
Order 10:31-36, 1993, 31 
© 1993 Ktuwer Academic Publishers. Printed in the Netherlands. 

Transforming Binary Sequences Using Priority 
Queues 

M. D. ATKINSON 
Department of Mathematical and Computational Sciences, North Haugh, St. Andrews, Fife KY16 
9SS, Scotland 

Communicated by iV. Zaguia 

(Received: 10 November 1992; accepted: 20 March 1993) 

Abstract. A priority queue transforms an input sequence ~r into an output sequence r which is a 
re-ordering of the sequence ~r. The set R of all such related pairs is studied in the case that tr is a 
binary sequence. It is proved that R is a partial order and that IRI = c,~+1, the (n + 1)th Catalan 
number, An efficient (O(n2)) algorithm is given for computing the number of outputs achievable 
from a given input. 
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1. Introduction 

Abstract data types are a fundamental design tool in modern software systems. 
Although there is an infinity of possible data types there is a small number only 
of them which recur frequently in algorithm design (stacks, arrays, queues, dic- 
tionaries etc.) suggesting that some data types are more fundamental than others. 
Many of these classical data types are Container data types: they are holders for 
collections of data items and support an Insert operation and a Delete operation 
(often restricted in some sort of way). 

In practice, a container data type is used as follows. It is initialised as being 
empty. Then some sequence of data items is inserted into it and a resequencing of 
these data items is generated by deleting items from the data type. The insertions 
and deletions may be interleaved (in any way, subject to the obvious restriction that 
a Delete operation is not allowed when the data type is empty). In effect, a container 
data type is a mechanism for transforming an input sequence into an output se- 
quence. The functional behaviour of such a data type is essentially characterised by 
the relationship between the input sequences and the output sequences. An under- 
standing of this relationship allows us to judge the capabilities of a container data 
type and to assess its potential applications. In general, if o- is an input sequence 
that gives rise to an output sequence r then we shall say that (a, r)  is allowable 
and speak of the allowability relation. The statistics of the allowability relation are 
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measures of the transformational capability of the data type. 
In the case of a queue (where the delete operation always removes the element 

which has been in the queue the longest) the allowability relation is trivial since 
the output sequence is always the same as the input sequence. In the case of 
stacks (where the delete operation always removes the element which was most 
recently placed in the stack) the relation is much more interesting and has given 
rise to combinatorial connections with trees, ballot sequences, Young tableau, and 
triangulations of polygons (see [ 1 ], [2]). For the dictionary data type (which has an 
unrestricted Delete operation) the output can be any permutation of the input. 

In this paper we shall consider the case of priority queues. Priority queues 
are characterised by two main operations Insert and Delete-Minimum. Several 
attractively efficient implementations of them are known; typically 
O (log n) operations are required for each of Insert and Delete-Minimum where n 
is the number of elements currently in the priority queue. Our focus here, however, 
is on the allowability relation R of a priority queue. The case of input and output 
sequences which are permutations of length n was considered in [4]. It was shown 
that the number of allowable pairs is (n + 1) '~-1 . Furthermore the following two 
functions were investigated 
1. t(~r) = I{r : (G r)  E R}I, 
2. = : R ) f .  

It was shown how to compute these functions efficiently and their combina- 
torial properties were studied. The allowability relation R is reflexive, and anti- 
symmetric, but not transitive. In fact, in [3 ], it was proved that R n-2 ¢/~r~- 1 = Ifr, 
the weak order on the symmetric group. 

We shall study the opposite extreme to permutation inputs (where all the el- 
ements are distinct): input sequences which are binary sequences. In this case, 
it turns out that the allowability relation is transitively dosed  and therefore is a 
partial order. We describe this order in two different ways:- by a partial summation 
condition and as the closure of a set of covering relations. Using this description 
we can enumerate the number of allowable pairs of binary sequences of length n:- 
it is On+l, the (u + 1)th Catalan number. Then we can deduce, through natural 
symmetries of the partial order, various relations between the functions fro-) and 
s(r ) .  Finally we give efficient (O(n2)) algorithms for computing the functions s, 
t. 

2. The Partial Order 

We define a partial order on the set of binary sequences of length n by specifying 
the covering relations to be s01/3 < a 10/3. For example, with n = 4,0011 < 0101 
is a covering relation but there is no covering relation between 1001 and 0110 and, 
in fact, they are incomparable. 

LEMMA 1. (O'1, O ' 2 , . . . ,  O'n) = O" ~ 7" = (7"1, T 2 , . . .  , "l-n)ifandonlyifthefoIlowing 
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inequalities hold: 

J J 

i=1 i=1 

1 ~< j ~< n, with equality for j = n. 

Proof. For convenience we refer to the set o f  inequalities in the statement of  the 
lemma as the partial sum criterion. If a < 7- is a covering relation the partial sum 
criterion obviously holds (in fact, the partial sums are all equal except for a single 
case where they differ by 1). Since an arbitrary relation a < 7- in the partial order 
arises from a chain of  covering relations the partial sum criterion must hold for the 
pair (05 7-). 

Conversely, suppose the partial sum criterion holds for the pair (a, r ) .  If  there 
was a v a l u e j ,  1 ~ j < n, with J J ~ i= l  c~i = ~ i= l  7-i then there would be non-trivial 
decomposit ions a = aia2 and r = 717-2 and the partial sum criterion would hold 
for both the pairs (a l ,  7-1) and (a2, 7-2). Then, by induction on n, we would have 
O"1 ~ 7-1 and cr2 ~< 7-2 from which it is clear that ~r ~< 7-. 

If  no such value o f j  exists then strict inequality holds in the partial sum criterion 
except for j = n. It follows that 

c r = O o e l a n d r  = lflO 

and that the partial sum criterion holds for the pair (a , /3) .  Again, by induction, 
a ~</3. Then we have 

a = Oal  = 00"20"3... 0" n _ l  1 ~< 

0 " 2 0 0 " 3 . . . a n - l l  ~< . . .  ~< 0"20"3. . .O'n- lOl  < 

< a 2 a 3 . . . c ~ n - l l O  ~< cr2cr3.., l a n - l O  ~< . . .  ~< lcr2a3 . . . o ' n - l O  = 

= laO ~< lflO = 

= 7- as required. [] 

L E M M A  2. The number of  pairs (G 7-) with ~r <. 7" is Cn+l, the (n + 1) th Catalan 
number. 

Proof. We shall use induction on n; the result is easily verified if  n = 0 or 
n = 1. Let e,~ be the number o f  pairs (a,  7-) with ~r ~< 7-. These pairs either have 
the form 

1. (Oa, Ofl) or ( l a ,  lfl), or 
2. (Oa, 1/3) 

In the first case it is clear that (a , /3)  satisfies the partial sum criterion of  the previous 
lemma and so a ~< 3; therefore, by induction, there are 2e,~_l. pairs o f  this form. 
In the second case, let j be the first index with J a ~ i= l  al = ~i=1 ri. Then O'j = 1 
and rj = 0 and there are decomposit ions cr = 071 a, 7- = 1 e0r/with 7, e o f  length 
j - 2. Clearly, the pairs (7, e) and (& r/) satisfy the partial sum criterion and so, 
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again by induction, 7 ~< e and/~ <~ r/. Thus there a re  ~jn__ 2 ej-2en-j  pairs of the 
second kind. Hence 

en = 2en-1 + E ej-2en-j 
j=2 

n 

= Cn "~ Cn q- E C j - - l C n - - j + I  
j=2 

= ~ cjc~_j 
0 

= c,~+1 by a well-known recurrence for Catalan numbers. [] 

3. Main Results 

THEOREM 1.7- ~ a if  and only if(a,  r )  is allowable. 
Proof. Suppose that 7- ~< a. If r = a then (a, T) is obviously allowable so we 

shall assume now that r < Or. Then there exists some p with r < p ~< a where 
7- < p is a covering relation. Therefore, for some a, 3, 

p = a103 

7- = aO13 

By induction on the length of a maximal chain of covering relations between r and 
a we may assume that (a, p) is allowable. Therefore there is a sequence A of Insert 
and Delete-Minimum operations which transfbrms the input a into the output p. 
Let I ,  D stand for Insert, Delete-Minimum; furthermore, subscripts 0 or I on I and 
D will, if present, refer to the element that the operation is transferring. Within A 
there must be a segment 

13 = DtI~IolSDo, with r, s >/0 

where the initial D~ outputs the element 1 of p which immediately follows a and 
the final Do outputs the next element 0. Notice that when the D1 operation is used 
the priority queue cannot contain any element 0. Consider the sequence A* which 
arises by modifying A by replacing the segment/3 by the segment 

13" = I~ IoDoDII ~. 

It is easy to verify that, when applied to the input sequence or, A* generates the 
output r which proves that ((r, r )  is allowable. 

For the converse, suppose that (a, 7-) is allowable. If 7- g a there will be some 
initial segment 7-17-2... ri with r~ = 1 of  7- with more l 's than the initial segment 
a~a2 . . . a~  of  a. Immediately after 7-/has been output the priority queue cannot 
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contain any element 0. However, all the symbols of ala2 . . ,  ai must have been 
inserted at this point and not all the 0 elements have been output; hence, at least 
one element 0 still remains in the priority queue. This contradiction completes the 
proof. [] 

COROLLARY 1. The number of allowable pairs of binary sequences of length n 
i s  O n +  1 . 

For any binary sequence cr let ~, ~ denote the reversal and complement of er. Since 
the two maps a --+ ~ and a --+ # are each anti-isomorphisms of the partial order 
we have 

COROLLARY 2. (~r, r) is allowable if and only if ((r, ~') is allowable if and only 
if ( ~r, ~) is allowable. 

COROLLARY 3. t(cr) = s(6) = s(~). 

In [3] it was shown that the k-fold compositional power of R was the relation 
that described the (input, output) pairs for a serial network of k priority queues 
(the output of  each priority queue being channelled as an input to the next priority 
queue in the series network). But, in the binary case that we have been studying 
here, all these powers are equal to R itself and so we have 

COROLLARY 4, The allowable pairs are precisely the (input, output) pairs asso- 
ciated with a series network of priority queues of any length. 

To conclude the paper we shall present an algorithm for computing t(~r). Because 
s(cr) = t(&) this algorithm is capable of  calculating s(~r) also. 

Suppose that a is expressed as 10 '~* 10 u2 . . .  10 uk . Note that there is little loss in 
generality in the supposition that cr begins with a 1 since t(0o-) = t(o-). When cr is 
expressed in this way we let t(ul, u2, . . . ,  uk) denote t (a) .  

LEMMA 3. t(ul, U2,  . . . , U k )  -~ t ( U l ,  U2, . . . , U h _ l )  i f  u k ~- 0 and 

/}(¢£1, U 2 , " "  ",  U k )  ---~ ~ ( U l ,  U 2 , . . . ,  Uh - -  1) + t(Ul, U 2 , . . .  , U k _ 2 ,  U k _  1 q- U k )  

if u~ > O. 
Proof. Let cr = a l 0  ~'k and consider a sequence of Insert and Delete-Minimum 

operations applied to or. Suppose that, just before the first of  the uk O's in the 
final block is inserted, the priority queue is empty. Then the sequence a 1 has been 
inserted and output already; clearly t ( a l )  = t(ee) outputs can arise in this way. If 
the priority queue is not empty it must contain at least one element 1 and so the 
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number of  outputs that can arise in this case is t(aOlO~k-1). Therefore, if uk > O, 

t(ul,u2,...,uk) = t(ul,u2,...,uk-1) + t(ul,u2,...,uk-1 + 1,uk - l) 

and, i fuk = 0, 

t(Ul, U2, . . . ,uk)  = t( l,u2,. 

Iterating this recurrence yields 

Uk 

t(Ul,U2,...,Uk) = E t(Ul'U2' ' '"Uk-2'Uh-I + J) 
j=O 

from which the result follows. 
This lemma is the basis of a dynamic programming algorithm. For each value 

k = 0, 1 , 2 , . . . i n tu rnwe  compute the values o f t ( u 1 , . . . ,  uk,j) fo r j  = 0, 1,2, . . . ,  n. 
When k = 0 these values are 1,2,3 . . . . .  Each set of values for a new k is found 
from the previous set in O (n) steps by the recurrence of the last lemma. Since there 
are at most n values of k the whole calculation has at most O(n 2) steps. 
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