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Abstract

When a set of permutations comprising a pattern class C is submitted

as input to a priority queue the resulting output is again a pattern class C′.

The basis of C′ is determined for pattern classes C whose basis elements

have length 3, and is finite in these cases. An example is given of a class

C with basis {2431} for which C′ is not finitely based.

Mathematics Subject Classification: 05A05, 68P05

1 Introduction

The theory of permutation patterns can trace its origin back to the abstract
datatype Stack. The earliest non-trivial example of a pattern class is the set of
permutations that can be sorted by a stack, which is the same as the set of 231-
avoiding permutations. This class was first studied and enumerated by Knuth in
Volume 1 of [13] where he also showed how to characterize and enumerate the
pattern class associated with the more complex datatype Restricted input

deque. Over a period of more than 40 years generalizations of Stack have
appeared several times in the pattern class literature (see [8] for a survey).

Stacks are characterized by their removal rule: when an item is removed from a
stack it is always the most recently inserted item that is removed. By contrast
the datatype Priority queue is characterized by a different removal rule: the
removed item is always the entry of smallest value. The associated sorting
problem is trivial: a priority queue can sort every permutation. Despite this,
as we shall see below, there are pattern class aspects of priority queues that are
very challenging.

The study of pattern classes is also the study of the pattern containment order.
For our purposes it will be helpful to give a somewhat abstract description of
this order. Let α and β be two sequences of distinct values from some linearly
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ordered set. We say that α and β have the same pattern or are isomorphic,
and write α ∼ β, if they have the same length n and, for all 1 ≤ i, j ≤ n,
αi < αj if and only if βi < βj . It is not even essential for this definition that
α and β be sequences from the same set, and allowing this ambiguity it is clear
that every finite sequence α of distinct values from some linearly ordered set
is isomorphic to a unique permutation of [n] = {1, 2, . . . , n} (with its usual
ordering 1 < 2 < · · · < n) where n is the length of α.

Slightly more generally we say that α is contained as a pattern in β if α is
isomorphic to some subsequence of β. In this case we write α � β. It is clear
that � is a partial order when restricted to permutations. If α is not contained
as a pattern in β then we say that β avoids α.

Pattern classes are, by definition, sets of permutations that are closed down-
wards in the pattern containment order on permutations. It follows that every
pattern class X can be defined in terms of a set B of permutations that it avoids
as

X = Av(B) = {σ | σ does not contain β for all β ∈ B}

The unique minimal set of avoided permutations is called the basis of the pattern
class. Much of the study of pattern classes is concerned with investigating the
structure of a pattern class given its basis.

To study priority queues however we need a partial order defined on pairs of
permutations. Let (σ, τ) be any pair of permutations of length n and let S be
any subset of [n]. Let σ|S , τ |S be the subsequences of σ, τ whose entries are the
members of S and let α, β be the permutations isomorphic to σ|S , τ |S . Then
we write (α, β) � (σ, τ). For example, (132, 312) � (21534, 45213) because the
set of values {2, 3, 5} occurs in the order 253 and in the order 523 in the two
length 5 permutations. This binary relation is easily seen to be a partial order.
In a sense made precise in [4] this order is the 3-dimensional analogue of the
2-dimensional pattern containment order. The two orders are connected via the
following result which follows directly from the definitions.

Proposition 1.1. Let B be any set of pairs of permutations that is closed down-

wards in the order on pairs and let C be any pattern class. Then both

CB = {τ | (σ, τ) ∈ B for some σ ∈ C}

and

BC = {σ | (σ, τ) ∈ B for some τ ∈ C}

are pattern classes.

Following [7] we define an allowable pair (σ, τ) of permutations to be a pair such
that a priority queue can generate τ as an output sequence if presented with σ

as an input sequence. Several authors have studied the combinatorial properties
of allowable pairs, see [9, 10, 11, 12]. The set A of all allowable pairs is easily
seen to be closed downwards in the pair order. Indeed, it is the set of pairs that
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do not contain either of the pairs (12, 21) and (321, 132) [5]; thus Proposition
1.1 applies to A.

This paper studies the relationship between the pattern classes C and CA for
various pattern classes C. In other words we study the pattern class generated
as a set of outputs if a priority queue is presented with permutations from a
pattern class C as its set of inputs. Usually C will be defined in terms of its basis
and we shall want to find the basis of CA.

As we shall see CA is usually much larger than C. In the next result we give
the precise condition that determines whether C = CA. To state it we recall the
weak order on permutations of length n as the transitive closure of permutation
pairs (α, β) where β is obtained from α by interchanging two adjacent values
of α in such a way that a new inversion is created. For example, the following
Hasse diagram displays the weak order in the case n = 3.

123

132 213

312 231

321

Theorem 1. Let C = Av(B). Then C = CA precisely when every permutation

in the upward weak closure of B contains a permutation of B as a pattern.

Proof. In the notation of relational composition C = CA if and only if C = CA∗

where A∗ denotes the transitive closure of the relation A. However, by a result
of [5], A∗ is the set of pairs (α, β) where α ≥ β in the weak order and so C = CA
if and only if C is closed downwards in the weak order. But, as shown in [1],
this is equivalent to the condition in the statement of the proposition.

Put another way, C = CA precisely when C = Av(X) for some set X which is
upward closed in the weak order.

Corollary 1.1. If C = Av(t t− 1 · · · 1) then CA = C.

Sadly, this result is the only case in which we have managed to determine
Av(α)A with |α| > 3 (though we have conjectural descriptions of the bases of
these classes for all permutations α of length four). For α of length 2 we already
know from the Corollary that Av(21)A = Av(21) while the other length 2 case
is useful enough to be recorded explicitly.

Proposition 1.2. Av(12)A = Av(132).

Proof. When a decreasing sequence is processed by a priority queue the “remove
smallest” operation becomes “remove most recently inserted” so the behavior
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is just like being processed by a stack. The result now follows from the theory
of stack permutations.

In Section 2 we consider the pattern classes Av(α)A for each of the 6 permuta-
tions of length 3, show that all of them are finitely based and find their bases. In
Section 3, we give similar results for Av(α, β)A, where |α| = |β| = 3 and briefly
comment on some related results. Section 4 contains an example to show that,
in general, Av(α)A is not necessarily finitely based. The final section considers
briefly the case AC and discusses a number of open problems.

Our principal tool is a result from [7]: Proposition 1.3 below. Before stating
this result we need to define, for every sequence of distinct integers τ , a poset
P (τ). The elements of P (τ) are precisely the elements of the sequence τ and
the order relation ≺ is defined by x ≺ y if x precedes y in τ and either

• xy ∼ 21, or

• xzy ∼ 132 for some element z lying between x and y in τ .

Another way to think of P (τ) is to write τ = αnβ, where n is the largest element
of τ , and then the constraints of P (τ) are

• n ≺ b for all b ∈ β,

• a ≺ b for all a ∈ α, b ∈ β, and

• constraints of P (α) and constraints of P (β).

Example If τ = 31524 then P (τ) has constraints 5 ≺ 2, 5 ≺ 4, 3 ≺ 1, 3 ≺ 2,
3 ≺ 4, 1 ≺ 2, 1 ≺ 4.

If τ is a permutation then a linear extension of P (τ) can be considered as a
sequence in its own right simply by listing its elements from least to greatest
with respect to the linear order extending ≺. This turns out to be intimately
connected with the concept of allowable pair as shown by the following propo-
sition.

Proposition 1.3. (σ, τ) is an allowable pair if and only if σ is a linear extension

of P (τ).

We briefly discuss this result in the context of pattern classes C = Av(α).
Suppose τ is a permutation and that P (τ) has a chain of the form a1 ≺ a2 ≺
· · · ≺ ar where a1a2 . . . ar is isomorphic to α; for brevity we call this an α-
chain. In such a case every linear extension of P (τ) contains the subsequence
a1a2 · · · ar and so none of them are in C. Therefore τ 6∈ CA. So, a necessary
condition for τ ∈ CA is that P (τ) should contain no α-chains. As we shall see
in Section 4 the optimistic hope that this condition is also sufficient often fails.
Nevertheless it does hold (see Section 2) when |α| = 3: in other words we shall
prove
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Theorem 2. For any permutation α of length 3, τ ∈ Av(α)A if and only if

P (τ) contains no α-chain.

The proof of this theorem is contained in Section 2 and consists basically of a
case by case analysis of the classes Av(α)A.

Note that the condition that P (τ) contains no α-chain can be captured by a
finite set of avoidance conditions:

Lemma 1.1. P (τ) has a chain a1 ≺ a2 ≺ · · · ak if and only if τ has a subse-

quence a1b1a2b2 · · · ak−1bk−1ak such that

• if ai > ai+1 then bi is the empty term,

• if ai < ai+1 then bi > ai+1

Proof. Suppose first that the two conditions hold. The conditions are precisely
those that ensure a1 ≺ a2 · · · ≺ ak are constraints of P (τ).

Conversely suppose that P (τ) has a chain a1 ≺ a2 ≺ · · · ak. By definition
a1, a2, . . . , ak appear in this order within τ . A constraint of the form ai ≺ ai+1

with ai < ai+1 can arise only because of some term bi > ai+1 appearing between
ai and ai+1.

In particular it follows that P (τ) has no α-chain if and only if τ contains no
permutation with the two properties specified in this lemma. The set of such
permutations is easy to compute once α is known. For example, if α = 123, we
seek permutations axbyc with a < b < c, x > b and y > c; these are 13254,
14253, 15243.

2 Av(α)A when |α| = 3

In this section we verify Theorem 2 by a case analysis. As a consequence of
Lemma 1.1 and the remarks that followed it we obtain the basis of Av(α)A for
each of the 6 permutations α of length 3. The case α = 321 is already covered by
Corollary 1.1. In each remaining case we obtain the basis of the class Av(α)A as
a corollary to the main result, using the observation at the end of the preceding
section.

Note that the symmetries of the pattern containment order cannot be exploited
here since they are not symmetries of the relation A. Essentially this is because
the operation of a priority queue depends on both the order in which it receives
(and outputs) elements and their relative sizes. No non-trivial symmetry of the
pattern containment order respects both these relationships.

Proposition 2.1. If P (τ) has no 312-chain then it has a 312-avoiding linear

extension.

5



Proof. Put τ = m1τ1m2 . . .mkτk wherem1, . . . ,mk are the left-to-right maxima
of τ . Let λi be the sequence of values in τi but written in decreasing order
and put λ = m1λ1m2λ2 . . .mkλk. Then λ is the required 312-avoiding linear
extension. To verify that λ is a linear extension note that all the constraints of
P (τ) are respected because the only doubt would be over two elements x, y ∈ τi
with x < y and x ≺ y. But then mi ≺ x ≺ y would be a 312-chain in P (τ).
Finally λ avoids 312 for, if there were a sequence zxy ∼ 312 in λ, then x and y

would necessarily lie in distinct τi and τj . Then, because of the sequence xmjy

in τ we would have x ≺ y and hence mi ≺ x ≺ y would be a 312-chain in
P (τ).

Corollary 2.1. Av(312)A = Av(3142, 4132).

Proposition 2.2. If P (τ) has no 132-chain then it has a 132-avoiding linear

extension.

Proof. Suppose that τ = αnβ where n is the maximum value occurring in τ .
We suppose inductively that the result is true for all permutations of length less
than n (observing that the base case of n = 1 is trivial).

If α is empty, then we can simply (by induction) take n followed by a 132-
avoiding linear extension of P (β) to obtain a 132-avoiding linear extension of τ .
So, henceforth assume that α is non-empty. Partition the values occurring in α

into an increasing sequence of non-empty intervals X1, X2, . . . , Xk, such that
if xi ∈ Xi and xi+1 ∈ Xi+1, then some element of β lies between them in value.
Similarly partition the elements of β into intervals Yi for 0 ≤ i ≤ k such that
the elements of Yi lie above Xi and below Xi+1 (with the obvious modifications
for Y0 and Yk). Note that all the Yi except possibly Y0 and Yk are non-empty.
The relative values and positions of these sets are shown below.

n

Y0

Y1

Y2

Yk−1

Yk

X1

X2

Xk

Xk−1

Consider the constraints of P (τ) between elements of α. Such constraints arise
precisely from the constraints of P (α). By induction we may find a 132-avoiding
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linear extension of P (α) and it will not violate any constraints within the super-
poset P (τ). In this linear extension let λi be the subsequence whose values come
from Xi.

There are no poset constraints of the form ℓi ≺ ℓj with i < j, ℓi ∈ λi, ℓj ∈ λj

because, with y ∈ Yi, ℓ1 ≺ ℓ2 ≺ y would be a 132-chain of P (τ). So, in fact,
we may take the linear extension of P (α) to have the form λ = · · ·λ3λ2λ1 (in
rearranging the λi in this way we cannot introduce a 132-subsequence since they
now form a descending sequence of intervals of values, so the only possible 132
occurrences would be within a single λi and we know already that this does not
take place).

The values of Y1∪Y2∪ . . . occur in increasing order in β (because if two of them
z, y say occur in decreasing order then, with x ∈ X1, we would have a 132-chain
x ≺ z ≺ y). Hence these values also form an antichain of values in P (τ) because
there are no intervening larger values.

Furthermore there is no constraint y0 ≺ y in P (τ) with y0 ∈ Y0 and y ∈
Yi, i > 0 as such a constraint could arise only from some intervening term
of Y1 ∪ Y2 ∪ . . . larger than y contradicting the previous observation that the
elements of Y1 ∪ Y2 ∪ . . . occur in increasing order. Hence, (using induction
again) taking µ0 to be a 132-avoiding linear extension of P (Y0), and µ′ to be
the terms of Y1 ∪ Y2 ∪ . . . in increasing order, µ = µ′µ0 is a linear extension of
P (β) that obviously avoids 132.

Now it follows that nλµ is a 132-avoiding linear extension of P (τ). The check is
routine. Clearly any 132-patterns must lie across λ and µ. But one element in
λ and two elements in µ is impossible because the elements on µ would have to
occur in µ′ (being larger than some element of α) and µ′ is increasing. Likewise,
two elements in λ and one in µ is impossible because the first two elements
would have to lie in some common λi and the third could not separate them by
value.

Corollary 2.2. Av(132)A = Av(1432).

Proposition 2.3. If P (τ) has no 231-chain then it has a 231-avoiding linear

extension.

Proof. Again we will proceed inductively. Let τ avoid 2431 (the condition that
its poset has no 231-chain) and consider its left-to-right maxima. If τ has
only one left-to-right maximum, i.e. τ = nτ ′ then with λ′ a 231-avoiding linear
extension of P (τ ′), we have nλ′ as a 231-avoiding linear extension of P (τ). So,
assume henceforth that τ has at least two left-to-right maxima, and let the
values of the left-to-right maxima be denoted m1,m2, . . . ,mk.

The non-left-to-right maxima fall into layers of values between successive max-
ima and these sets of values occur left to right in τ (from the 2431 condition).
The situation is illustrated in Figure 1 where the grey boxes represent sub-
sequences θ1, θ2, . . . θk of τ . While the values in each θi are, by definition,
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contiguous they are not necessarily contiguous by position since they may be
punctuated by left-to-right maxima lying above them.

Figure 1: The generic structure of a 2431-avoiding permutation

Put τ = τ1τ2 . . . τk where each τi consists of θi together with its punctuating left-
to-right maxima (if any); include in τi any left-to-right maxima that immediately
precede θi. The constraints of P (τ) have two possible forms: they are constraints
of P (τi) or of the type ti ≺ tj with ti ∈ τi, tj ∈ τj and i < j. Notice that none
of these constraints have the form t ≺ mi.

By induction we may find a 231-avoiding linear extension of each P (τi) (unless
τ1 = τ : in this case take a 231-avoiding linear extension of τ with m1 deleted).
In each such linear extension let λi denote the sequence of values belonging to
θi; this too avoids 231.

Consider mkmk−1 · · ·m1λ1λ2 · · · . This is a linear extension of P (τ) that also
avoids 231.

Corollary 2.3. Av(231)A = Av(2431).

Proposition 2.4. If P (τ) has no 213-chain then it has a 213-avoiding linear

extension.

Proof. Put τ = αnβ where n is the maximum value that occurs in τ . As always
we proceed by induction, and as always, the case where α is empty is trivial.

Similarly to the notation of Proposition 2.2 we partition the set of values oc-
curring in α and β into intervals X0, Y1, X1, Y2, . . . , Xk−1, Yk, Xk where each
member of this list is a set of values smaller than its successor in the list and
where the elements of Xi are terms of α and the elements of Yi are terms of β.
These sets are non-empty with the possible exception of X0 and Xk.

The set of values from X0 ∪ X1 ∪ · · · ∪ Xk−1 occur in increasing order in τ

because if there were a decreasing pair vu then, with w ∈ Yk, v ≺ u ≺ w would
be a 213-chain in P (τ). We write α = φ0θ1φ1θ2 · · · θrφr where θ1θ2 · · · θr is
the increasing set of values from X0 ∪ · · · ∪Xk−1 and φ0φ1 · · ·φr are separating
sequences of values comprising the set Xk (all non-empty except possibly for φ0

and φr). The constraints of P (τ) between the elements of X0 ∪X1 ∪ · · · ∪Xk−1
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are easily seen to be only of the form a ≺ b where a ∈ θi, b ∈ θj and i < j.
There are no constraints between elements of any θi. Moreover, the set Ti of
elements of θi forms a poset interval in P (α).

Now, by induction, we can find some 213-avoiding linear extension of P (α).
Then we can arrange the values of each poset interval Ti in increasing order
without introducing a 213-subsequence obtaining another linear extension λ.
Note that, in λ, all elements of X0 ∪X1 ∪ · · · ∪Xk−1 occur in increasing order.

Next observe that there is no constraint of P (τ) of the form u ≺ w with u ∈ Yi,
w ∈ Yj and i < j; for then, with v ∈ Xi, v ≺ u ≺ w would be a 213-chain of
P (τ). Let βi be the sequence of values of Yi as they occur in β. By induction
we can find 213-avoiding linear extensions µi of each P (βi) and then µk · · ·µ2µ1

will be a 213-avoiding linear extension of P (β).

Finally, consider the permutation nλµ. This is certainly a linear extension of
P (τ). Furthermore it has no 213-subsequence. Clearly there can be no 213-
subsequence containing n, nor contained entirely within λ or within µ. There
cannot be a 213-subsequence bac with both b, a ∈ λ because X0∪X1∪· · ·∪Xk−1

occur in increasing order and so one of b, a would have to lie in Xk (and then
there is no larger element in β). Nor could we have b ∈ λ and a, c ∈ µ because
then a, c would need to lie in some common Yi and b could not separate them
by value.

Corollary 2.4. Av(213)A = Av(2143).

Proposition 2.5. If P (τ) has no 123-chain then it has a 123-avoiding linear

extension.

Proof. Again we let τ = αnβ where n is the maximum element occuring in τ ,
and again we may as well assume that α is non-empty. By induction we can
find 123-avoiding linear extensions of P (α) and P (β) and so we can find linear
extensions of P (τ) which consist of n followed by 123-avoiding linear extensions
of the entries of α and the entries of β. We will argue that for any linear
extension, ǫ = nλµ, of this type containing a 123-subsequence there is another
linear extension of the same type that has more inversions than ǫ does.

Suppose that ν has a 123 pattern xyz. Either x, y ∈ λ and z ∈ µ or x ∈ λ and
y, z ∈ µ. Suppose that the former occurs and, for the given z, take x, y as close
in position as possible.

We know that x 6≺ y (for certainly y ≺ z and there is no 123-chain in P (τ)). If
x and y are adjacent in λ then because x 6≺ y we can exchange x and y and get
a new linear extension of the same type with one more inversion.

So suppose that there is some intervening element w occurring immediately
after x in λ where, by choice of x, y, we shall have w > y. If x 6≺ w we may
exchange x and w and get a new linear extension of the same type with one
more inversion.
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On the other hand, it is not possible that x ≺ w. If it were then we would have,
in α, a subsequence xtw for some t > w. Now, certainly y succeeds x in α (or
we would have y ≺ x and y, x would occur in this order in λ) but y cannot occur
after t in α (that would mean, because of the sequence xty, that x ≺ y) and it
cannot occur between x and t in α for then the sequence ytw in α would mean
that y ≺ w contradicting that w precedes y in λ.

Exactly the same argument applies to xyz sequences with x ∈ λ and y, z ∈ µ.
So, if we take ǫ = nλµ to be that linear extension of P (τ) having the maximum
possible number of inversions, it must avoid 123.

Corollary 2.5. Av(123)A = Av(13254, 14253, 15243).

3 Av(α, β)A when |α| = |β| = 3

There are 15 pairs (α, β) of permutations of length 3. The structure of each
of the pattern classes they define is well-known but we do not know of any
convenient reference to that structure. So, for completeness, we list in Table 1
descriptions of these 15 pattern classes C leaving the elementary justifications to
the reader. The ordering of the rows in that table groups similarly structured
classes together. The notation used is fairly standard. I and D denote the
classes of increasing and decreasing permutations respectively. The sum of two
permutations σ ⊕ τ is that permutation s1 . . . spt1 . . . tq where s1 . . . sp ∼ σ,
t1 . . . tq ∼ τ and si < tj for all i, j. Skew sums, σ ⊖ τ , are defined similarly
except the final property is si > tj for all i, j. Notation such as 213[I, I, I]
denotes the class of all inflations of 213 in which each term is replaced by an
increasing sequence of consecutive values.

We now justify the final column of Table 1 treating each case in turn. In all cases
it is routine to verify that none of the claimed basis permutations β lie in CA.
We simply have to verify that, if β is a proposed basis element, then all linear
extensions of P (β) involve one of the basis permutations of C. The proposed
bases were in fact produced by computer search precisely with respect to that
property. Thus we shall only be concerned with proving that a permutation τ

that avoids these basis permutations is an image of some permutation in C.

Case 1: The basis of Av(132, 321)A

Permutations τ ∈ Av(321, 2143, 2413) are merges of two increasing sequences L
and U (with L < U) (this is a symmetry of a result in [3]). It is readily checked
that P (τ) has only constraints u ≺ ℓ with u ∈ U , ℓ ∈ L and constraints ℓ1 ≺ ℓ2
with ℓ1, ℓ2 ∈ L and ℓ1 < ℓ2. Therefore P (τ) has a linear extension in which the
terms of L and the terms of U occur in the same order as they do in τ , and all
the terms of U precede all the terms of L; such permutations lie in Av(132, 321)
(indeed they lie in Av(132, 213, 321)).

10



Index Basis of C Structure of C Basis of CA
1 132, 321 213[I, I, I] 321, 2143, 2413
2 213, 321 132[I, I, I] 321, 2143, 2413
3 231, 312 Sums of decreasing

permutations
2413, 2431, 3142, 4132

4 231, 321 Sums of t 1 2 · · · t− 1 231,321
5 312, 321 Sums of 2 3 · · · t 1 312, 321
6 123, 231 312[D,D,D] 2431, 13254, 13524,

14253, 15243, 31524,
461325

7 123, 312 231[D,D,D] 3142, 4132,
13254,13524,13542

8 132, 213 Skew sums of increasing
permutations

1432, 2143,13524

9 123, 132 Skew sums of
t− 1 t− 2 · · · 1 t

1423, 1432, 13254

10 123, 213 Skew sums of
1 t t− 1 · · · 2

1243, 2143

11 132, 231 Permutations whose
diagram is shaped like ∨

1432, 2431

12 132, 312 Permutations whose
diagram is shaped like <

132

13 213, 231 Permutations whose
diagram is shaped like >

2143, 2413, 2431

14 213, 312 Permutations whose
diagram is shaped like ∧

2143, 3142, 4132

15 123, 321 Finite 321,1423, 2314, 2341,
4123, 12345, 12354,
12435, 12453,13245,
13254, 21345, 21354,
21435, 21453, 31245,
31254

Table 1: The structure of classes C having two basis elements of length 3, and
the corresponding bases of the classes CA.
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Case 2: The basis of Av(213, 321)A

The proof is exactly like the previous one.

Case 3: The basis of Av(231, 312)A

When a permutation that is a sum of decreasing permutations is processed
by a priority queue the possible outputs are precisely sums of permutations in
Av(132) (see Proposition 1.2). But, from a (symmetry of a) result of [6], the
class of all such permutations is Av(2413, 2431, 3142, 4132).

Case 4 and case 5: The basis of Av(231, 321)A and Av(312, 321)A

These follow from Theorem 1.

Case 6: The basis of Av(123, 231)A

Let τ ∈ Av(2431, 13254, 13524, 14253, 15243, 31524, 461325). We divide the ele-
ments of τ into three sets:

• A is the set of elements that play the role of ‘1’ in a 132-subsequence of τ
together with all elements less than any of these,

• B is the set of elements that play the role of ‘2’ in a 132-subsequence of
τ ,

• C is the set of any remaining elements.

The goal is to show that γαβ is a linear extension of P (τ) where α, β, and γ

are decreasing permutations whose elements are equal to the elements in A, B
and C respectively, and that γαβ ∈ 312[D,D,D].

First we will verify that A∪B ∪C is a partition of the terms of τ . It suffices to
prove that A ∩ B is empty. It is easy to check that no element can both be a
‘1’ in a 132 and a ‘2’ in a 132 (take the copy in which it is a ‘2’, append the 32
of the copy in which it is a ‘1’, and one of the basis elements 13254, 14253, or
15243 results). The remaining case is that of an element a, which is a ‘2’ in a
132 that lies below some ‘1’ of a 132. Call that 132 bdc. Then, since a is not a
‘1’, and 2431 is a basis element, we must have b, d, a, c occurring in this order.
Now let xya be a 132. In all cases the set of elements {b, d, c, x, y, a} contains a
subsequence matching one of the basis elements.

Next we prove that, for all a ∈ A, b ∈ B, c ∈ C, we have a < b < c. To do
this we merely have to prove that if b ∈ B, b′ < b, b′ 6∈ A, then b′ ∈ B. So let
xyb ∼ 132. Since b′ 6∈ A, b′ > x and b′ follows y in τ (else b′yb ∼ 132). But then
xyb′ ∼ 132, so b′ ∈ B.

Now define λ = γαβ where α, β, γ are the terms of A,B,C respectively each
written in decreasing order. So λ ∈ Av(123, 231). We shall verify that λ is a
linear extension of P (τ).

To begin with notice that, in τ , all elements of A precede all elements of B.
For suppose b ∈ B because of some subsequence xyb ∼ 132 of τ . A following
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element of A could not be smaller than x (else we obtain a subsequence 2431)
nor larger than b (since we have already proved that A < B), nor between x

and b (else it belongs to B). So, no such element can exist. In particular there
are no constraints a ≺ b with a ∈ A, b ∈ B and so having β following α violates
no constraints.

Rather more easily there are no constraints a ≺ c or b ≺ c for any a ∈ A, b ∈
B, c ∈ C for in both cases this could only happen if c was a ‘2’ in a 132-
subsequence.

Finally no constraints between elements of A, or between elements of B, or
between elements of C are violated. Again for A and C this is clear: if a1 ≺ a2
with a1 < a2 then a2 would be a ‘2’ in some 132-subsequence a1xa2. But also
B has no b1 ≺ b2 constraint with b1 < b2. For if there was a subsequence
b1xb2 ∼ 132 then b1 ∈ A which is a contradiction.

Case 7: The basis of Av(123, 312)A

Let τ ∈ Av(3142, 4132, 13254, 13524, 13542) be given. Let T be the set of ele-
ments that play the role of a ‘1’ in a 132-subsequence of τ and let S be the set
of remaining elements of τ . Clearly τ |S has no 132-subsequence. But τ |T has
no 132-subsequence either for if t1t3t2 was such a sequence we can find v, u with
t3vu ∼ 132. Then we have one of t1t3vut2, t1t3vt2u, t1t3t2vu which have the
patterns 13542, 13524, 13254 all of which are forbidden.

Furthermore the set of values of T is a consecutive set. To see this let t, t′ ∈ T

with t < t′. Consider some x with t < x < t′. Suppose first that t precedes
t′ in τ and let t′vu ∼ 132. If x precedes v then xvu ∼ 132 and so x ∈ T .
Otherwise τ has a subsequence tt′vxu ∼ 13524 or tt′vux ∼ 13542 both of which
are forbidden. Now suppose t′ precedes t in τ . There is some v, u with tvu ∼ 132.
Then t′ < u (else t′tvu ∼ 3142 or t′tvu ∼ 4132). If x precedes v then, because
of xvu, x ∈ T . But otherwise the sequence t′tvx ∼ 3142 which is forbidden.

The poset P (τ) has no constraints s ≺ t with s ∈ S and t ∈ T . Such constraints
could only arise if either

• s > t and s precedes t in τ . But then there is some tvu ∼ 132 and then
either stvu ∼ 4132 or stvu ∼ 3142 or s is smaller than both v, u and hence
s 6∈ S.

• s < t and there is some swt with w > t. But then, again, s 6∈ S.

Now we construct a linear extension of P (τ) in Av(123, 312). We take the set
of values of S and T in decreasing order and place the values of T before the
values of S; this does give a permutation of Av(123, 312) because the values
in T are consecutive. No poset constraints are violated because there can be
none among the elements of S of the form s1 ≺ s2 with s1 < s2 for they could
only arise from some y with s1ys2 ∼ 132 which would mean s1 6∈ S, or among
the elements of T of the form t1 ≺ t2 with t1 < t2 since we know T has no
132-sequence, or across S and T of the form s ≺ t as proved above.
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Case 8: The basis of Av(132, 213)A

It is clear that every priority queue computation on a permutation which is a
skew sum of k increasing subsequences must map it to a permutation where
the increasing subsequences remain in increasing order but are not necessarily
arranged as a skew sum any longer. The resulting permutation is a vertical
juxtaposition of these increasing subsequences which, for brevity, we call the k

‘bands’ of the permutation. Moreover, no elements taken from 3 distinct bands
can form a 132 pattern (since, in the original permutation, 3 such elements
formed a 321 pattern).

Conversely, suppose that τ is a permutation of this type (the vertical juxtaposi-
tion of increasing bands with no 132 pattern formed from elements in 3 distinct
bands). Then P (τ) can have no constraints x ≺ y where x < y and x and y are
in different bands. If so, there would be some subsequence xzy ∼ 132; but z

would lie in a higher band than y and so we would have a 132 pattern between
three elements of distinct bands. Thus Av(132, 213)A is exactly the class of
permutations which can be divided into increasing bands with no 132 pattern
between three distinct bands.

By inspection, none of 1432,2143,13524 have this property. On the other hand
let π ∈ Av(1432, 2143, 13524) and consider a partition of the terms of π into
the smallest possible number of increasing bands. Suppose there is a subse-
quence xzy ∼ 132 with x, y, z in distinct bands. Then, because of the re-
strictions imposed by the basis elements, it is easy to check that the set of
elements in all the bands between (and including) those containing x and y

form an increasing set contradicting the minimality assumption. Therefore
Av(132, 213)A = Av(1432, 2143, 13524).

Case 9: The basis of Av(123, 132)A

Let τ ∈ Av(1423, 1432, 13254) be given. Let R be the set of elements that play
the role of a ‘2’ in a 132-subsequence of τ , and let S be the set of remaining
elements of τ . Clearly τ |S has no 132-subsequence, but also τ |R avoids 132. For
suppose that τ |R contained a subsequence ftm ∼ 132. Since t ∈ R there is a
subsequence axt ∼ 132. Then x must precede f else fxtm ∼ 1432. Also, since
f ∈ R, there is a subsequence bpf ∼ 132. Then p < t else bptm ∼ 1432, and
p > m else bpftm ∼ 13254. But, if p precedes x then bxft ∼ 1423, and if p
follows x then bxpt ∼ 1423. So, we have a contradiction in any case, and thus
τ |R must avoid 132.

For each r ∈ R let Ar = {a | ayr ∼ 132 for some subsequence ayr of τ}. Then
we have

• Ar ⊆ S, and

• for all b if a < b < r and a ∈ Ar then b ∈ Ar.

For the first part, suppose that xza, ayr ∼ 132. If z < r then xzayr ∼ 13254,
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if r < z < y then xzar ∼ 1423 and if y < z then xzyr ∼ 1432 yielding a
contradiction in each case.

For the second part let ayr ∼ 132, and a < b < r. If b follows r then ayrb ∼ 1432,
and if b follows y but precedes r then aybr ∼ 1423. So, b precedes y, hence
byr ∼ 132 and b ∈ Ar.

It follows that if a ∈ Ar, and a ∈ Au then r = u (otherwise we would have
r ∈ Au or vice versa from the second part, contradicting the first part).

Construct γ ∈ Av(123, 132) as follows: begin with the elements of S in de-
scending order and, for each r ∈ R place it immediately following the smallest
element of Ar.

To complete the proof we must show that γ is a linear extension of P (τ). In
other words we must show that for, every x ≺ y in P (τ), x precedes y in γ.
Now x ≺ y arises either because xy is an inversion of τ or because xzy ∼ 132
is a subsequence of τ . In the latter case we have x ∈ Ay and, as y follows the
elements of Ay in γ, y follows x as required. The former case likewise holds
easily if x and y both belong to R or both belong to S. Suppose that y ∈ R

and x ∈ S. Let a be the least element of Ay. Then a < y < x, so x precedes a
and hence y in γ. Finally, suppose that y ∈ S and x ∈ R. Since x > y, and x

precedes y in τ , y 6∈ Ax, and in fact y < a for all a ∈ Ax. By construction, y
follows all such a in γ, and hence also follows x.

Case 10: The basis of Av(123, 213)A

Let τ ∈ Av(1243, 2143) be given. Let A be the set of elements that play the role
of a ‘1’ in a 132-subsequence of τ , and let B be the set of remaining elements of τ .
Clearly τ |B has no 132-subsequence, and by 1243-avoidance, τ |A is decreasing.

For each a ∈ A let Ba = {b | ayb ∼ 132 for some y}. Observe that

• Ba ⊆ B since τ |A is decreasing, and

• For all b′ if a < b′ < b and b ∈ Ba then b′ ∈ Ba. To prove this choose y so
that ayb ∼ 132. We see that b′ cannot precede a (or b′ayb ∼ 2143), nor
is positioned between a and y (or ab′yb ∼ 1243), so b′ follows y and thus
b′ ∈ Ba.

It follows that if b ∈ Ba, and b ∈ Ba′ then a = a′ (otherwise, from the second
part, we would have one of a′ ∈ Ba or a ∈ Ba′ which would contradict the first
part).

Construct γ ∈ Av(123, 213) as follows: begin with the elements of B in de-
scending order and, for each a ∈ A, place a immediately preceding the largest
element of Ba.

To complete the proof we must show that γ is a linear extension of P (τ). As
in the previous case we must show that, for every x ≺ y in P (τ), x precedes
y in γ. Again x ≺ y arises either because xy is an inversion in τ or because
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xzy ∼ 132 is a subsequence of τ . In the latter case y ∈ Bx and, by construction,
x precedes all elements of Bx in γ. The former likewise holds easily if x and y

both belong to A or both belong to B. Suppose that x ∈ A and y ∈ B. Since
x > y, x precedes y in γ as required. On the other hand suppose that y ∈ A

and x ∈ B. Then, since x > y but x precedes y in τ , x 6∈ By. Therefore x is
greater than the largest element of By and precedes y in γ.

Case 11: The basis of Av(132, 231)A

Let τ ∈ Av(1432, 2431) be given. Let T be the set of elements that play the
role of ‘2’ in a 132-subsequence of τ and let S be the remaining elements of τ .
Then observe

• There are no constraints t ≺ s with t ∈ T and s ∈ S. Such a constraint can
arise either because t > s and t precedes s in τ (and then, as t ∈ T , we can
find a subsequence xyt ∼ 132 in which case xyts ∼ 1432 or xyts ∼ 2431
which are forbidden) or because there is a subsequence tvs ∼ 132 of τ
contradicting that s 6∈ T .

• There are no constraints s1 ≺ s2 with s1 < s2 between elements of S. This
could only occur if there was a subsequence s1vs2 ∼ 132 of τ contradicting
that s2 6∈ T .

• There are no constraints t1 ≺ t2 with t1 > t2 between elements of T . If
so, t1 ∈ T implies that there is a subsequence abt1 ∼ 132 and then the
subsequence abt1t2 is either isomorphic to 1432 or 2431.

Now define σ to consist of the elements of S in decreasing order followed by the
elements of T in increasing order. Since no constraints are violated this permu-
tation is a linear extension of P (τ) and, by construction, it lies in Av(132, 231).

Case 12: The basis of Av(132, 312)A

Any permutation in Av(132) is, by Proposition 1.2, the image of some decreasing
permutation, and decreasing permutations are members of Av(132, 312).

Case 13: The basis of Av(213, 231)A

Permutations of Av(2143, 2413, 2431) are easily seen to be a merge of two se-
quences λ and µ where λ avoids 132, µ is increasing, and all terms of µ are
less than all terms of λ. A pre-image in Av(213, 231) is found as follows. Con-
sider a priority queue algorithm that generates λ from a decreasing sequence:
a series of input and delete operations. We insert into this operation sequence
insert-delete pairs that generate the interpolated elements µ as and when they
are needed. Because µ < λ a newly inserted m ∈ µ will be the minimal entry
of the priority queue and will then be immediately deleted.

Case 14: The basis of Av(213, 312)A

Permutations of Av(2143, 3142, 4132) are easily seen to have the form λµ where
λ is increasing and µ avoids 132. Hence we can find a pre-image of the form λµ′

where µ′ is a decreasing pre-image of µ.
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Case 15: The basis of Av(123, 321)A

This is a routine check of finitely many permutations.

For three or more basis elements we merely state the results for precisely three
basis elements and only for the infinite classes Av(α, β, γ). The proofs are
routine.

Basis of C Basis of CA
123, 132, 213 1243, 1423, 1432, 2143
123, 132, 231 1423, 1432, 2431, 13254, 461325
123, 132, 312 132
123, 213, 231 1243, 2143, 2413, 2431
123, 213, 312 1243, 2143, 3142, 4132
123, 231, 312 2413, 2431, 3142, 4132, 13254
132, 213, 231 1432, 2143, 2413, 2431
132, 213, 312 132
132, 213, 321 321, 2143, 2413
132, 231, 312 132
132, 231, 321 231, 321, 2143
132, 312, 321 132, 312, 321
213, 231, 312 2143, 2413, 2431, 3142, 4132
213, 231, 321 213, 231, 321
213, 312, 321 312, 321, 2143
231, 312, 321 231, 312, 321

4 An infinitely based Av(α)A

This section is devoted to proving

Theorem 3. Av(2431)A is not finitely based.

We consider the infinite family

2 m+ 1 (4 1) (6 3) (8 5) (10 7) . . . (m− 4 m− 7) m− 2 m m− 5 m− 1 m− 3

for even m > 4. The parentheses simply indicate how members of this family
are formed. A typical member of the family is

2 13 4 1 6 3 8 5 10 12 7 11 9

We shall prove that

• no permutation in this family lies in Av(2431)A, and

• all proper subpermutations of such permutations lie in Av(2431)A.

To see the first of these consider a typical member τ of the family. We have
to prove that every linear extension of P (τ) contains 2431. For a contradiction
suppose that λ is a linear extension containing no 2431 pattern.
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In P (τ) we have m ≺ m − 1 ≺ m − 3 so, in λ, m − 2 cannot precede m (or
m− 2 m m− 1 m− 3 would be a 2431 pattern). Therefore (as m− 2 ≺ m− 5
in P (τ)) λ has a subsequence m m − 2 m − 5. But this means that m − 4
cannot precede m in λ (or m − 4 m m − 2 m − 5 would be a 2431 pattern).
But, again, m − 4 ≺ m − 7 means that λ has a subsequence m m − 4 m − 7
and hence m − 6 cannot precede m in λ because it would give a 2431 pattern
m− 6 m m− 4 m− 7. Continuing to argue in this way we eventually conclude
that m must precede 4. However 2 ≺ 4 ≺ 1 and 2 ≺ m and this implies that
2 m 4 1 is a subsequence of λ, a contradiction.

The second thing we have to prove is that, if τ ′ is the result of removing an
arbitrary point of τ then P (τ ′) has a 2431-avoiding linear extension (so that
τ ′ ∈ Av(2431)A).

For illustrative purposes we take

τ = 2 13 4 1 6 3 8 5 10 12 7 11 9

and consider the following linear extensions of P (τ)

13 2 4 1 6 3 8 5 10 12 7 11 9

13 2 4 1 6 3 8 5 12 10 7 11 9

13 2 4 1 6 3 12 8 5 10 7 11 9

13 2 4 1 12 6 3 8 5 10 7 11 9

13 2 12 4 1 6 3 8 5 10 7 11 9

which are derived from τ itself by interchanging the first two terms and by
changing the position of 12 so that it is successively before 7, 10, 8, 6, 4. These
linear extensions each have a unique subsequence isomorphic to 2431 (respec-
tively 10 12 11 9, 8 12 10 7, 6 12 8 5, 4 12 6 3 and 2 12 4 1).

In general any constraint x ≺ y of P (τ − k) is also a constraint of P (τ) and
therefore if we remove a point k from a linear extension of P (τ) we shall obtain
a linear extension of P (τ − k). For any k < 13 there is at least one of the linear
extensions in the above list which, when k is removed, does not contain 2431
yielding a linear extension of P (τ − k) that does not contain 2431. For k = 13
the linear extension of 12 2 4 1 6 3 8 5 10 7 11 9 does not contain 2431.

The general case is completely similar.

5 Conclusions and open questions

Most of our paper has been about CA where C is a pattern class with basis
elements of lengths 3. It seems to be very difficult to describe CA for an arbitrary
pattern class. However, it is possible that, at least for principal pattern classes
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C = Av(α), it might be possible to solve the finite basis question in general. We
have run some computer experiments in the case |α| = 4 which seem to indicate
that most of these 24 classes are finitely based. However we are very far from
finding any general necessary and sufficient conditions for Av(α)A to be finitely
based.

There is, of course, the dual problem: given a pattern class C determine the
pattern class AC which is the set of permutations that a priority queue can
transform into a permutation of C. If C contains every increasing permutation
then AC is the set of all permutations so the problem is only interesting if
the basis of C contains ιk = 12 · · ·k for some k. For Av(ιk) itself the class
of permutations that can transform to it is exactly Av(ιk). This is because
every permutation of Av(ιk) can transform to itself. But a permutation not
in Av(ιk) contains an increasing subsequence of length k and this subsequence
is transformed without change. These remarks give one hope that this dual
problem might be tractable.

In particular the classes AAv(123, π) are all easy to describe for π a non-
monotone permutation of length 3. Specifically:

• AAv(123, 132) = Av(123, 132)

• AAv(123, 213) = Av(123, 213)

• AAv(123, 231) = 52413[D,D, 1,D,D]

• AAv(123, 312) = 35241[D, 1,D,D,D]

The argument in each case is very simple: based on the structure of the per-
mutations, τ , in Av(123, π) given in Table 1 the linear extensions of P (τ) can
be explicitly listed which, according to Proposition 1.3, provide the elements of
AAv(123, π).

Finally we remark on a more general context for the results in this paper. We
can consider down-sets of permutation pairs other than A and corresponding
analogues of the C −→ CA operator. These down-sets B arise in just the same
way as they arise for pattern classes by forbidding one or more pairs to be
contained in the pairs of B. However natural examples are not so readily found.
One such is the set defined by the forbidden pair (12, 21) which defines the weak
order and some preliminary work on this case may be found in [2].
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