
Part I 

COMPUTER SCIENCE 



BIT 33 (1993), 2-6. 

T H E  P E R M U T A T I O N A L  P O W E R  O F  A P R I O R I T Y  Q U E U E  

M. D. ATKINSON* and MURALI  THIYAGARAJAH 

Department of Mathematical and School of Computer Science, 
Computational Sciences, Carleton University, Ottawa, 
North Haugh, St. Andrews, Canada KIS 5B6 
Fife K Y16 9SS, Scotland 

Abstract. 

A priority queue transforms an input permutation cr of some set of size n into an output permutation z. 
It is shown that the number of such pairs (a, z) is (n + 1)"- 1 Some related enumerative and algorithmic 
questions are also considered. 
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Priority Queues are abstract data types which support the operations: Insert, 
Delete-Minimum. They have many applications and several efficient implementa- 
tions of them are known. In this paper we shall be concerned with the effect of 
a priority queue on the order of the data items that pass through it. Suppose that 
al, a2 , . . . ,  a,, is some stream of input to a priority queue. Each Insert operation 
places the next item of the stream in the priority queue and each Delete-Minimum 
operation removes the current smallest element and places it in an output stream. 
After n Insert operations and n Delete-Minimum operations the input stream will be 
exhausted, the priority queue will be empty, and the output stream will contain some 
permutation of the input stream. The only restriction on a valid sequence of Insert 
and Delete-Minimum operations is that Delete-Minimum must not be applied to 
the priority queue if it is empty and hence a sequence of Inserts and Delete- 
Minimums must be well-formed in the sense of bracket sequences (in any initial 
segment there must always be at least as many Inserts as Delete-Minimums). There 
are therefore c, valid sequences of n Insert operations and n Delete-Minimum 
operations where 
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c , =  n + l )  

is the nth Catalan number. 
We shall consider input streams of distinct elements drawn from some totally 

ordered set which, for convenience, we may take to be the set of positive integers. Let 
be some input (a sequencing of the elements in some set C) which gives rise to some 

output sequence t; then we shall call (a, z) an allowable pair on C. Our main result is 

Theorem 1. The number of allowable pairs on a set of size n is (n + 1) "-1 

It is interesting to compare this result with the well-known situation where a stack 
is used in place of a priority queue (see [1] §5.1.4 for a full discussion of the 
combinatorics of this problem). In this case every sequence of inserts and deletes 
(pushes and pops) gives rise to a different permutation of the input, and the number 
of outputs for a given input is therefore c, which is of the order 4". For priority 
queues there is considerable variability. If the input is the sequence 1, 2 , . . . ,  n only 
one output is possible. On the other hand, if the input sequence is n, n - 1 , . . . ,  1 
every legal sequence of Inserts and Delete-Minimums gives rise to a different output, 
just as for stacks. It follows from our main result that the average number of outputs 
for a given input of length n is, by Stirling's formula, of the order e". These 
considerations suggest the notion of "permutational power" which occurs in the title 
of this paper. Priority queues do not have the same capability as stacks to produce 
permutations of their input, and the functions e" and 4" are illuminating measures 
which quantify this difference. We shall discuss the number of outputs for a given 
input below. 

However, the proof of the theorem requires an understanding of the complement- 
ary problem: how many inputs can give rise to a given output? We are able to 
characterize these sequences as the set of linear extensions of a certain poser defined 
from the output. If rc is a sequence we shall let T(rc) denote the set of all t such that 
(Tz, t) is allowable. Thus T(rc) is the set of sequences which can be output by a priority 
queue if the input stream is zc. Let S(rc) be the set of all o- such that (o-, re) is allowable. 
This set is the set of input streams capable of generating rc on the output stream. 
Moreover, let t(rc) = TT(rc)t and s(rc) = jS0z)l. 

LEMMA 2. Let a be some input stream expressed in the form ~m~ where m is the 
maximal symbol. Suppose ~ = by. Then t(a) = t(~)t(~) + t(~bmT). 

PROOF. Clearly, in any sequence of the set T(o-), m must come after the symbols of 
~. There are t(~)t(fl) sequences in T(a) arising from outputting m as the next symbol 
after all the symbols in e. Those sequences in T(a) for which m does not immediately 
succeed the symbols of e are precisely the outputs that arise if c~bm7 is processed by 
a priority queue. 
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I f  [3 = bib2. . ,  b~ and c~i = ~bl .. .  bi, [3i = bi+ 1. . .  b~ then 

t(a) = ~ t(~i)t([30. 
i = o  

Suppose that z = t~t2.., tn is any sequencing of a set C. We define a partially 

ordered set P(z) = (C, -<) by the following set of constraints: 

1. if i < j and ti > tj then ti -< tfi 

2. if k < i < j and h > tj then tk -< tj. 

The relation -< is obviously irreflexive and transitive. 

LEMMA 4. Let r be any sequencin 9 of the elements of  a set C. Then S(z) ~s the set of 
linear extensions of the poser P(r). Moreover, i f  z is expressed in the form emil, where 
m is the maximal element of  C, Ic~ I = k, then s(z) = s(e)s(fl)(k + 1). 

PROOF. Let a E S(z). We shall prove that ais  a linear extension of P(~). Let y -< z be 
one of the constraints of P(~). We must show that y precedes z in its occurrence in o-. 

There are two cases: 
1. y precedes z in ~ and y > z, or 
2. there exists a symbol x such that y, x, z occur in this order in ~ and x > .z. 

In either case the supposition that z precedes y in e leads to a contradiction. For, 
in order for the two symbols y, z to be transposed when processed by a priority 
queue, z must not be output until y (and all intervening symbols) have been placed in 

the priority queue. But, in the first case, the priority queue would then output 
z before y (because it is smaller) and, in the second case, the priority queue would 

output z before x. 
To prove the converse, that every linear extension of P(v) belongs to S(z), we 

proceed by induction on n = [C[. We express ~ as ~ = ~m[3 where m is the maximal 
element of C and let a be a linear extension of P(~:). Then, in a, by the two conditions 
which define P(~), we can deduce that m precedes every symbol of fi and that every 
symbol ofc~ precedes every symbol of/?. Moreover,  the symbols ofc~ will be arranged 

in a as some linear extension e* of P(c0 and the symbols of [3 will be arranged in a as 
some linear extension [3* of P(fl) and m will occur somewhere among the symbols of 
a*. Thus a has the form a = ~m~*f l*  where ~l~z* * = ~*. The inductive hypothesis 
guarantees that there are sequences of Insert and Delete-Minimum operations 
which transform an input stream e* into e and transform an input stream fi* into ft. 
It  is now easy to see that there is a sequence of Insert and Delete-Minimum 

operations which, with a as input, p roduces ,  as output. 
Finally, the description just given of the linear extensions of the poset P(emfl) 

proves the final statement of the lemma. 
This lemma suggests a recursive algorithm for computing s(z). However, it is more 
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illuminating to consider an iterative version of it. Put  z0 = oo and, for each 

1 _< i _< n, define 

b(i) = max {j < i, zj > zi}- 
J 

LEMMA 5. 

s(z) = ~-I ( i -  b(i)). 
i=1 

PROOF. Let z = z*z,. By induction on n there are I-I~2~ (i - b(i)) linear extensions 
of P(z*) (the values b(1) . . . . .  b(n - 1) defined for z are clearly the same for z*). Let 
p = b(n). It follows from the definition of b(n) that zi ~ Tj for all 1 < ' i  < p and 
p + 1 _< j < n. Thus there are exactly n - p positions in every linear extension of 
P(z*) in which z, may be inserted to make a linear extension of P(z). Hence 
IS(z)I = IS(z*)1 (n - b(n)) and the result follows. 

Now we define a labelled binary tree B(z). The root of B(z) is labelled with (19, m), 
where m is the maximal element of z and p is its position in z, and if z = emil, the left 
and right subtrees are B(e) and B(fl) respectively. It is clear, again by induction, that if 
some node is labelled with the pair (i, z~) then i - b(i) is the cardinal of the set of nodes 
in the subtree consisting of (i, zl) and all nodes in its left subtree. 

The tree B(z) can be constructed as a binary search tree by inserting the (position, 
value) pairs into an initially empty tree. The pairs are inserted in decreasing order of 
value but are keyed by position. 

LEMMA 6. There is an algorithm to compute s(z) which,for random z, has expected 
execution time O(n log n). 

PROOF. The algorithm is the one suggested above. The pairs (i, zi) are first sorted 
by second component and then inserted into an initially empty binary search tree 
thereby creating B(z). Then the sizes of all subtrees are found and the product in the 
previous lemma is computed. The only part of this procedure which is not of time 
complexity O(n log n) is the creation of B(-c). However, it is well known that, if all 
input orders are equally likely, the expected height of a binary search tree is O(log n). 
Hence the expected time for creating B(z) is O(n log n). 

PROOF OF THEOREM 1. For  any set X let Sym(X) denote the set of all permutations 
of X. In proving the theorem we may suppose with no loss in generality that the 
n-element set in question is C = {1, 2 . . . .  , n). The theorem is dearly true when n = 0 
and so we now take n > 0 and, as an inductive hypothesis, assume that the theorem 
is true for sets of size less than n. 

The number of allowable pairs is ~sy,~(c)S(Z). We shall express each permutation 
z in the form z = omfl and let A, B denote the sets of symbols occurring in ~, 
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fl respectively. Our sum can be expressed as a sum over the different possible subsets 
A (grouped according to size) where, for each possible A we sum over all c~ s Sym(A) 
and all f le  C\{n}\A = B. It then becomes 

n--1 

2 2 2 2 s(~n~) 
k = 0 A, IAI = k ot ~Sym(A) fl~Sym(B) 

n - 1  

= Z Z Z Z s(~ls(/~)(k + 1) 
k=O A, IAI =k  a~Sym(A) fl~Sym(B} 

n - 1  

= Z Z Z s(~) Z s(~l(k+l) 
k = 0 A, ]A] =k aeSym(A) fleSym(B) 

= 2 ( k + 1 )  k (k+l)  k-l(n- 
k=O 

identities (see [2]  §1.5), this is (n + 1) "-1 and, by one of Abel's 
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