(n) these bounds
are sufficiently close that fl(n, k) is determined and 6(n, k) is determined almost
exactly. In section 3 we consider problem C(n) in some detail and, by a linear
programming argument, determine 7(n, k) to within a small constant.

2. Upper bounds.

As we have seen ~(n, k) > log n!/log k!. Two upper bounds on e(n, k) were given in
[3], namely, 4n log n/k log k and n log n/(k - 1); the latter bound (which appears also
in [2]) is superior up to k = 12. Thus, even the case k = 3 is not completely solved.
For k = 3 the best algorithm known is based on a method for merging 4 lists of
length n/4 in n applications of the A(3) algorithm. This merging algorithm always
knows the ranking of two of the 4 maximal elements in the lists. Therefore it can
identify the overall maximum using one A(3) operation which can then be placed on
some output stream and removed from further consideration. The A(3) operation
discovers, if need be, the ranking between two out of the four remaining maximal
elements of the lists; so the process can be repeated. The execution time T(n) of
a merge sort based on this procedure satisfies T(n) < 4T(n/4) + n from which we

find T(n) < ½n log n.
The problem B(n) is much easier to analyse. Lemma 1 tells us that

fl(n, k) >_ (n - 1)/(k - 1). On the other hand, there is a natural algorithm whose
number of B(k) operations meets this bound almost exactly: apply B(k) to the first
k elements to get a candidate for the maximum; repeatedly (until k - 1 or fewer
elements remain unexamined) apply B(k) to a set consisting of the current candidate

THE RECURSIVE STRUCTURE OF SOME ORDERING PROBLEMS 197

and k - 1 new elements to update the candidate for the maximum; apply

B(r), r _< k, to the current candidate and the remaining unexamined elements. This
requires 1 + [(n - k)/(k - 1)7 = [(n - 1)/(k - 1)7 operations. Thus fl(n, k) =
V(n- 1)/(k- 1)l.

Problem D(n) can also be solved almost exactly. The lower bound from Lemma
1 is F(n + log n - 2)/(k + logk - 2)7 but this bound is not tight. For observe that
when an operation D(r), r < k, is applied to some subset of the set of n elements the
number of elements which remain candidates for the maximum element is reduced
by at most r - 1 < k - 1; hence at least (n - 1)/(k - 1) such operations will be
necessary. An algorithm whose number of D(k) operations meets this bound almost
exactly is easy to obtain and we shall describe it recursively. We divide the set of
n elements into approximately n/k groups Gi of size k and find the largest and next
largest elements #i, vi in each group using n/k operations D(k). Next we find the
largest and second largest elements in the n/k-e lement set M = {#1,/~2,...} by this
same algorithm used recursively. If #j is the maximal element of M then #j is
certainly the overall maximal element. If/~k is the second largest element of M, then
the overall second largest element will be the larger of vj and/~k SO the operation D(2)
must be applied to this pair to complete the algorithm. The total number of
operations T(n) used by this procedure satisfies the recurrence
T(n) < n/k + T(n/k) + 1 the solution to which is T(n) = n/(k - 1) almost exactly.
Thus 6(n, k) = n/(k - 1) almost exactly.

Rather less satisfactory results are available for problem E(n). One of the merging
procedures in [2] shows that e(n, k) < 2n/k while Lemma 1 gives the lower bound
e(n, k) > n/(k - 1). A better lower bound is obtained from the information theoretic

approach. Each E(k) operation has at most k/2 outcomes and so, in the worst

case, each operation can reduce the number of possibilities for the result by at most

a factor k/2 " Hence

1 n
°g (n /2) n

is a lower bound for e(n, k).
Finally in this section we consider the problem F(n) of finding the medians in a set

of n elements. We take a naive approach merely considering how the operation F(k)
can be used effectively in one of the standard median finding algorithms. We shall
assume that, when applied to a set of k elements, F(k) returns not only their median
but also the two subsets of elements which are above and below it respectively. Our
treatment is based loosely on the SELECT algorithm in [1]. This means that we must
have k > 5 and consider the more general problem F(n, s) of selecting the sth largest

198 M . D . ATKINSON

element from a set of size n using F(r), r _< k, as the primitive operations (where, in
order to avoid inconsequential details, we shall assume that k is odd and that the
numbers are distinct).
t. Divide the n numbers into n/k groups of size k and, with n/k applications of F(k),

find the median of each group,
2. By solving a problem of the type F(n/k, n/2k) find the median x of this set of

medians,
3~ Rank the elements into two subsets $1 = {Yl Y < x} and $2 = {YlY > x} as

follows: if there remain at least k - i elements as yet unranked apply F(k) to this
set augmented by x. It is easy to see that at least (k + 1)/2 elements get ranked
with respect to x; so this step requires 2n/(k + 1) such operations. Because of the
choice of x in the first two steps it is easy to see that IS~[_< (3k - 1)n/4k.

4. From the last step we shall know the exact size of $1, $2 and in which of them, and
at which rank, the required element is to be found. Hence we can apply this
algorithm recursively to the appropriate one of S~ and Sz.

It follows from this description that the number T(n) of operations F(k) required
to solve the problem F(n, s)(and hence the median problem F(n)) satisfies the
inequality

n (k) 2n ((3k~k 1)n) T(n) < -~ + T + ~ + T for all n _> no

4(3k + 1)
where no is some constant depending on k. Putting 0~ = (k - 3)(k + 1) we may write

this recurrence inequality as

(k) n (4 k) (3 k - 1) n f ° r a l l n > n ° T(n) - an <_ T - ~ + T 3k 1)n _ a 4k

4(3k + 1)
from which it follows that T(n) - an = o(n), that is, T(n) < (k - 3)(k + 1) n + o(n).

Table 2. Upper and lower bounds.

Relative complexity

~(n, k)
fl(n, k)
~(,, k)
6(n, k

~(n, k)

~(n, k)

Lower bound

n log n/log k!
n/(k - 1)
n/k + 2n/k(k - 1)
n / (k - 1)

n

2n/3k

Upper bounds

n log n/(k - 1), 4n log n/k log k
n / (k - 1)
n/k + 2n/k(k - 1)
n/(k- ~)

2n/k

4(3k + 1)
n

(k - 3) (k + 1)

THE RECURSIVE STRUCTURE OF SOME ORDERING PROBLEMS 199

The upper bound given by this algorithm on qb(n, k) is probably far from optimal.
Certainly it is much larger than the lower bound from Lemma 1: ?p(n,k)>
~b(n, 2)/~b(k, 2) >_ 2n/3k.

Table 2 summarises the lower and upper bounds on various relative complexity
functions; only the dominant term is given in these bounds in order to display the
degree to which the relative complexities are known almost exactly.

3. Finding the maximum and minimum.

In this section we consider the problem C(n), give an algorithm for solving it using
operations C(k), and prove that the algorithm is close to optimal (thereby obtaining
the value of ?(n, k) to within a small constant).

The algorithm is as follows:
1. Divide the n elements into [n/kqgroups of k elements (possibly with a final group

of r elements, r < k) and apply C(k) to each group (and C(r) to the final group if
necessary). There are now q = [n/k] candidates for the maximum and q can-
didates for the minimum.

2. With [(q - 1)/(k - 1)] applications of C(k) (one of which may be C(r) with r < k)
reduce the number of candidates for the maximum down to one.

3. With [(q - i)/(k - 1)] applications of C(k) (one of which may be C(r) with r < k)
reduce the number of candidates for the minimum down to one.

From this algorithm we obtain

LEMMA 2. ?(n,k) < q + 2I'(q - 1)/(k - 1)].

Consider an arbitrary algorithm for finding both the maximum and the minimum
in an n element set by means of C(r) operations with r < k. As the algorithm proceeds
more and more elements are excluded as possibilities for being the maximum or
minimum. We define the following notation:

d : the set of elements which remain candidates for both the minimum and the
maximum,

~: the set of elements which remain candidates for the maximum only,
~: the set of elements which remain candidates for the minimum only,
9 : the set of elements which are candidates for neither.

Put a = Id[, b = I~[, c = Ic~[, d = I~ I.

Each C(r), r <_ k, operation results in changes to a, b, c, d which we denote by Aa,
Ab, Ac, Ad and we shall have to consider worst case situations.

Initially a = n and b = c = 0, while finally a = 0 and b = c = 1. This means that
the total change to a is - n and the total change to b + c is 2.

The operations of the algorithm are categorised according to how many operands
lie in d , how many lie in ~ , how many lie in c~ and how many lie in ~. Specifically, let

200 M.D. ATKINSON

twxyz be the number of operations in which w operands lie in (the current) d ,
x operands lie in ~ , y operands lie in c~, z operands lie in 9 . Of course,
w + x + y + z < k .

The total number of operations used is ~ twxr,, where the summation is over all
quadruples (w, x, y, z) of non-negative integers which satisfy w + x + y + z < k.

We divide the quadruples into the following disjoint sets

E ={(w,x ,y ,z) l (w > 2) o r (w = l a n d (x > l o r y > l))
or (w = 0 and x _> 1 and y > 1)}

F = {(0, x, 0,z) l x _> 2}
G = {(0, 0, y, z) l y > 2}
H = {(1, 0, 0, z)}
J = {(0, x, y, z) f(x, y) = (0, 1), (1, 0), (0, 0)}.

For a quadruple (w, x, y, z) in any of these sets the associated C(r) operation results
in Aa = - w . The value d(b + c) depends on the outcome of the operation and we
must consider the worst case. The worst case outcome depends on which of the
classes above the associated quadruple belongs to.

For quadruples (w, x, y, z) in E there are always two operands at least one of which,
a say, is still a candidate for the maximum, the other, z say, still a candidate for the
minimum. The worst case is when an element such as a is found to be a maximum
and an element such as z is found to be a minimum in the C(r) operation. In such
a case we have A(b + c) = - x - y + 2.

Similar considerations tell us that the worst case for an operation parameterised
by a quadruple (w,x ,y , z) in F is A(b + c) = - x + 1; for a quadruple in G it is
A(b + c) = - y + 1; for a quadruple in H it is A(b + c) = 1; and for quadruples in
J it is A(b + c) = O.

Summing over all the operations in the algorithm to obtain the total changes to
Aa and A(b + c) in the worst case gives the equations

(1) E wtwxyz + E tlooz = n
E H

(2) ~ (- x - y + 2)twxyz + ~ t l o o z + ~ (- x + 1)toxoz + ~ (- y + 1)toor~ = 2
E H F G

These equations are linear in the quantities twxrz and we can therefore obtain
a lower bound on the total number ~ twxrz of C(r) operations by a technique in linear
programming. We use the two equations to express tkooo and tOkOO + tooko in terms
of the other t~xr~. Then we substitute for tkO00 and tokoo + tooko in the expression

tw~r~. Elementary, though tortuous, algebra results in the following equation:

n 2 (n - k) v k (k + l - w - x - y) - w
twxrz + + twxrz

- k kCk k (k - 1) - - E - {(k, O, O, 0) }

k - x
+ Y +

F - {(0, k, O, 0)}

k - y

o-f(o,o,g,o)} k - 1 t°°Yz +

THE RECURSIVE STRUCTURE OF SOME ORDERING PROBLEMS 201

k(k - 1) - 1

Since the coefficients in the summations on the right hand side are strictly positive

we have

n 2(n - k)
t.~r~ >_ ~ + k(k - 1-----~"

We can now prove the following.

THEOREM 1.

O <_ ~ (n , k) - -~ + k(k < 3 + k - - - ~

PROOF. The linear programming argument above has shown that

n 2(n - k)
~,(n, k) >_ -~ + k(k 1)

and so, in conjunction with Lemma 2, we have

0 <_ 7(n, k) - + k(k - 1---~)

_<

+z/ k- - i k - 1 k - 1 k ~

e < 1 + 2 + 2 [n/k'~ - n/k 2 _ < 3 + - -
k - 1 k - l "

REFERENCES

[1] A. V. Aho, J. E. Hopcrofl, J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

[2] M. D. Atkinson, Sorting with powerful primitive Operations, J. Comb. Math. and Comb. Comput.
4 (1988), 29-36.

[3] R. Beigel, J. Gill, Sortin# n objects with a k-sorter, IEEE Trans. on Computers, 39, No. 5 (May 1990),
714-716.

I-4] S. W. Bent, J. W. John, Findin# the median requires 2n comparisons, Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing (1985), 213-216.

I-5] D. E. Knuth, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-Wesley,
Reading, Massachusetts, 1973.

I-6] M. S. Paterson, A. Sch6nhage, N. Pippenger, Finding the median, J. Computer and System Sciences
13 (1976), 184-199.

