Order 7: 23-25, 1990. 23
© 1990 Kluwer Academic Publishers. Printed in the Netherlands.
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Abstract. An algorithm requiring O(n?) arithmetic operations for computing the number of linear
extensions of a poset whose covering graph is a tree is given.
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Let P be a finite set of n elements on which is defined a partial order <. It is an
open question [3] whether L(P), the number of linear extensions of the partial
order, can be computed in time polynomial in » although polynomial time
algorithms are known [2] for some special classes of posets. In this note we consider
posets whose covering graph is a tree. It was proved in [1] that, for such posets,
L(P) can be computed in O(n®) arithmetic operations but the algorithm was
unwieldy. Here we shall give an O(n?) algorithm for these posets which admits
simple implementation.

If « € P the a-spectrum of P is the sequence (4,,4,,...,4,) where 4, is the
number of total orderings (x,, x,, ..., x,) wherein x; = a (that is, « has rank i in
the total ordering).

LEMMA 1. Let P,Q be disjoint finite sets of sizes u,v carrying partial orders
denoted by <p, <, and let (A, 2y, ...,A,) be the a-spectrum of P and
(W15 425 - - -, 11,) the B-spectrum of Q. Consider the partial order relation <, defined
on R = P U Q whose covering relations are those of P and Q together with the relation
@ <y B. Then the r-th member of the spectrum of R is given by

min(u,7) v

Ask,; Z &

1=max(l,r —v) j=r—i+1
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where

()
i—1 u-—i

Proof. A linear extension { of R in which « has rank r is obtained by merging a
linear extension ¢ =(x,,X;,...,x,) of P with a linear extension
V=01, ..-,¥,) of Q. If x; =« for some i in 1 <i < u then, in order to have «
of rank r in {, we must have x, between y,_; and y,_,,, in { (see Figure 1) and
therefore 0 <r — i <v. Thus i satisfies max(1, r —v) </ <min(y, r). Since a <, f,
B must have rank at least r —7 + 1 in . On the other hand, given any value of i
with max(1, r — v) <i < min(y, r) there are A, possibilities for the linear extension ¢
having x; =« and Z!_,_,,, u; possibilities for the linear extension ¥. Given
possibilities for £ and y there are ({Z]) ways of merging (x,, x5, ..., x;_,) with
(31:Y2s--s¥,—,), and (“%t"77) ways of merging (x;,.,...,x,) with
(Vr—is1s---»>¥y) Taking all values of i from max(l,r —v) to min(y, r) into
account we obtain the formula claimed.

Note. There is a similar formula, proved in the same way, for the a-spectrum of the
partial order <, whose covering relations are those of P and Q together with
B <, a, namely, its r-th member is

min(u,r) r—i
Z Aik,; z B
t=max(l,r —v) Jj=1

LEMMA 2. The calculation of the formulae in Lemma 1 (and those of the note
following its proof) can be carried out using O(uv) arithmetic operations assuming
that all the necessary binomial coefficients have been precomputed.
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Proof. All quantities w, =X_,pj,k =v,v—1,...,1, are calculated first in
O(v) operations using the equations o, = y, and @, = w, , ) + y for k <v. Assume
first that u <v. The members Ion, ) Ak,o,_;, of the spectral sequence
with 1 <7 <u require a total of A(1+2+ -+ u) =}4u®+ O(u) operations (A4
being a constant); for u <r <v the number of operations is Au(v — u); while for
v <r<u+v the number of operations required is again A(1+2+---+u) =
$Au? + O(u). The total number is therefore Auv + O(u). The case v <u is analysed
in the same way.

PROPOSITION. Let R be any poset on n elements whose covering graph is a tree
and let o € R. Then the a-spectrum (and therefore L(R)) can be calculated in O(n?)
arithmetic operations.

Proof. We begin by computing and storing all the necessary binomial coefficients
(%), 0 < b <a <n, by constructing a Pascal’s triangle; this requires O(n?) opera-
tions. Choose any edge of the covering graph incident with « and let g be its other
end. When this edge is removed from the graph there remain two components P, Q
(containing «, f and of sizes u, v respectively) which are the covering graphs of the
posets induced in the underlying subsets. The a-spectrum of P and the f-spectrum
of @ may each be calculated by recursion and then the a-spectrum of R may be
found using the formulae of Lemma 1.

If T(n) is the number of arithmetic operations required by this algorithm then, by
Lemma 2,

T(n) < T(u) + T(v) + Auv, for some constant A.

We can now prove that T(n) <34n? by induction on n. For, by the inductive
hypothesis,

T(n) < 3Au® + 340 + Auw =3A(u + v)* = 34n’.
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