On Computing the Number of Linear Extensions of a Tree*

M. D. ATKINSON

School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Communicated by I. Rival

(Received: 4 January 1990; accepted: 25 February 1990)

Abstract. An algorithm requiring $O(n^2)$ arithmetic operations for computing the number of linear extensions of a poset whose covering graph is a tree is given.

AMS subject classifications (1980). 06A05, 68C05.

Key words. Linear extension, tree, covering graph.

Let P be a finite set of n elements on which is defined a partial order <. It is an open question [3] whether L(P), the number of linear extensions of the partial order, can be computed in time polynomial in n although polynomial time algorithms are known [2] for some special classes of posets. In this note we consider posets whose covering graph is a tree. It was proved in [1] that, for such posets, L(P) can be computed in $O(n^5)$ arithmetic operations but the algorithm was unwieldy. Here we shall give an $O(n^2)$ algorithm for these posets which admits simple implementation.

If $\alpha \in P$ the α -spectrum of P is the sequence $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ where λ_i is the number of total orderings (x_1, x_2, \ldots, x_n) wherein $x_i = \alpha$ (that is, α has rank *i* in the total ordering).

LEMMA 1. Let P, Q be disjoint finite sets of sizes u, v carrying partial orders denoted by $<_P$, $<_Q$ and let $(\lambda_1, \lambda_2, \ldots, \lambda_u)$ be the α -spectrum of P and $(\mu_1, \mu_2, \ldots, \mu_v)$ the β -spectrum of Q. Consider the partial order relation $<_1$ defined on $R = P \cup Q$ whose covering relations are those of P and Q together with the relation $\alpha <_1 \beta$. Then the r-th member of the spectrum of R is given by

$$\sum_{i=\max(1,r-v)}^{\min(u,r)} \lambda_i k_{ri} \sum_{j=r-i+1}^{v} \mu_j$$

* This research was partially funded by the National Science and Engineering Research Council of Canada under Grant Number A4219.

where

$$k_n = \binom{r-1}{i-1} \binom{u+v-r}{u-i}.$$

Proof. A linear extension ζ of R in which α has rank r is obtained by merging a linear extension $\xi = (x_1, x_2, \ldots, x_u)$ of P with a linear extension $\psi = (y_1, y_2, \ldots, y_v)$ of Q. If $x_i = \alpha$ for some i in $1 \le i \le u$ then, in order to have α of rank r in ζ , we must have x_i between y_{r-i} and y_{r-i+1} in ζ (see Figure 1) and therefore $0 \le r - i \le v$. Thus i satisfies max $(1, r - v) \le i \le \min(u, r)$. Since $\alpha <_1 \beta$, β must have rank at least r - i + 1 in ψ . On the other hand, given any value of i with max $(1, r - v) \le i \le \min(u, r)$ there are λ_i possibilities for the linear extension ξ having $x_i = \alpha$ and $\sum_{j=r-i+1}^{v} \mu_j$ possibilities for the linear extension ψ . Given possibilities for ξ and ψ there are $\binom{r-1}{i-1}$ ways of merging $(x_1, x_2, \ldots, x_{i-1})$ with $(y_1, y_2, \ldots, y_{r-i})$, and $\binom{u+v-r}{u-i}$ ways of merging (x_{i+1}, \ldots, x_u) with (y_{r-i+1}, \ldots, y_v) . Taking all values of i from max(1, r - v) to min(u, r) into account we obtain the formula claimed.

Note. There is a similar formula, proved in the same way, for the α -spectrum of the partial order $<_2$ whose covering relations are those of P and Q together with $\beta <_2 \alpha$, namely, its r-th member is

$$\sum_{i=\max(1,r-v)}^{\min(u,r)} \lambda_i k_{ri} \sum_{j=1}^{r-i} \mu_j$$

LEMMA 2. The calculation of the formulae in Lemma 1 (and those of the note following its proof) can be carried out using O(uv) arithmetic operations assuming that all the necessary binomial coefficients have been precomputed.

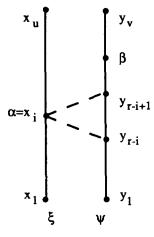


Fig. 1.

THE NUMBER OF LINEAR EXTENSIONS OF A TREE

Proof. All quantities $\omega_k = \sum_{j=k}^{v} \mu_j$, k = v, v - 1, ..., 1, are calculated first in O(v) operations using the equations $\omega_v = \mu_v$ and $\omega_k = \omega_{k+1} + \mu_k$ for k < v. Assume first that $u \leq v$. The members $\sum_{i=\max(1,r-v)}^{\min(u,r)} \lambda_i k_{ri} \omega_{r-i+1}$ of the spectral sequence with $1 \leq r \leq u$ require a total of $A(1 + 2 + \cdots + u) = \frac{1}{2}Au^2 + O(u)$ operations (A being a constant); for $u < r \leq v$ the number of operations is Au(v - u); while for $v < r \leq u + v$ the number of operations required is again $A(1 + 2 + \cdots + u) = \frac{1}{2}Au^2 + O(u)$. The total number is therefore Auv + O(u). The case $v \leq u$ is analysed in the same way.

PROPOSITION. Let R be any poset on n elements whose covering graph is a tree and let $\alpha \in R$. Then the α -spectrum (and therefore L(R)) can be calculated in $O(n^2)$ arithmetic operations.

Proof. We begin by computing and storing all the necessary binomial coefficients $\binom{a}{b}$, $0 \le b \le a \le n$, by constructing a Pascal's triangle; this requires $O(n^2)$ operations. Choose any edge of the covering graph incident with α and let β be its other end. When this edge is removed from the graph there remain two components P, Q (containing α, β and of sizes u, v respectively) which are the covering graphs of the posets induced in the underlying subsets. The α -spectrum of P and the β -spectrum of Q may each be calculated by recursion and then the α -spectrum of R may be found using the formulae of Lemma 1.

If T(n) is the number of arithmetic operations required by this algorithm then, by Lemma 2,

 $T(n) \leq T(u) + T(v) + Auv$, for some constant A.

We can now prove that $T(n) \leq \frac{1}{2}An^2$ by induction on *n*. For, by the inductive hypothesis,

$$T(n) \leq \frac{1}{2}Au^{2} + \frac{1}{2}Av^{2} + Auv = \frac{1}{2}A(u+v)^{2} = \frac{1}{2}An^{2}.$$

References

- 1. M. D. Atkinson (1985) Partial orders and comparison problems, Congr. Numer. 47, 77-85.
- 2. M. D. Atkinson (1988) The complexity of order, in *Algorithms and Order* (Ed. I. Rival), NATO ASI series Vol. 255, Kluwer Academic Publishers, Dordrecht, pp. 195-230.
- 3. M. Saks (1985) in Graphs and Order: the Role of Graphs in the Theory of Ordered Sets and Its Applications (Ed. I. Rival), NATO ASI series Vol. 147, Kluwer Academic Publishers, Dordrecht, p. 524.