Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. (© 1994 Society for Industrial and Applied Mathematics
Vol. 23, No. 6, pp. 1225-1230, December 1994 0

PRIORITY QUEUES AND PERMUTATIONS*
M. D. ATKINSON' anp ROBERT BEALS#

Abstract. A priority queue transforms an input permutation o of some set of size n into an output permutation
7. The set R, of such related pairs (o, 7) is studied. Efficient algorithms for determining s(7) = |o : (0, T) € R,|
and (o) = |t : (0, T) € R,| are given, a new proof that |R,| = (n + D"tis given, and the transitive closure of R,
is found.

Key words. priority queue, permutation, enumeration

AMS subject classifications. primary 68R05; secondary 68P05, 05A15

1. Introduction. The topic studied in this paper was suggested by the beautiful and
combinatorially rich theory of permutations that can be generated by a stack. In this theory an
input sequence of n distinct elements, x;, x7, . .., X,, is presented to a stack and is subjected to
a series of push and pop operations; each push operation pushes the next input element on the
stack and each pop operation removes the top element of the stack and places it in an output
stream. When the entire input has been consumed and the stack is empty, the input sequence
has been converted into an output sequence X1y, Xz(), - - - » Xz(n) that is a permutation of the
input sequence. The permutation 7 that arises in this way depends only on the series of push
and pop operations and, in particular, is independent of the input sequence. It is well known
that there are ¢, such stack permutations, one for each push—pop sequence, where

=n+1

Cn

is the nth Catalan number. There are several interesting correspondences between stack
permutations and other combinatorial objects (for example, binary trees, triangulations of a
polygon, well-formed bracket sequences; see [3] and the references cited therein).

We shall investigate the analogous theory where a priority queue replaces a stack. In
other words the pop operation “delete the most recently inserted” is replaced by “delete the
smallest.”” We use the terms Insert and Delete-Minimum rather than push and pop and we
shall call a series of n Inserts and n Delete-Minimums a priority queue computation. There
are ¢, different priority queue computations, each of which converts an input sequence (of n
distinct elements) into an output sequence. But, unlike the case of stacks, it is no longer true
that the permutational effect is independent of the input sequence nor that all inputs can be
permuted in the same number of ways.

To handle this greater complexity we define a relation R, called allowability on the set of
sequences of length n by the rule (o, T) € R, if there exists a priority queue computation which
transforms the input sequence o into the output sequence t. The elements of R, will be called
allowable pairs. It was shown in [1] that there are (n + 1)"~! allowable pairs of permutations
on a fixed set of size n and this result is a strong hint that an interesting combinatorial theory
awaits investigation.

It is simple to recognize whether a pair of sequences (o, 7) is allowable. One just con-
structs a suitable priority queue computation. If such a computation exists, it may not be
unique, but it is easy to see that there is always a “natural” computation in which elements

*Received by the editors November 30, 1992; accepted for publication July 20, 1993.

TDepartment of Mathematical and Computational Sciences, University of St Andrews, North Haugh, St. An-
drews, Fife KY 16 9SS, Scotland.
Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403.

1225

Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1226 M. D. ATKINSON AND R. BEALS

are output as soon as possible (that is, if x is the next element to output, and is present in
the priority queue, then it should be output before further input elements are inserted). This
observation results in the following algorithm:

Q := empty priority queue
i=1j:=1
while j <ndo

while t; ¢ Q do

insert(o;)
i=i+1
endwhile

if min(Q) # t; then return (false) else
deleteMin; j := j + 1
endif
endwhile
return(true).

The time complexity of this algorithm depends, of course, on the implementation of
the priority queue operations. With a heap-based implementation it would be O(nlogn),
whereas if we regarded Insert and Delete-Minimum as atomic constant time operations it
would be O(n).

In the next section of the paper we take up rather more interesting algorithmic questions
by giving efficient methods for the two complementary problems:

(1) Given an output 7, find the number of allowable pairs (o, 7).
(2) Given an input o, find the number of allowable pairs (o, 7).

Then, in §3 we concentrate more on combinatorial questions. We give a one-to-one
correspondence between allowable pairs and labeled trees from which we obtain another
proof of the main result of [1]. Next we give a result about the average number of outputs
for a random priority queue computation. Finally we characterize the transitive closure of the
allowability relation and discuss the connection with serial networks of priority queues.

2. The number of inputs and outputs. In this section we consider the computation of
the following two quantities: the number s(t) = |o : (0, T) € R,| of allowable pairs having
a fixed output 7, and the number ¢ (c) = |t : (0, T) € R,| of allowable pairs having a fixed
inputo.

On the surface 7 (o) seems to be the more natural quantity to calculate since it enumerates
the different ways that a priority queue can process a particular input, while s (7) enumerates the
different starting points that can give rise to some fixed result. Despite this, it turns out that the
numbers s(t) are rather easier to compute and have more obvious properties (for example, they
are always divisors of n!). Indeed, in [1], an algorithm of average time complexity O (n log n)
was given for computing s(7). Here we shall give an algorithm for this problem whose worst
case complexity is O (n). We turn then to the problem of computing 7 (o). Although we have
been unable to find a comparably efficient algorithm, we are at least able to place the problem
in the complexity class P by giving a dynamic programming algorithm of time complexity
on*.

For a given output sequence T = [7y, ..., 7,] we let 7y be any element greater than those
occurring in the remainder of t and define

b@)=max{j:1<j<irt>1)}

The following lemma was proved in [1].

Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITY QUEUES AND PERMUTATIONS 1227

LEMMA 2.1.
s() =[] = b@).
i=1

Thus, once b(1), b(2), ..., b(n) have been calculated, s(t) can be found in O(n) steps.
The obvious algorithm for computing b(1), b(2), ..., b(n) is as follows.

i:=0

repeat
=i+l j=i—-1
whilet; < t;do j = j—1
b(i):=j

untili = n.

It requires quadratic time in the worst case, since to compute b(i) as many as i values of
T may need to be examined. A simple observation improves the computation time. Suppose
that when computing b(i), we tested the element t; (with j < i) and found that 7; < 7;. Then
none of tj_, 7j_, ..., Tp(j)+1 need be compared with 7; and the next test can be whether
Ty(j) < T;. In other words the statement j := j — 1 may be replaced by j := b(j).

The new algorithm runs in linear time: the statement j := b(j) cannot be executed more
than once with the same value of j. Consequently s(7) can be found from 7 in O (n) steps.

We now consider the second computation: finding ¢ (o). The following result was proved
in[1].

LEMMA 2.2. Let o be some input sequence expressed in the form amp where m is the
maximal symbol. Suppose B = byb, - --b, and a; = ab; ---b;, B; = biy - b,, then

r

t(o) = Zt(ai)t(ﬂi)-

i=0

We make this lemma the basis of a dynamic programming algorithm. For convenience

assume that o is a permutation of {1,2,...,n}. Let 0™ denote the permutation obtained
from o by deleting all the symbols m + 1, ..., n and let £™ denote the set of substrings of
o™,

We can compute #(0) for all 6 € T for the values m = 0, 1,2, ...,n in turn. The

empty string A is the only member of T and (L) = 1. Suppose that m > 1 and t(6) is
known for all @ € £("~D_ A string ¢ of ™ is either in ™~ (in which case t(¢) will be
known) or it has the form amp. In the latter case we may compute # (amf) in linear time using
the formula of the previous lemma since all the strings required in the calculation belong to
™= The total time required for the whole computation is

0 (n x Z|>:<"'>|) = 0o®mY.
m=1

3. Combinatorial results. The number of allowable pairs was proved in [1] to be (n +
1)"~! using partially ordered sets and one of Abel’s summation formulae. Here we give
another proof which depends on establishing a 1-1 correspondence between allowable pairs
and labeled trees.

Let (o, 7) be an allowable pair on n symbols and let m be the maximal symbol. Suppose
T = amp. At the point that m is output, the priority queue is empty. Therefore m and all
the symbols of & occur in o earlier than all the symbols of 8. Let y,5 be the symbols of «,

Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1228 M. D. ATKINSON AND R. BEALS

B, respectively, in order of their occurrence within o. Then o has the form y(;)8 where v m)
denotes the result of inserting m within y after the symbol i (i is given the conventional name
“root” if m is inserted at the beginning of y). Clearly (y, «) and (8, B) are allowable pairs.

Thus (o, T) has given rise to allowable pairs (y, &), (8, 8) and a symbol i (one of the
symbols of « or “root”). Conversely, (y,), (8, B), and i define a unique allowable pair (o, T)
by reversal of this construction.

We can now associate, with any allowable pair (o, 7), a tree on n + 1 symbols (“root” and
the n symbols being permuted). The construction is inductive. If n = 0 the tree is a single
node called “root.” If n > 0 we find (y, «), (8, B), and i as above. The trees for (y,), (§, B)
exist by induction and have roots “root1” and “root2.” The tree for (o, 7) is obtained by letting
“rootl” be the new “root,” “root2” be labeled as m, and joining nodes i and m.

The construction is obviously reversible since the parent of the maximal node in a tree
defines i and removal of the branch between i and m defines the trees for the allowable pairs
(v, a), &, B).

THEOREM 3.1 (Atkinson-Thiyagarajah [1]). The number of allowable pairs on a set of
sizen is (n + 1)"1,

Proof. By Cayley’s theorem the number of labeled unrooted trees on n + 1 nodes is
(n+41)""1. The trees defined above are rooted (which would increase their number by a factor
n + 1) but the root is labeled with a fixed symbol “root” (which decreases their number by a
factor n + 1). The result now follows from the correspondence above. g

We now consider the number of outputs that a fixed priority queue computation can pro-
duce as the input varies over all permutations of an n-element set. Clearly, there is considerable
variation. If we let Z and D denote the operations Insert and Delete-Minimum, respectively,
then priority queue computations can be represented by “well-formed” words in these two
symbols. For example, the computation (ZD)" simply copies the input to the output so all n!
outputs are achievable. On the other hand, Z" D" only produces that output whose elements are
in ascending order. For notational simplicity we shall assume that all inputs and outputs are

permutations of {1, 2, ..., n}. Let k(w) denote the number of outputs that can be generated
by the well-formed word w.
LEMMA 3.2.

(1) Ifu, v are well formed of length 2a, 2b, then

k(uv) = k(u)k(v)(a + b).

a

(2) If u is well formed, then k(ZuD) = k(u).

Proof. First, consider k(uv). The priority queue in the computation uv is empty just
before the (a + 1)th symbol of the input is read. So the first a symbols of the output are a
permutation of the first a symbols of the input. The first a symbols may be chosen in ("'a*b)
ways and, once chosen, may be permuted by u in k(u) ways, after which the remaining b
symbols may be permuted in k(v) ways. The first part now follows.

Now consider k(ZuD). Note first that if 7 is an output of the priority queue computation
u (arising, say, from the input o) then tn is an output from the computation ZuD (clearly, it
is the result of processing the input no). On the other hand, any output from ZuD must have
the form tn for some 7. This is because, for the computation ZuD, the priority queue cannot
become empty at any intermediate step and so n cannot be deleted from it as smallest element
until the end of the computation. To complete the proof, it is only necessary to prove that
is an output of the priority queue computation u. Let p be an input to the computation ZuD
which gives the output tn. If n is not the first symbol of p then we can write p = ampBny,
where m is the maximum symbol that precedes n in p. When this input is processed by ZuD,

Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITY QUEUES AND PERMUTATIONS 1229

the symbol m will remain in the priority queue after it is inserted at least until » is inserted
(otherwise the priority queue would become empty before the computation terminates). It
therefore follows that the input anfmy will result in the same output as p. By repetition of
this principle, we obtain an input of the form no which generates the output ta. It is apparent
that the priority queue computation u transforms o into t as required. a

COROLLARY 3.3. For every priority queue computation u, k(u) divides n!.

We have already remarked that k(u) varies considerably as u varies over the possible
priority queue computations. Despite this, it is possible to compute its average value defined
as

kn =Y ku)/ca,

where the summation is over all priority queue computations with n Inserts and n Delete-
Minimums.

THEOREM 3.4. k, = (n + 1)!/2".

Proof. Letl, = Y, k(u) so that k, = I,/c,. Every priority queue computation can be
expressed in the form ¥ = ZvDw, where v, w are themselves priority queue computations
and are uniquely determined by u. Since the length of v can be any even integer from 0 to
2n — 2 we have

i=n—1

I, = Zk(u) = Z ZZk(Iva),
u i=0 v w

where the second and third summations are over all priority queue computations v, w which
process inputs of length i, n — i — 1, respectively. Thus, by the previous lemma,

i=n-1 n i=n-1 n
I, = ; Z;k(v)k(w)(i + 1) = ; liln—i——l(l. N 1)-

Put h, = [,/n!. Then h, = Z;Izg“ hih,—i—1/(+ 1). This recurrence can be solved by
introducing the generating function

r=00
H(x)=Y hx"
r=0
which is easily seen to satisfy the integral equation
H(x)f H(x)dx = H(x)—1,

from which it follows that H(x) = 1/+/1 — 2x and the result follows by expanding the
generating function. o
Finally we consider the transitive closure of the allowability relation R,. One motivation

for this is Tarjan’s paper [5] where the permutations obtainable from a series network of
stacks are considered. In a related work, Pratt [4] considers permutations computable by
double-ended queues, parallel stacks, and parallel queues. The corresponding scenario for us
is a series network of priority queues Py, Ps, ..., P, on which the following operations are
allowed:

(1) Insert, which transfers the next element of the input sequence into Py,

(2) Move(i) with 1 < i < k, which transfers the minimal element of P; into P;4,,

Downloaded 11/25/12 to 139.80.2.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1230 M. D. ATKINSON AND R. BEALS

(3) Delete-Minimum, which appends the minimal element of P; onto the output se-
quence.

Let R, denote the k-fold composition of R, with itself. Then it is easy to verify that
R,* is precisely the set of (input, output) pairs associated with a series network of k priority
queues.

The weak order W,, on the set of all permutations on n symbols is defined by (o, 7) € W,
if and only if every pair of symbols of o, which are in increasing order, are also in increasing
order in T. The weak order is an important tool for the study of geometric and combinatorial
properties of the symmetric group; its properties are discussed at length in [2]. It is clear that
R, € W, and, since W, is transitively closed, R,* € W, forall k.

THEOREM 3.5. R," 2 # R," ' = W,.

Proof. For (o,) € W, let p(o, 7) be the smallest integer k such that all but the leftmost k
symbols of o and 7 agree (that is, the rightmost n — k symbols agree). Observe that p is never
equal to 1. In order to show that R,"~! = W, it suffices to show that for any (o, 7) € W, with
o # 1, there exists a o’ such that all of the following hold:

() (0,0") € Ry,
(2) (0',71) € Wy,
3) plo’, 1) < plo, 7).

To see this, write o0 asaxBy and T as §xy suchthat|y| = n—p(o, §). Since (o,) € W,
it follows that x must be larger than all symbols in 8. Therefore, o’ = aBxy satisfies condition
(1) above (in fact a priority queue can input o and output o’ by only placing two symbols,
x and the current input symbol, in the queue at one time). Also, o’ satisfies condition (2)
because any pair of symbols in o’ appear either in the same order as in o, or the same order as
in 7. Finally, since o’ and 7 both end with xy, condition (3) is satisfied. Since p cannot have
the value 1, the sequence o”, ¢, . .. must reach 7 in at most n — 1 steps, proving R," ™! = W,.

To complete the proof, we prove that the pair

(In,n—1,...,2,1,[1,n,n—1,...,3,2),

which plainly lies in W,,, does not belong to R," 2. Suppose that it were possible to transform
[n,n—1,...,2,1]into [1,n,n — 1, ..., 3, 2] by a series network of n — 2 priority queues.
When the final element of the input (symbol 1) has been placed in priority queue P; the other
n — 1 symbols must all be in the n — 2 priority queues of the network since none can be
output yet. One of the priority queues must therefore contain at least two of the symbols in
{2, 3, ..., n}. Clearly this is impossible, since these two symbols would then have to be output
eventually in increasing order. 0

Therefore, W, describes the relation between input and output permutations for a series
network of k priority queues forany k > n — 1.

Acknowledgment. We thank Katherine Anderson and Murali Thiyagarajah for several
useful conversations during the course of this work, and Gerald Ostheimer for the insight
leading to the O (n) algorithm for computing s(7).

REFERENCES

[1]1 M. D. ATKINSON AND M. THIYAGARAJAH, The permutational power of a priority queue, BIT, 33 (1993), pp. 2-6.

[2] A.BIORNER, Orderings on coxeter groups, in Proceedings of Conference on Combinatorics and Algebra, Amer-
ican Mathematical Society, Providence, RI, 1983.

[3] T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, Mas-
sachusetts, 1992.

[4] V. PRATT, Computing permutations with double-ended queues, parallel stacks, and parallel queues, in Proceed-
ings of the Sth ACM STOC, ACM Press, New York, 1973, pp. 268-277.

[5] R.E. TARIAN, Sorting using networks of queues and stacks, J. ACM, 19 (1972), pp. 341-346.

