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Abstract. There are 2”-t ways in which a tree on n vertices can be oriented. Each of these can 
be regarded as the (Hasse) diagram of a partially ordered set. The maximal and minimal widths of 
these posets are determined. The maximal width depends on the bipartition of the tree as a bipartite 
graph and it can be determined in time O(n). The minimal width is one of LA/21 or IA/21 + 1, where 
1 is the number of leaves of the tree. An algorithm of execution time O(n +A* log A) to construct 
the minimal width orientation is given. 
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1. Introduction 

Let T be any (unrooted) tree on n vertices. Each of the n - 1 edges of T can be 
oriented in one of two directions and, hence, associated with T is a set of 2”-’ 
directed graphs. Each of these orientations of T can be regarded as the (Hasse) 
diagram of a partially ordered set. It is interesting to consider the variation over 
this set of 2”-’ related posets of some order theoretic parameter. It was shown 
in [4] that any poset whose diagram is a tree has dimension at most 3 and so the 
dimension parameter has very little variation. Other parameters which have 
been considered are number of comparable pairs, and number of linear exten- 
sions [2,3]. In this paper we consider the width. The width of a poset is the 
size of a largest anti-chain or, equivalently, the minimal number of chains 
needed to cover the elements. The orientations of greatest width are easily 
found but the least width orientations are less trivial. It is natural to relate 
the width of an orientation to the number of leaves L of the tree. We shall prove 
that the smallest possible width is either [A/2] or [n/2] + 1. Our methods are 
algorithmic and allow us to compute an orientation of smallest width in time 
O(n + A2 log 2). In all discussions about algorithm execution times we shall use 
the RAM model of computation with arbitrary precision integers (although the 
integers used are of maximum value O(n + a)). 

l This research was partially funded by the National Science and Engineering Research Council of 
Canada under Grant Number A42 19. 



34 

2. Orientations of Greatest Width 
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We begin by giving a simple result about orientations with the greatest width. 
Every tree T is a bipartite graph. Let A and B be the two sets in the biparti- 
tion. There are two canonical orientations of T; in one of them every element of 
A is maximal and every element of B is minimal, while the other is the dual of 
this. We shall call these orientations the win/lose orientations of T. 

THEOREM A. A win/lose orientation of a tree T maximises the width of the 
associated poset. The width of this orientation can be determined in time O(n). 

Proof In a win/lose orientation there are no transitive consequences of the 
covering relations described by the tree edges. Therefore such an orientation 
has the largest possible anti-chains. We now consider how to find the width of a 
win/lose orientation. The first step is to construct a maximal matching of T. 
Let x be any leaf vertex and let y be the neighbour of x. In a maximal matching 
exactly one of the edges incident with y is a matching edge, and it is easy to see 
that the matching may be adjusted so that this edge is (x, y). If the other edges 
incident with y are deleted the resulting connected components inherit match- 
ings which are also maximal. We can now treat these components in the same 
way. Thus, a maximal matching can be constructed in time O(n). Once a 
maximal matching is found a minimal edge cover of the tree is obtained by 
taking the edges of the maximal matching together with one edge for each 
vertex not yet covered. For the win/lose orientation an edge cover is the same 
as a chain cover and so the number of edges in the edge cover is the width. 

3. Orientations of Least Width 

According to Theorem A, if a tree is oriented to have minimal height, then it 
has maximal width. It might therefore be supposed that an orientation of 
minimal width could be found among the orientations of maximal height. This 
is false, as the tree in Figure 1 demonstrates: each of its orientations of maximal 
height have width 4 or more, while there is an orientation of width 3. 

Fig. 1. 
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For brevity we shall call the width of a minimum width orientation of a tree 
T the minimum width of the tree, and denote it by w(T). If a tree has 12 leaves 
then w(T) 2 A/2 since, in every orientation, each leaf is either a maximal or 
minimal element and so among the leaves there is always an antichain of size at 
least A/2. This lower bound on w(T) cannot necessarily be attained, as is shown 
by the tree in Figure 2. 

Consider any orientation of this tree. Two of the tree edges incident on c 
must be directed the same way (into c, or out of c). Then the two corresponding 
subtrees on 4 nodes cannot have comparabiiities between them. Each of these 
has width at least 2, so the total width is at least 4. 

A tree is said to be reduced if it has the following properties: 

1. No two nodes of degree 2 are adjacent, 
2. No node of degree 2 is adjacent to a leaf. 

Any tree may be converted to a reduced tree by replacing each path of nodes of 
degree 2 by a single node of degree 2, and by removing each node of degree 
2 that is adjacent to a leaf In proving results about minimum width orienta- 
tions of a tree, it is sufficient to consider reduced trees in view of Lemma 1. 

LEMMA 1. Let T be any tree on n vertices and let T* be its reduced form. 
Then the minimum widths of T and T* are equal. Moreover, from a minimum 
width orientation of one of these trees, one can obtain a minimal width orienta- 
tion of the other in O(n) operations. 

Proof Let w, w* be the minimal widths of Z T*. Suppose that T is oriented 
to have width w. As T is converted to its reduced form (by removing nodes of 
degree 2) the width cannot increase. Hence, the orientation of T* which is 
ultimately obtained has width no more than w; thus w*< w. On the other 
hand, suppose we have any minimal width orientation of T*. We can take a 
chain cover of its vertices with w* chains with the property that at least one 
chain flows along each edge incident with a node of degree 1 or 2. From this 
orientation we can obtain an orientation of T and a cover of the vertices 
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of T with W* chains; because T can be recovered from T* by subdividing edges 
already covered by chains (and inserting nodes into the chains of the vertex 
cover). Hence, w = w*. It is clear that only O(n) operations are involved in 
these processes. 

A pointed tree is a rooted tree whose root is a leaf. The single edge incident 
with the root is called the point of the tree. If T is any pointed tree we may 
consider the edges which meet the point to be the points of pointed subtrees of 
T; the phrase ‘the pointed subtrees of T’ refers to these pointed trees. The 
pointed subtrees of T in turn have pointed subtrees, and so on. In this way 
every pointed tree has a hierarchical structure similar to the hierarchical 
structure of a rooted tree. 

A perfect lubelling of a reduced pointed tree is a labelling of the edges with 
nonnegative integers such that 

(1) all edges incident with a leaf, with the possible exception of the point, 
have the label 1, 

(2) at every internal vertex not all incident edges have label 0, 
(3) at every interval vertex u there is a flow condition: namely, a relation 

CiSiai= 0, where the summation is over all edges incident with u, the 
labels on these edges are ai, u2, . . . , and each si = f 1. 

A quasi-perfect lubelling of a reduced pointed tree is a labelling of the edges 
with nonnegative integers such that the three conditions for a perfect labelling 
apply except for precisely one of the following exceptions: 

(l*) exactly one of the edges incident with a leaf, but not the point, has 
label 0 rather than 1, 

(2*) at exactly one of the internal vertices all incident edges have label 0. 

For example, see Figure 3. 

Perfect labelling Fig. 3. Quasi-perfect labelling 
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The following result follows directly from the definitions of perfect and quasi- 
perfect labelling. 

LEMMA 2. A labelling of the reduced pointed tree on two vertices (the unique 
minimal reduced pointed tree) is perfect if the label on the single edge is 1 and 
quasi-perfect if the label is 0. If T is a reduced pointed tree on more than 2 
vertices and if T, , T,, . . . , T are its pointed subtrees then 

(1) A labelling of T is perfect if and only if the induced labellings of &, 
T2, a.., T are also perfect, and the labels on the points of Z Tk , G, . . ., 
T, satisfy a flow condition and are not all zero. 

(2) A labelling of T is quasi-perfect ifand only ifeither 
(i) the induced labellings of T, , 5, . . ., T, are all perfect, and the labels 

on the points of T, T, , T2, . . . , T, are all zero, or 
(ii) the induced labellings of TI, T2, . . . , Tr are all perfect except for a 

single tree q which has a quasi-perfect labelling, and the labels on 
the points of T T,, T2, . . . . T, satisfy a flow condition and are not all 
zero. 

If any T is any reduced pointed tree then 

A(T) = {x 1 in some perfect labelling of T the point is labelled with x}, 
and 

B( T) = {x 1 in some quasi-perfect labelling of T the point is labelled with x}. 

The following lemma is a direct consequence of these definitions and the 
previous lemma. 

LEMMA 3. Let T be any reduced pointed tree with pointed subtrees T, , T2, . . ., 
T. Then 

(1) A(T)= { t x xB0,x=x_+a,,aiEA(T),i=1,2 ,..., r,notallai=O}, 
(2) B(T)={xIx>O, x=x&a;, a,EA(I;), i= 1,2 ,..., j- 1, j+ l,..., r, 

ajEB(Zj), not all a,=O}uZ, where Z=(O) zfOEnA(T) and Z=0 
otherwise. 

COROLLARY. If r = 1, then 

(1) A(T) = ACT,) - {O), 
(2) B(T) = (B( T, ) - (0)) u Z. 

LEMMA 4. Zf T is a reduced pointed tree with 1 A( T)I = 1, then 0 E B(T). 
Proof Note first that the lemma is true for a tree on two vertices and so 

from now on we can suppose that T has pointed subtrees 7’, , q, . . ., T,, r > 1. 
Note also that A(T) = (0) is impossible. 

We continue with the notation of the last lemma. By our last remark, each of, 
the A( IJ contains some nonzero element and, therefore, r-2 2 implies I A(T) I> 2; 
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hence, T has only one pointed subtree Tl. The pointed subtree T, must have 
1 A( 7’t)I > 1 otherwise it too has just one subtree and T would not be reduced. 
However, the only element it can contain except for the single element of 
A(T) itself is 0. Now the lemma follows from the last Corollary. 

Let T be any tree with an orientation. A f;ee chain in the oriented tree 
is a totally ordered path of at least two vertices beginning and ending at a leaf. 
The connection between tree labellings, orientations and width is furnished by 
the following result. 

LEMMA 5. Let T be any reduced pointed tree. If T has a perfect labelling with 
point labelled x then T has an orientation in which there is a set of>ee chains 
which covers all the nonroot verticescovers each nonroot-leaf exactly once, and 
covers the root x times. If T has a quasi-perfect labelling with point labelled x, 
then T has an orientation in which there is a set ofJ;ee chains which covers 
all but one of the nonroot vertices, covers each nonroot-leaf at most once, and 
covers the root x times. 

Proof We use induction on the number of vertices in the tree to prove both 
statements simultaneously. If the tree has two vertices only, the result is obvious. 
We shall therefore assume that T has more than two vertices, and that the 
result is true for the pointed subtrees T, , T,, . . . , T, of T. Let Q be the common 
root of all these subtrees. 

If the labelling of T is perfect, then the induced labellings of each of T, , q, 
. ..) T, are perfect, and not all labels al, ~2, . . . . a, on the points of T,, T2, . . . . 
T, are zero. By the inductive hypothesis T, , T2, . . . , T, have orientations and 
chain covers satisfying the first part of the lemma. The label x on the point of 
T satisfies x = 2 f a, and we may write x = b - c, where b is the sum of those 
a, which have coefficient +l, and c is the sum of those aj which have coefficient 
-1. By reversing the orientations of some of the q if necessary we can assume 
that b chains flow into Q and c chains flow out. We orient the point of T so 
that the direction is from Q to the root of T. Then we can obtain a chain cover 
of the entire set of nonroot vertices of T as follows. The c chains flowing out 
of Q are appended to c of the chains flowing into Q and the other b-c = x 
chains flowing into Q are continued along the point of T (thereby covering 
the root of TX times). Notice that the vertex Q itself is covered since at least 
one of ai, a2, . . . , a, is nonzero. 

If the labelling of T is quasi-perfect there are two situations to 
consider: 

(i) the induced labellings of Ti, q, . . . , T, are perfect but their labels al, 
a2, . . . . a, are all zero; in this case we argue exactly as above, the only 
difference being that Q is now not covered by the chains, 

(ii) with one exception the induced labellings of Ti, E, . . . , T, are perfect, the 
exceptional subtree has a quasi-perfect labelling, and not all labels al, 
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a2, . . . . a, are all zero; here the argument is again similar but the excep- 
tional subtree will contain one vertex not covered by the chains. 

LEMMA 6. Zf T is any reduced pointed tree and if 1 < x < Max(A(T)), then 
XE A(T)uB(T). 

Proof: We argue by induction on the number of nodes of T. The result is 
true for the unique minimal reduced pointed tree on two nodes so we shall 
assume that T has more than two nodes and that the result is true for each of 
the pointed subtrees TI, T2, . . . , Tr of T. 

Let 1 < x Q max(A( T)) and, in order to reach a contradiction, assume that 
x$A(T)uB(T). 

Let mi=max(A(T)), i= 1,2, . . . . r. 
If r = 1, then we may appeal to the corollary to Lemma 3: 1 < x < max(A( T,)), 

so x E A( T, ) u B( TI ) and therefore x E A(T) u B(T). Thus we may take r 2 2. 
Choose y such that y > x, y has a representation in the form y = &imi, ei = 

f 1, and subject to this y is minimal. At least one of the signs ei is positive, so 
assume E i = + 1. Then 

ml+ 2 elm,=y>x>-ml+ C E,m, 
1#1 if1 

(the last inequality following because y was minimal). The set of positive 
integers among {&z + zi+ i e,mi 1 1 Q z < m i } are all members of A(T) u B(T) 
(by Lemma 3). Since x is not a member of this set, we have x= Ci+ieimi. In 
particular there must be another positive sign ~2, say. Then, repeating the same 
argument we have x= xi+Zs,m,; thus ml = m2. 

If 1 A( = 1 then, by Lemma 4, 0 E B( TI ), and, using Lemma 3, x = 0 + 
zi+ isirni belongs to B(T), a contradiction. On the other hand, if A( T,) con- 
tains a member z in addition to ml, we have the expression for x, x = z + 
(ml -Z)+CIaselmi, and, as 1 <ml -z<mz, ml -zEA(T~)uB(T~), by in- 
duction; but then, by Lemma 3, x E A(T) u B(T), a final contradiction. 
From this lemma the following result is immediate. 

COROLLARY. Every reduced pointed tree has a perfect or quasi-perfect label- 
ling in which the point is labelled with 1. 

THEOREM B. Let T be any tree. Then one of the following conditions holds. 

(1) T has an orientation and a vertex cover by free chains Cl, C2, . . . , Cr such 
that every leaf is the source or sink of exactly one chain, 

(2) T has an orientation and a vertex cover byfiee chains Cl, C2, . . . , Cr , and 
a chain D, such that every leaf is the source or sink of at most one Ci, and 
the set of vertices not covered by U Ci is equal to D. 

Proof: We shall first prove that, for a reduced tree T*, the theorem holds 
with D consisting of one node only. Let T* be reduced and by choice of any 
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leaf consider T* to be a reduced pointed tree. By the last corollary we know 
that T* has a perfect or quasi-perfect labelling with point labelled 1. Now, 
from Lemma 5, it follows that TX has a cover by chains with the properties 
claimed. 

The theorem now follows for an arbitrary tree T by applying the result 
just proved to the reduced version T* of T. 

THEOREM C. Every tree with I leaves has an orientation of width LA/21 or 
Lnnl + 1. 

ProoJ: The required orientation is given by the previous theorem. In case 1, 
A = 2r and r chains suffice to cover all vertices while in case 2, A = 2r or 1= 
2r + 1 and r + 1 chains suffice. 

4. Complexity Analysis 
In this section we show how the existence result, Theorem C, can be made 
constructive by giving an efficient algorithm for constructing the minimal width 
orientation of a tree. If Al, AZ, . . . , A, are sets of integers then we denote the 
set {&a,(si=*l andaiEAi}byCfAiorby+A,fAZ+...+A,. 

LEMMA 7. Let Al,AZ, . . . . A, be sets of integers and suppose that every 
element of 2: + Ai is of absolute value at most L. Then the set 2 + Ai can be 
computed using O(rA log A) operations. 

Proof: Consider the expression 

Clearly, mk # 0 precisely when k E 2 + Ai. By performing each of the r - 1 
polynomial multiplications on the left-hand side of this equation using the fast 
algorithm based on the finite Fourier transform [I], we obtain the operation 
count O(rA log 1) since each polynomial has degree at most 22. 

In the main application of Lemma 7 it is sometimes necessary to recognise 
when 0 E 2 f Ai has a single representation as 0 + 0 + . . . + 0, with each 0 E Ai. 
Since m. is the number of representations of 0 as zsiai, this is straightforward. 

LEMMA 8. Let A,, AZ, . . . , A, be sets of integers and suppose that every ele- 
ment of 2 + Ai is of absolute value at most ;2. If xE 2 f Ai, then a representation 
Ofx as X=CSia,, where si = + 1 and ai E Ai can be computed in O(rA log a) 
operations. 

Proof. By the method of the previous lemma, we compute each of the sets 

S, =&Al, St=Si-l *A,, i=2,3 ,..., r. 
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This requires O(rl logiz) operations. We also sort each set Ai; in all, this re- 
quires a further O(rL log A) operations. 

Now put x, = x and express x, as 

x, - - -+x,-1 ta, with x,- 1 E S,-, and a, E A,. 

This is done by considering each element y of S,-r in turn and, by binary 
search, determining whether +xr f y E A,. Thus, the decomposition of x, takes 
O(A log A) steps to calculate. A similar computation is now iterated to decom- 
pose xi, i=r- l,..., 2 as xi=+xi-I +- ai, with xi-1 E S-1, a, EAT until the 
full decomposition of x is found. 

A small variant of Lemma 8 is sometimes needed. Suppose that x= 0 and 
that it is known that x has a representation as x = xsiai with not all ai = 0. Such 
a representation may be found by considering the elements y E S,- r (and S,-z, 
As,-3, . . . ) in decreasing order of absolute value. This can be accomplished by 
sorting each Si; the extra cost is only O(r2 log 2) operations. 

LEMMA 9. Let Al, AZ, . . . . A, be sets of integers and suppose that every ele- 
ment ofz:A, is of absolute value at most J.. Let Bi, i= l,2,...,r be sets of 
integers of absolute value at most the maximum absolute value occurring in 
Ai. Suppose that an integer x is known to lie in one of the following sets 

Cj=+-AlfAz+_.“+-Aj_I+Bj+Aj+l~+..~A,, j=1,2,...,r. 

Then, in time O(rA log A), an index j can be found for which x E Cj, and the 
representation of x as 

x=&al +a2f--- + aj- 1 -rt bj f aj+ 1 + * * * + a, 

can also be determined. 
Proof As in the previous lemma we form the sets 

S1 =*A,, Si=S’-l+Ai, i=2,3 ,..., r. 

and 

Ur=fAr, Vi= Ui+l +Ai, i=r- l,r-2 ,.,., 1. 

The time needed for this is O(rA log A). 
Next, for each j, 1 <j < r, we form Cj = &‘,- 1 f Bj + Uj+ t until a value j is 

found for which x E C’. This requires O(rL log I.) operations. 
Finally, by the method of Lemma 8, we find the required representation of x. 

LEMMA 10. Let T be a reduced tree with n vertices and 2 leaves. Then n < 
31- 5. 

Proof: Let di be the number of vertices of degree i in the tree. Then 

2(n- l)=dl +2d2+3d3+4d4+---adl +2d,+3(d,+d4+-.-)= 
dl + 2d2 + 3(n - dt - d2) 
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from which it follows that 
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n < 2d, + d2 - 2. 

The fact that T is reduced gives (by counting, in two ways, edges with one end 
of degree at most 2 and the other of degree at least 3) 

dl+2d263d3+4d4+...=2(n-l)-2d2-dl 

or 

n-l d, 
d2G2 2 ---. 

Now it follows that 

n<2d, + 
n-l d, ----2, 

2 2 

giving the result. 

THEOREM D. Let T be any tree with n vertices and Iz leaves. Then a minimal 
width orientation of T can be found in O(n -t: A2 log A) operations. 

Proof We shall give an algorithm for reduced trees of execution cost 
O(A2 log 2). The result for arbitrary trees then follows from Lemma 2. 

Let T be any reduced tree. Choose any leaf and regard T as a pointed tree. 
The first step is to compute the set A(T). This is done by repeated use of 
Lemma 3 working up the tree from leaves to root using the method of Lemma 
7. The total cost of all these computations is xr,n log& the sum being over all 
internal vertices o, where rU is the number of pointed subtrees rooted at U. 
Since zr, = O(n) = O(n) (by Lemma 10) this cost is O(A2 log 2). 

In the second step we construct a perfect or quasi-perfect labelling of the 
tree and an orientation satisfying Lemma 5 in which the point is labelled with 
1. If 1 E A(T), the labelling will be perfect, otherwise it will be quasi-perfect. 
Initially the point is labelled with 1. The remainder of the labelling is carried 
out by working down the tree. A typical step is to use the label x and the direc- 
tion on the point of some pointed subtree S in order to define labels al, a2, . . . , 
a,. and directions on the points of the pointed subtrees Sr , S2, . . . , S, of S. There 
are three cases: 

(1) If x E A(S), then x = Cisiai, with aj E A(Si), not all zero, and Si = f 1; then 
the a, are the required labels on the points S1 , S2, . . . , S, and the s, give the 
directions on these points (ensuring that the total flow into the common root of 
SIP s2, .‘., S, equals the total outward flow); 

(2) If XE B(S), then x = Cisiai, with all aiE A(S), except for one value 
aj E B(S), and si = f 1; again the ai are the required labels on the points S1, 
s2, ***, S, and the si give the directions on these points. 

(3) If x E B(S), x = 0, and 0 = a, E A(S) for all i; then the ai are the required 
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labels on the points St, S, , . . . , S, and the directions can be taken arbitrarily. 
The first case is handled by Lemma 8, the second by Lemma 9, the third 

requires a simple check only, and the total costs involved amount to xr,A log A = 
O(A2 log 2). 

This concludes the proof of Theorem D. As a footnote we observe that the 
problem of simply determining the minimal width (one of A/2 and LA/21 + 1) 
can be answered in (n + A*) steps. The technique again uses fast polynomial 
multiplication with the Fourier transform but the processing is done almost 
entirely in transform space. 
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