Pop-Stacks in Parallel

M.D. Atkinson
J.-R. Sack

December 12, 2001

1 Introduction

A stack may be viewed as a machine with two instructions POP and PUSH
that transforms an input sequence of data items into an output sequence. The
PUSH operation transfers the next item of an input stream into the stack and
the POP operation transfers the most recently pushed item from the stack to
an output stream. When the entire input stream has been transferred, via the
stack, to the output stream, the output sequence will then be a permutation of
the input sequence.

The set of possible permutations which arise in this way characterises the effect
of a stack on its data and was first studied by Knuth [4]. Shortly afterwards
Tarjan [7], Even and Ttai [3], and Pratt [5] studied the effect of having several
stacks either in series or in parallel. Since the actual values of the data items are
unimportant (only that they be distinct) it is usual to denote them by 1,2,.. .,
although occasionally other data sets need to be considered. It is convenient to
formulate the central questions that arise in terms of sorting:

1. Which permutations can be sorted into increasing order?

2. Can the sortable permutations be characterised by a finite forbidden set
of permutations?

3. How many permutations of each length n can be sorted?

In the case of a single stack answers to these questions have been known for
many years. Stack sortable permutations can be recognised in linear time, they
are characterised by the single forbidden permutation [2,3, 1], and there are
(*™)/(n + 1) sortable permutations of each length n.

n

The case of k stacks in series is very much harder and no satisfactory answers
are known for any of the three questions above for £ > 2. In response to

this difficulty Avis and Newborn [1] defined a less powerful object which they
called a ‘pop-stack’. In a pop-stack PUSH operations are as usual but the
POP operation unloads the entire stack (in the last-in, first-out manner). They
introduced the respective terms feasible and m-feasible for those permutations
that could be sorted by an unlimited number of pop-stacks in series and by a
fixed number m of pop-stacks in series. Their main results comprised rather
complex summation formulae to answer the enumeration problem for both the
feasible and the m-feasible permutations. Very recently, in work which was not
targeted at stacks, Bose et al. [2] introduced a class of permutations which they
called separable. A permutation o is separable if either

1. o is the permutation [1], or

2. o can be written as a concatenation af where either a is a separable

permutation of the symbols 1,2,...,m for some 1 < m < n and g is a
separable permutation of m + 1,...,n or # is a separable permutation
of the symbols 1,2,...,m for some 1 < m < n and a i1s a separable
permutation of m + 1,... ,n.

By comparing [1] and [2] it is easy to see that the separable permutations are
precisely the feasible permutations and one can conclude that these permuta-
tions are characterised by the forbidden permutations [2,4,1,3] and [3, 1,4, 2].
It then follows from [6] that the feasible permutations are enumerated by the
Schroder numbers. These numbers were originally defined as the number of
ways of inserting non-overlapping chords into a convex polygon but they also
have various other interpretations (for more background on these numbers which
occur in other generalizations of the stack structure see [4]).

For the corresponding problem of k stacks in parallel the situation is rather
different. Thanks to work of Unger [8, 9] it is known that the sortable permu-
tations can be recognised in time O(nlogn) if & < 3 but that recognition is
NP-complete for larger values of k. In addition, from [7, 3], it is known that,
if £ > 2, no finite set of forbidden permutations can characterise the sortable
ones. Moreover the enumeration problem is unsolved for £ > 2.

Motivated by these results we shall consider k pop-stacks in parallel (see Figure
1). We observe that, for any k, the recognition problem requires only linear time,
and we prove, also for any k, that the sortable permutations are characterised
by a finite forbidden set. Finally, we give an enumeration result for £ = 2.

For clarity we use the term “MPOP” (multiple POP) for the operation of un-
loading an entire pop-stack.

It is also notationally convenient to consider permutations which can be sorted
into decreasing order. This, of course, produces an equivalent problem in which
the symbols 1,2,...,n are simply renamed n,n — 1,...,1. So, from now on,
we consider a system of k pop-stacks in parallel receiving data from an input

ProoF We shall examine the conditions that must hold if o cannot be sorted
by a canonical series of PUSH and MPOP operations. We shall see that ¢ must
contain a bounded set of symbols that are ordered in one of a certain number of
ways; and, conversely, any set of symbols ordered in one of these ways cannot
be sorted.

Suppose that the canonical series of PUSH and MPOP operations reaches a
point where no further PUSH or MPOP can occur but has not terminated. All
k stacks must be non-empty and we may number the stacks so that the ith stack
has content b; ...t; where

1. b; and #; are, respectively, the bottom and top elements of the ith stack;
and b; ...%; 18 a sequence of consecutive increasing integers.

2. t;_1 <b;foreachi=2,... k

We let m denote the symbol which should next be output; note that m is not
present in any of the stacks and so each b; must precede m in the input.

When b; was stacked it was placed in an empty stack and therefore b; — 1 was
not present in any of the stacks. Therefore b; must have preceded b; — 1 in
the input (unless i = 1 and b; = 1). Note that any input sequence on the
set {by1,...,bg, by —1,... by — 1,m} (where the symbols are not necessarily
distinct) with the property that by < by < ... < bg, each b; precedes m, and,
for i > 1, each b; precedes b; — 1 would lead to a situation where, before m was
stacked, all stacks would contain exactly one of the b;.

Now let ¢ denote the next input symbol. Since m 1s not one of the top of stack
symbols (i.e. m # tg) m is either the symbol ¢ or comes after ¢ in the input.
In addition, since ¢ cannot be stacked, either ¢ must precede ¢ — 1 or gq=1.
Conversely, if these conditions hold and none of the stacks is empty then no
further operation is possible.

We have proved that if a permutation ¢ is not k-sortable then it contains a
bounded set of symbols satisfying certain sequencing and ordering constraints;
and conversely, if ¢ has a set of symbols with these constraints then it is not
k-sortable. The (necessarily finite) set of permutations of these symbols that
fulfil these constraints therefore has the property that one of them occurs within
a permutation o if and only if ¢ is not k-sortable.

This proof is constructive and, in principle, allows the forbidden sets to be
computed. For example, for k& = 2, the minimal forbidden set is

{[3’ 2’]"4]’ [2’ 17473]7 [2’47]‘73’5]7 [47]" 3’5’2]’ [1’4’3’572]’ [1’ 3’574’2]1 []"315’274]}

3 Enumeration

In this section f, denotes the number of k-sortable permutations of length n.
We shall mainly focus on the case & = 2 and therefore suppress notational
references to k. However, we begin with a result, Lemma 1, that holds for every
value of k. We define a permutation to be reduced if it does not contain any
segment (i.e. a subsequence of consecutively placed symbols) of the form ¢, i+ 1
and we let g, denote the number of reduced k-sortable permutations.

Furthermore, if a; ...a, is any sequence of distinct integers we define its nor-
malized form to be the permutation which arises by relabelling the items with
the elements of {1,... n} so as to preserve order. For example, the normalized

form of [4,1,6,3]is [3,1,4,2].
Lemma 1 f, =377 (1) 0m

ProoF Every sortable permutation of length n may be written as o = [a1, ..., am]
where each «; is a maximal segment of consecutive increasing integers of length
£;. The permutation o is uniquely determined by /1, ..., ¢, together with the
permutation & that is the normalized form of any [ay, ... , am] where a; € a; (the
normalized form is independent of the choice of a; € ;). Note that & is reduced
and that for a fixed reduced & there are (:1__11) permutations o = [aq, ..., Qm]
as the ¢; are allowed to vary subject to 1 +...+£,, = n. The required equation
now follows by allowing the length of & to vary over all possibilities.

Lemma 2 If k = 2 the sequence (g,) is defined by the conditions g1 = 1,92 =
1,93 = 3 and the recurrence ¢, = 3¢n_1 — gn—2 + Gn_3.

ProOF In the algorithm that sorts a reduced permutation o, the first symbol
to be output is n and just before this occurs both stacks will contain a sequence
of consecutive integers increasing from bottom to top. One stack will contain
n—s+1,... n for some s and the other zq, x5, These two sequences must be
interleaved in some way to form an initial segment of ¢ and, since o is reduced,
the interleaving must be alternate. It follows that ¢ has an initial segment of
one of the following forms:

A.o=[z1,n—s+1,29,... ,25,n,2541,y...] with s > 1
B.o=[n—s+1,zq,...,25,n,2541,Yy,...] with s > 1
C.o=[zi,n—s+1,29,...,25,n,y,...] with s > 1
D.o=[n—s+1,z9,...,2,n,y,...] with s > 2

In all the above forms the element y denotes an integer that does not extend
the increasing sequence of consecutive integers zq, s,

We now compute, for each fixed value of s, the numbers ay,s, by, Cns, dns of
permutations of each of these forms.

A. For s > 1 the processes of inserting and removing the first two symbols
give a one-to-one correspondence between permutations of this type and

permutations [zs, n—s+2,23,... , 25,0, Z541,Y, ...] of theset {1,... n}\
{z1,n—s+1}. A permutation of the latter type, when normalized, has the
form [z1,n — s,23,... ,Z5_1,n — 2, 25,9, ...] and is reduced. This shows

that ans; = a,_2,5-1 and therefore, by induction, an; = an_2s421.

On the other hand, a,1 enumerates permutations of the type [z1,n, 22,7y, . ..
and these are in one-to-one correspondence with permutations [z1,y,...]
on the set {1,...,n}\ {n,z2} (here the one-to-one correspondence is ob-
tained by inserting and removing the second and third symbols). The
latter permutations are again sortable, and reduced upon nomalisation;
therefore there are g,_5 such permutations.

Hence a,; = An—2542,1 = gn—2s-

B. There is a one-to-one correspondence between permutations of type A and
permutations [n — s+ 1, 29,... 25,0, &s41,y,...] of the set {1,... ,n}\
{z1}. These permutations, when normalized, are of type B, but of length
n — 1. Therefore a,; = b,_1 ; and hence b,s = gn_2541

C. Suppose first that s > 2. Then there is a one-to-one correspondence

between permutations of this type and reduced sortable permutations
[z9,n — s+ 2,23,...,25,n,y,...] of the set {1,... n}\ {z1,n—s+ 1}
(these permutations do remain reduced when normalized since z5 < 2, <
n — s+ 2). This proves that ¢,s = ¢,_2 ,—1 whenever s > 2 and therefore
Cpns = Cn—2s4+42-
However c¢,2 enumerates permutations of the form [z1,n — 1,29,n,y,...]
and these are in one-to-one correspondence with permutations [z1,y,...]
of {1,... ,n}\ {z2,n — 1,n} which are also sortable and reduced when
normalized. Thus ¢,2 = gn—3 and, for all s > 2, chs = gn—2s41.

The above argument breaks down when s = 1 because, for the permuta-
tions [z1,n,y,...] enumerated by c¢,1, we have the extra condition that
z1 # n — 1. Thus these sequences are in one-to-one correspondences
with the reduced sortable permutations [z1,y,...] of length n — 1 where
xz1 #n — 1. Since the permutations which do have ;1 = n — 1 are in one-
to-one correspondence with reduced sortable sequences of length n — 2 it
follows that ¢,1 = gn_1 — gn_2.

D. The permutations of this type are in one-to-one correspondence with per-
mutations [n — s + 2,23,...,25,n,y,...] on {1,... n}\{n—s5+ 1,25}
(so long as s > 2) and these are sortable and, on normalisation, reduced.
Hence dp, = dp_2,5-1 = dn_2,44,2. However the permutations enumer-
ated by dys are of the form [n — 1,29,n,y,...] which correspond to per-

mutations [zs,y,...] of length n — 2 and there are g,_5 of these. Thus
dns = Ggn-2s42

We can now complete the proof. We have
gn = E(ans + bns + Cns + dn,s+1)
s>1

= Z(gn—2s +gn—23+1+gn—2s+1+gn—2s)
s>1
+gn—2 + In—1 + In—-1 — Gn-2 + In—-2

n—1
= 2Zgn—r — 9n-2
r=1

By differencing we now obtain g, — gn—1 = 2¢n—1 — gn—2 + gn—3 as required.

Theorem 3 If k = 2 the sequence (fy) is defined by the conditions fi = 1, fa =
2, f3 = 6 and the recurrence f, = 6fn_1 — 10fr_2+ 6fn_3

ProoF By the previous lemma g, =), a;r{" where ry,r9, r3 are the roots of
23 =322 + 2 — 1 =0 and ay, as, ag are constants. By Lemma 1

n

n—1 m

h = (D) T
" n—1\ ,,

_ Zaiz(m_l)ri

Z airi(1 4+ 7))t

K3

(by interchanging the order of summations and applying the binomial theorem).
The numbers 1 + r; satisfy the equation

0=(z—1-3x—-1) 4+ (z—1)—1=2">-62>+ 10z -6
and the theorem follows.

Obtaining a similar enumeration theorem for f, in the case of 3 or more pop-
stacks seems to be difficult since the form of the reduced permutations is more
complex. Nevertheless, we conjecture that, for any fixed k, f,, satisfies a linear
recurrence with constant coefficients.

References

[1] D. Avis and M. Newborn: On pop-stacks in series, Utilitas Mathematica,
19 (1981), 129-140.

[2]

[3]

[4]

[5]

P. Bose, J.F. Buss, A. Lubiw: Pattern matching for permutations, Infor-
mation Processing Letters 65 (1998), 277-283.

S. Even and A. Ttai: Queues, stacks and graphs, in Z. Kohavi and A. Paz,
eds., Theory of Machines and Computations, Proc. Internat. Symp. on the
Theory of Machines and Computations, Technion — Israel Inst. of Technol.,
Haifa, Tsrael, August 1971 (Academic Press, New York, 1971) 71-86.

D.E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (Second Edition), Addison-Wesley, Reading, Mass. (1973).

V.R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268-277.

.. Shapiro, A.B. Stephens: Bootstrap percolation, the Schroder number,
and the N-kings problem, STAM J. Discrete Math. 2 (1991), 275-280.

R.E. Tarjan: Sorting using networks of queues and stacks, Journal of the

ACM 19 (1972), 341-346.

W. Unger: The complexity of colouring circle graphs, Proceedings 9th
Annual Symposium on Theoretical Aspects of Computer Science, 1992,
Springer Lecture Notes in Computer Science 577, 389-400.

W. Unger: On the k-colouring of circle graphs, Proceedings 5th Annual
Symposium on Theoretical Aspects of Computer Science, 1988, Springer
Lecture Notes in Computer Science 294, 61-72.

