
Information
~oc(&w

Information Processing Letters 50 (1994) 323-327

Uniform generation of forests of restricted height

M.D. Atkinson a, J.-R. Sack b,*

u bepartment of Mathematical and Computational Sciences, lJnir,ersity of St. Andrew, North Haugh, St. Andrew, Fife KY16 9S$
Scotland, United Kingdom

h School of Computer Science, Carleton Unil~ersity, Ottawa, Ontario, Canada KIS 5B6

(Communicated by S.G. Akl; received 1 October 1993; revised 1 February 1994)

Key words: Random generation; Design and analysis of algorithms; Trees and forests

1. Introduction

Tree structures occur throughout the theory of
information storage. Typically each tree node
contains some data information and some point-
ers to other tree nodes. In most cases the number
k of pointer fields is fixed and the structure is
referred to as a k-way tree. More formally, a
k-way tree can be defined as being either empty
(having no nodes) or as consisting of a root node
together with an ordered sequence of k k-way

trees. This formal definition suppresses the de-
tails about how much data is stored in a node and
describes only the “shape” of the k-way tree. The
binary case k = 2 is the most familiar. More gen-
erally we can define a k-way forest as being an
ordered sequence of non-empty k-way trees. It is
convenient to make a distinction between nodes
which are roots of non-empty subtrees (internal
nodes where data could be stored) and external
nodes which define empty substrees. The size of
the forest is defined to be the number of internal
nodes it contains.

* Corresponding author. Supported in part by the Natural
Sciences and Engineering Research Council of Canada.

For developing and testing algorithms which
manipulate forests it is useful to have methods
for generating them in a uniform manner (so that
each forest is generated with the same probabil-
ity). Many methods have been given in the case of
binary trees (2-way trees with one component)
[l-3,9-11,13]. Some of these methods extend to
k-way trees but there has been little previous
work on uniformly generating trees of a fixed or
bounded height. Other related work can be found
in [5,6,12].

In this paper we consider k-way forests of
fixed size ~1, height h, and number of components
c. We give a generator for producing such forests
uniformly at random thereby answering an open
problem posed in [lo]. Each random forest is
generated in a linear number of operations in its
size. The algorithm computes a table of values in
a pre-processing phase. This table occupies
0(hn2) locations and takes O(/Z~~) time to pro-
duce. The main result is summarised in the fol-
lowing theorem.

Theorem. The algorithm GENERATE (n, h, c)
(given below) is a uniform generator for k-way

forest of height h with c components (for fixed k).

The pre-processing phase has time requirement

0020.0190/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved
SSDI 0020-0190(94)00054-3

324 M.D. Atkinson, J.-R. Sack /Information Processing Leiters 50 (1994) 323-327

O(n”h) and space requirement 0(n2h); each k-way
forest is then generated in time O(n).

Our method depends on a recurrence formula
for the number of k-way forests of size n, height
h, and number of components c. First we state
the recurrence formula and then we describe our
method.

2. Recurrences

In their study of the average height of a binary
tree Brown and Shubert [4] (see also [51) gave the
following argument leading to a recurrence for
the number of binary trees of a fixed height. Let
f<n, h) denote the number of binary trees on n
nodes with height at most h. The quantities f(n,
h) have been investigated in [4,5] but no closed
formula for them is known. Nevertheless they can
be computed numerically by evaluating recur-
rence relations. It is clear that f(n, 0) = 0 if n > 0
and f<O, n) = 1 if n > 0. Moreover, a non-empty
binary tree of height at most h has left and right

subtrees on j and n - 1 -j nodes, for some j,
which are of height at most h - 1. Hence

n-1

f(n,h)= xf(j,h-l)*f(n-l-j,h-1).
j = 0

Using this recurrence f(n, h) can be computed
in O(n”> steps and then the number of binary
trees on n nodes of height exactly h can be
computed as f(n, h) -f<n, h - 1). Once these
quantities had been computed it would be possi-
ble, following the same type of argument as we
give in the next section, to generate random
binary trees of height h uniformly in time O(n)
per tree. This approach can be generalised to
k-way trees but the analogous recurrence be-
comes a summation over all sequences (j,,
j2,. . . , j,) which sum to n - 1 and the overall
time to compute the number of k-way trees rises
to O(nk+l). To obtain a manageable computation
for general values of k we require a new ap-
proach. We regard a k-way tree as being formed
in levels. Since the structure formed by all nodes
below a certain level is, in general, a forest rather

than a tree it is necessary to consider k-way
forests. Although this requires somewhat more
storage (because we have to keep track of how
many components such forests have) the time
requirement is then 0(n3h) independent of k.

Let t,(n, h, c) denote the number of k-way
forests with n internal nodes, height h, and c
components.

Lemma 1. (1) t,(n, h, c) = 0 if c > n or h > n.
(2) t,(n, 0, c> = 0 unless n = c = 0 when t,(O, 0,

o>= 1.
(3) t,(n, h, c) = C~L,Ck,‘)tk(n - c, h - 1, s) for

c,h G n and h > 0.

Proof. Parts (1) and (2) follow immediately from
the definitions. For part (3) note that any k-way
forest with n internal nodes, height h, and c
components has c root nodes which have kc child
nodes in all. Of these kc nodes some number s
(0 G s G kc) will be internal nodes. The remain-
der of the forest is then determined by the forest
with these s nodes as roots. The latter forest has
n - c internal nodes, height h - 1, and s compo-
nent so, once the s root nodes are chosen (and
for a fixed s this can be done in (“z) ways), there
are t,(n -c, h - 1, s) such forests. The result
now follows. 0

3. Random generation

We now discuss our method for producing
k-way forests on n nodes uniformly at random. A
k-way forest with n internal nodes, height h, and
c components (c G n) is determined by

(i) a choice (among the kc children of the root
nodes of the forest components) of which s nodes
are internal, and

(ii) a choice of k-way forest with n - c internal
nodes, height h - 1, s components (rooted at the
s nodes selected in (i)).

We wish to select a forest so that every one of
the t,(n, h, c) possibilities occurs with equal
probability. The number of these forests which
have precisely s internal nodes as children of the
root is (“sc) t,(n -c, h - 1, s). Thus, to ensure

M.D. Atkinson, J.-R. Sack /Information Processing Letters 50 (1994) 323-327 325

that each of the forests occurs with equal proba-
bility we must choose the value s with probability

(y)t&z -c, h - 1, S)

t,(n, h, c) .

This can be done in the usual way: generate a
random number in some range which is split into
subranges of size proportional to these probabili-
ties; select s according to the subrange in which
the random number falls.

The next step is to select a subset of size s
from among the kc children of the root nodes to
be the internal children of the root nodes. A
method for generating random combinations uni-
formly is given in [S, p. 1371.

Finally we have to select, uniformly at random,
a k-way forest with n - c internal nodes, height
h - 1, and s components and root it at the set of
s nodes chosen in the previous step (taken in left
to right order). This is accomplished by recursive
application of this method.

It is evident from the discussion that this pro-
cedure does generate k-way forests with n nodes,
height h, and c components with equal probabil-
ity. The forest so generated can be represented
conveniently by an encoding given in [lo] (prim-
arily in the case of binary trees). In this encoding
each forest is represented as a sequence of n l’s
and nk - n + c 0’s. Essentially the sequence spec-
ifies which nodes on each level are internal. At
the root level (the first level), all nodes are inter-
nal so the sequence begins with a segment of c
1’s. At the second level there are kc nodes of
which s, say, are internal; so the encoding now
has a segment of length kc with precisely s l’s
specifying which of the kc nodes are internal. At
the third level there are ks nodes of which, say, t
are internal; the coding will therefore have a
segment of length ks with t l’s place appropri-
ately. It can be seen that the number u of l’s in
each segment determines the length ku of the
next segment. The first segment can be identified
by its length c = u,) -(k - l)c,, where c’~) is the
number of O’s and u, is the number of 1’s. Thus
the entire segmentation can be determined and
so the encoding of the k-way forest uniquely
determines the forest. Note however that not

every binary sequence represents a forest; as
pointed out in [lo] there is a “prefix” condition
that has to be satisfied: the number of l’s is no
less than the number of O’s in any prefix.

We now give a pseudo-code description of the
algorithm in iterative terms which outputs the
encoding of a random k-way forest with n inter-
nal nodes, height h, and c components:

GENERATE (n, h, C)

Input: The number, c, of components of the
k-way forest to be generated; its height, h;
the number, II, of internal nodes.

Output: An encoding of the k-way forest gener-
ated uniformly at random.

ifc>norh>n
then output “No k-way forest exits”
else

if n=c=Oand h#O
then output “no k-way forest exists”
else

if h = 0 then encoding := []
else
begin

encoding := [1’1;
m:=n-c
d:=c

for j = 1 to h do
begin

s := select Cm, h -j, d)
segment := combination (k*d, s)
encoding := append (encoding, seg-
ment)
m:=m-s
d := s

end
end

In this code the variables/functions have the
following meanings:

encoding: The binary encoding of the k-way for-
est.

j: The current level being generated.

326 M.D. Atkinson, J.-R. Sack /Information Processing Letters 50 (I 994) 323-327

m: The number of nodes remaining to be gener
ated.

d: The number of nodes on the current level.
select: A function which selects the integer s with

probability proportional to ckzd) t,(m, h -j,
S>.

combination: A function which returns a random
combination of s integers from l..k*d en-
coded as a bit vector.

append: A function which concatenates its two
arguments.

4. Complexity analysis

Assuming that the quantities t,(u, L’, w) (u < n,
u G h, w G n) are available the algorithm requires
only O(kn) operations. It constructs the k-way
forest level by level. The construction time for a
particular level is dominated by the time required
to choose the number s of internal nodes on the
level (the select function) and the time required
to obtain the s nodes themselves (the combina-
tion function). The select function is imple-
mented by constructing a range which is split into
k*d subranges of length proportional to
(k:d>t,(m, h -j, s). A random point in this range
is generated and the value of s is selected accord-
ing to the subrange containing the random point.
The cost of these calculations is O(k*d). (Note
that arithmetic operations on large integers are
assumed to have unit cost.) However k*d is the
number of internal and external nodes on the
next level. Since the total number of internal and
external nodes is nk + c the cost of all the select
operations is O(kn). Since the random combina-
tion generator of [8, p. 1371 runs in time O(kd) a
similar argument applies also to the total cost of
the combination operations.

Before the random generation algorithm is
used the values t,(u, u, w) must be calculated for
u < n, u < h, w < n (values w > n may be required
by the algorithm but we can exploit that t,(u, u,
w> = 0 for w > 0). The recurrence formulae in
Lemma 1 allow these n*h quantities to be com-
puted in O(n”h) steps. There are h levels of

recursion, each step evaluates a sum of kc + 1
quantities; each quantity is a product of a bino-
mial coefficient and some t,(u, u, w). The values
t,(u, u, w) and the binomial coefficients are
known (after preprocessing) and can therefore be
accessed in constant time (the big 0 hides linear
dependence on k since each t,(u, ~1, w) is a sum
of 1 + kw = O(kn) previously computed terms).
Clearly the space requirement is 0(n2h>.

This discussion proves our theorem.

5. Open problem

The algorithm presented in this paper gener-
ates each k-way forest optimally in linear-time
after a preprocessing phase, where n is the size
of the tree and h its height. In particular for
practical considerations, it would be interesting
to see if the O(n3h) preprocessing time can be
reduced.

References

[l] D.B. Arnold and M.R. Sleep, Uniform random number

generation of n balanced parenthesis strings, ACM Trans.

Programming Languages Systems 2 (1980) 122-128.

[2] M.D. Atkinson and J.-R. Sack, Generating binary trees

at random, Inform. Process. Lett. 41 (1992) 21-23.

[3] M.D. Atkinson and J.-R. Sack, Uniform generation of

combinatorial objects in parallel, J. Parallel Distributed

Comput. (1993), to appear.

[4] G.B. Brown and B.O. Shubert, On random binary trees,

Math. Oper. Res. 9 (1984) 43-65.

[5] P. Flajolet and A. Odlyzko, The average height of binary

and other simple trees, J. Comput. and System Sci. 25

(1982) 171-213.

[6] P. Flajolet, P. Zimmermann and B. van Cutsem, A calcu-

lus of random generation, in: T. Lengauer, ed., Proc.

European Symp. on Algorithms - ESA’93, Lecture Notes

in Computer Science 726 (Springer, Heidelberg, 1993)
1699180.

[7] T. Hickey and J. Cohen, Uniform random generation of
strings in a context-free language, SUM J. Comput. 12

(4) (1983) 645-655.

[8] D.E. Knuth, Semi-numerical Algorithms, The Art of Com-

puter Programming, Vol. 2 (Addison-Wesley, Reading,

MA, 2nd ed., 1981).
[9] J.F. Korsh, Counting and randomly generating binary

trees, Inform. Process. Lett. 45 (6) (1992) 291-294.

M.D. Atkinson, J.-R. Sack /Information Processing Letters 50 (1994) 323-327 327

[lo] CC. Lee, D.T. Lee and C.K. Wang, Generating binary

trees of bounded height, Acta Inform. 23 (1986) 529-544.

[ll] H.W. Martin and B.J. Orr. A random binary tree genera-

tor, in: Computing Trends in the 199Ok. ACM 17th Com-

puter Science Con& Louisville, KY, 1989 (ACM Press,

New York) 33-3X.

[12] A. Nijenhuis and H.S.. Wilf. Combinatorial Algorithms

(Academic Press, New York, 2nd ed., 197X).

[13] R. Sprugnoli, The generation of binary trees as a numeri-

cal problem, J. ACM 39 (1992) 317-327.

