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An efficient algorithm is given for generating uniformly at random a rooted tree with a specified number
of nodes of each degree. The algorithm requires linear time, needs hardly any auxiliary storage and uses
only very simple operations.

We shall consider rooted, ordered trees on n nodes and
how to generate them uniformly at random. One natural
approach is to define a listing of the set of trees, generate
a random index into this list and construct the tree
which has this index. The problem with this approach
is that numbers which are exponential in n are required.
This difficulty was pointed out by Martin and Orr [2]
in the case of binary trees. They gave an algorithm for
generating a binary tree uniformly at random which
used only O(n) arithmetic operations on integers of
magnitude O(n). An earlier and simpler algorithm with
these features was given by Arnold and Sleep [1]. The
purpose of this note is to point out how a theorem of
Raney [4] can be used to solve a much more general
problem equally efficiently: how to generate uniformly
at random a tree where the number of nodes of each
down degree is specified in advance.

We define the type of a tree on n nodes to be the
vector (dy,d,, ..., d,— 1) where d, is the number of nodes
with r children. Of course, £ d, = n but the type vector
must also satisfy a consistency condition

Y, =1, = 1 (1

which expresses that the number of vertices in the tree
exceeds the number of edges by 1.

We shall give an algorithm, of linear time complexity
in the number of nodes n, that uses only integers of
magnitude O(n) and which, given a type vector, generates
a tree of that type uniformly at random. The special
case dy=N+1, d, =N, d, =0 otherwise, corresponds
to binary trees with N internal nodes all of down-degree
2; we call these full binary trees. The operation of
deleting the leaves of a full binary tree on N internal
nodes defines a one-to-one correspondence with binary
trees on N nodes so our algorithm solves the case
considered in [1,2]. In a similar way, putting
dy=(k—1)N+1,d,=N, and d, =0 otherwise, we can
generate k-ary trees uniformly at random.

We shall represent a tree by the pre-order listing of
the down degrees of its nodes. Clearly this sequence of
integers uniquely defines the tree. If a sequence of integers
can arise in this way we shall say that it is valid. A
valid sequence must either consist of zero alone or must
consist of a positive integer r followed by r valid

sequences. Such sequences were considered by Raney
[4] who regarded them as prefix expressions where each
integer r stands for an r-ary operator; his counting
technique is the basis of our algorithm.

An example valid sequence is 3020010 and the
corresponding tree is

Clearly, if d, is the number of occurrences of r in a valid
sequence d,0, ... g,, then equation (1) must be satisfied.
This equation may be recast as X!_, (o, — 1)= —1. It is
not a sufficient condition on a string of integers from
{0,1,...,n—1} to be a valid sequence. One needs also
the following inequalities which are easily proved by
induction.

Y (6;—1)>0 forall 0<m<n (2)
=1

Raney [4, Theorem 2.1] proved the following striking
result:

THEOREM 1. If6=0,0,... 6, 1is any string of symbols
from {0, 1, ..., n— 1}, d; is the number of symbols equal
to i and equation (1) holds then there is precisely one
cyclic shift of ¢ which is a valid sequence.

It is not difficult to identify the cyclic shift of ¢ which
produces a valid sequence. Put o;=o0;,—1, let
o' =00, ...0,, and let s, denote the partial sum X7 o7.
Conditions (1) and (2) may be rewritten as

Sp=—1 (1)
s, =20 for 0<m<n 2)
We must therefore determine the cyclic shift of ¢ which
makes these equations valid. Let k be that index for
which s, is minimal and, if there is more than one such

index, let k be the minimal one. Consider the shift of ¢’
which moves position k + 1 into the first position. The
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partial sums of this shifted sequence are either of the
form

Y ai, k+l1<m<n
i=k+1
which are all non-negative (otherwise s, would not be

the minimal partial sum) or they have the form

Y oi+s;, i<k
i=k+1

If any of the |Ilatter expressions satisfied
Xi_r+10;+5s;< —1 then, because Zf_;,; o;+ 5, = —1,
we would have s; <, but, again by definition of k, the
only value of j for which this can happen is j=k. We
therefore deduce that the shift of ¢ which moves position
k+ 1 into the first position produces a valid sequence.
We call position k + 1 the root position of g. Clearly, the
following computation finds the root position in time
O(n):

RooTt PosITION

Input: a sequence o,0,...0, satisfying the hypo-
theses of Theorem 1

Output: the root position of the sequence

minimum : = 0
s:=0
fori:=1tondo
si=s+0—1
if s < minimum then
minimum:=s
k.=1
endif
endfor
return (k mod n + 1)

Now consider the following algorithm:

RANDOM TREE

Input: a sequence of non-negative integers
(do,dy,...,d,—;) satisfying ) d,=n and
oy r—d, = —1

Output: a valid sequence with d, occurrences of r for
eachr=0,1,....,n—1

1. Generate an integer sequence o of length n
uniformly at random which has d, occur-
rences of r foreach r=0,1,...,n—1

2. Compute the root position of o

3. Apply to o the rotation which brings the
root position of ¢ to the front

4, Return(o)

As a direct consequence of Theorem 1 we have

THEOREM 2. RANDOM TREE is an unbiased generator
for trees of the given type (do, d;,...,d,_1).

THEOREM 3. RANDOM TREE can be implemented to
run in time O(n) with arithmetic on integers of magnitude
O(n), with O(1) auxiliary space. Except for the arithmetic
involved in a random integer generator the only arith-
metic operations are addition and subtraction.

Proof. To implement step 1 we begin by forming the
sequence whose first d, elements are equal to 0, the next
d, are equal to 1, and so on. We then apply a uniformly
chosen random permutation to this sequence. This can
be done by the well known swapping algorithm which
swaps the ith member with a randomly chosen jth
member (j<i),i=nn—1,...,2.

For step 2 we use the algorithm described earlier. Finally,
for step 3, we apply an algorithm for performing rotation
in place such as that given in [3].
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