
Part I

COMPUTER SCIENCE

BIT 33 (1993), 2-6.

T H E P E R M U T A T I O N A L P O W E R O F A P R I O R I T Y Q U E U E

M. D. ATKINSON* and MURALI THIYAGARAJAH

Department of Mathematical and School of Computer Science,
Computational Sciences, Carleton University, Ottawa,
North Haugh, St. Andrews, Canada KIS 5B6
Fife K Y16 9SS, Scotland

Abstract.

A priority queue transforms an input permutation cr of some set of size n into an output permutation z.
It is shown that the number of such pairs (a, z) is (n + 1)"- 1 Some related enumerative and algorithmic
questions are also considered.

Keywords: Priority queue, permutation, enumeration.

CR Categories: E. 1, G.2.1.

Priority Queues are abstract data types which support the operations: Insert,
Delete-Minimum. They have many applications and several efficient implementa-
tions of them are known. In this paper we shall be concerned with the effect of
a priority queue on the order of the data items that pass through it. Suppose that
al, a2 , . . . , a,, is some stream of input to a priority queue. Each Insert operation
places the next item of the stream in the priority queue and each Delete-Minimum
operation removes the current smallest element and places it in an output stream.
After n Insert operations and n Delete-Minimum operations the input stream will be
exhausted, the priority queue will be empty, and the output stream will contain some
permutation of the input stream. The only restriction on a valid sequence of Insert
and Delete-Minimum operations is that Delete-Minimum must not be applied to
the priority queue if it is empty and hence a sequence of Inserts and Delete-
Minimums must be well-formed in the sense of bracket sequences (in any initial
segment there must always be at least as many Inserts as Delete-Minimums). There
are therefore c, valid sequences of n Insert operations and n Delete-Minimum
operations where

* Supported by the National Science and Engineering Research Council of Canada under Grant
A4219.

Received April 1992. Revised September 1992.

THE PERMUTATIONAL POWER OF A PRIORITY QUEUE 3

c , = n + l)

is the nth Catalan number.
We shall consider input streams of distinct elements drawn from some totally

ordered set which, for convenience, we may take to be the set of positive integers. Let
be some input (a sequencing of the elements in some set C) which gives rise to some

output sequence t; then we shall call (a, z) an allowable pair on C. Our main result is

Theorem 1. The number of allowable pairs on a set of size n is (n + 1) "-1

It is interesting to compare this result with the well-known situation where a stack
is used in place of a priority queue (see [1] §5.1.4 for a full discussion of the
combinatorics of this problem). In this case every sequence of inserts and deletes
(pushes and pops) gives rise to a different permutation of the input, and the number
of outputs for a given input is therefore c, which is of the order 4". For priority
queues there is considerable variability. If the input is the sequence 1, 2 , . . . , n only
one output is possible. On the other hand, if the input sequence is n, n - 1 , . . . , 1
every legal sequence of Inserts and Delete-Minimums gives rise to a different output,
just as for stacks. It follows from our main result that the average number of outputs
for a given input of length n is, by Stirling's formula, of the order e". These
considerations suggest the notion of "permutational power" which occurs in the title
of this paper. Priority queues do not have the same capability as stacks to produce
permutations of their input, and the functions e" and 4" are illuminating measures
which quantify this difference. We shall discuss the number of outputs for a given
input below.

However, the proof of the theorem requires an understanding of the complement-
ary problem: how many inputs can give rise to a given output? We are able to
characterize these sequences as the set of linear extensions of a certain poser defined
from the output. If rc is a sequence we shall let T(rc) denote the set of all t such that
(Tz, t) is allowable. Thus T(rc) is the set of sequences which can be output by a priority
queue if the input stream is zc. Let S(rc) be the set of all o- such that (o-, re) is allowable.
This set is the set of input streams capable of generating rc on the output stream.
Moreover, let t(rc) = TT(rc)t and s(rc) = jS0z)l.

LEMMA 2. Let a be some input stream expressed in the form ~m~ where m is the
maximal symbol. Suppose ~ = by. Then t(a) = t(~)t(~) + t(~bmT).

PROOF. Clearly, in any sequence of the set T(o-), m must come after the symbols of
~. There are t(~)t(fl) sequences in T(a) arising from outputting m as the next symbol
after all the symbols in e. Those sequences in T(a) for which m does not immediately
succeed the symbols of e are precisely the outputs that arise if c~bm7 is processed by
a priority queue.

4

COROLLARY 3.

M. D. ATKINSON AND MURALI THIYAGARAJAH

I f [3 = bib2. . , b~ and c~i = ~bl .. . bi, [3i = bi+ 1. . . b~ then

t(a) = ~ t(~i)t([30.
i = o

Suppose that z = t~t2.., tn is any sequencing of a set C. We define a partially

ordered set P(z) = (C, -<) by the following set of constraints:

1. if i < j and ti > tj then ti -< tfi

2. if k < i < j and h > tj then tk -< tj.

The relation -< is obviously irreflexive and transitive.

LEMMA 4. Let r be any sequencin 9 of the elements of a set C. Then S(z) ~s the set of
linear extensions of the poser P(r). Moreover, i f z is expressed in the form emil, where
m is the maximal element of C, Ic~ I = k, then s(z) = s(e)s(fl)(k + 1).

PROOF. Let a E S(z). We shall prove that ais a linear extension of P(~). Let y -< z be
one of the constraints of P(~). We must show that y precedes z in its occurrence in o-.

There are two cases:
1. y precedes z in ~ and y > z, or
2. there exists a symbol x such that y, x, z occur in this order in ~ and x > .z.

In either case the supposition that z precedes y in e leads to a contradiction. For,
in order for the two symbols y, z to be transposed when processed by a priority
queue, z must not be output until y (and all intervening symbols) have been placed in

the priority queue. But, in the first case, the priority queue would then output
z before y (because it is smaller) and, in the second case, the priority queue would

output z before x.
To prove the converse, that every linear extension of P(v) belongs to S(z), we

proceed by induction on n = [C[. We express ~ as ~ = ~m[3 where m is the maximal
element of C and let a be a linear extension of P(~:). Then, in a, by the two conditions
which define P(~), we can deduce that m precedes every symbol of fi and that every
symbol ofc~ precedes every symbol of/?. Moreover, the symbols ofc~ will be arranged

in a as some linear extension e* of P(c0 and the symbols of [3 will be arranged in a as
some linear extension [3* of P(fl) and m will occur somewhere among the symbols of
a*. Thus a has the form a = ~m~*f l* where ~l~z* * = ~*. The inductive hypothesis
guarantees that there are sequences of Insert and Delete-Minimum operations
which transform an input stream e* into e and transform an input stream fi* into ft.
It is now easy to see that there is a sequence of Insert and Delete-Minimum

operations which, with a as input, p roduces , as output.
Finally, the description just given of the linear extensions of the poset P(emfl)

proves the final statement of the lemma.
This lemma suggests a recursive algorithm for computing s(z). However, it is more

THE PERMUTATIONAL POWER OF A PRIORITY QUEUE 5

illuminating to consider an iterative version of it. Put z0 = oo and, for each

1 _< i _< n, define

b(i) = max {j < i, zj > zi}-
J

LEMMA 5.

s(z) = ~-I (i - b(i)).
i=1

PROOF. Let z = z*z,. By induction on n there are I-I~2~ (i - b(i)) linear extensions
of P(z*) (the values b(1) b(n - 1) defined for z are clearly the same for z*). Let
p = b(n). It follows from the definition of b(n) that zi ~ Tj for all 1 < ' i < p and
p + 1 _< j < n. Thus there are exactly n - p positions in every linear extension of
P(z*) in which z, may be inserted to make a linear extension of P(z). Hence
IS(z)I = IS(z*)1 (n - b(n)) and the result follows.

Now we define a labelled binary tree B(z). The root of B(z) is labelled with (19, m),
where m is the maximal element of z and p is its position in z, and if z = emil, the left
and right subtrees are B(e) and B(fl) respectively. It is clear, again by induction, that if
some node is labelled with the pair (i, z~) then i - b(i) is the cardinal of the set of nodes
in the subtree consisting of (i, zl) and all nodes in its left subtree.

The tree B(z) can be constructed as a binary search tree by inserting the (position,
value) pairs into an initially empty tree. The pairs are inserted in decreasing order of
value but are keyed by position.

LEMMA 6. There is an algorithm to compute s(z) which,for random z, has expected
execution time O(n log n).

PROOF. The algorithm is the one suggested above. The pairs (i, zi) are first sorted
by second component and then inserted into an initially empty binary search tree
thereby creating B(z). Then the sizes of all subtrees are found and the product in the
previous lemma is computed. The only part of this procedure which is not of time
complexity O(n log n) is the creation of B(-c). However, it is well known that, if all
input orders are equally likely, the expected height of a binary search tree is O(log n).
Hence the expected time for creating B(z) is O(n log n).

PROOF OF THEOREM 1. For any set X let Sym(X) denote the set of all permutations
of X. In proving the theorem we may suppose with no loss in generality that the
n-element set in question is C = {1, 2 , n). The theorem is dearly true when n = 0
and so we now take n > 0 and, as an inductive hypothesis, assume that the theorem
is true for sets of size less than n.

The number of allowable pairs is ~sy,~(c)S(Z). We shall express each permutation
z in the form z = omfl and let A, B denote the sets of symbols occurring in ~,

6 M.D. ATKINSON AND MURALI THIYAGARAJAH

fl respectively. Our sum can be expressed as a sum over the different possible subsets
A (grouped according to size) where, for each possible A we sum over all c~ s Sym(A)
and all f le C\{n}\A = B. It then becomes

n--1

2 2 2 2 s(~n~)
k = 0 A, IAI = k ot ~Sym(A) fl~Sym(B)

n - 1

= Z Z Z Z s(~ls(/~)(k + 1)
k=O A, IAI =k a~Sym(A) fl~Sym(B}

n - 1

= Z Z Z s(~) Z s(~l(k+l)
k = 0 A,]A] =k aeSym(A) fleSym(B)

= 2 (k + 1) k (k+l) k-l(n-
k=O

identities (see [2] §1.5), this is (n + 1) "-1 and, by one of Abel's

REF'ERENCES

t. D. E. Knuth: Sorting and Searching, The Art of Computer Programmin 9 VoL 3, Addison-Wesley,
(Reading, Massachusetts), 1973.

2. J. Riordan: An Introduction to Combinatorial Analysis, Wiley (New York) 1968.

