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1. Introduction 

Tree structures occur throughout the theory of 
information storage. Typically each tree node 
contains some data information and some point- 
ers to other tree nodes. In most cases the number 
k of pointer fields is fixed and the structure is 
referred to as a k-way tree. More formally, a 
k-way tree can be defined as being either empty 
(having no nodes) or as consisting of a root node 
together with an ordered sequence of k k-way 

trees. This formal definition suppresses the de- 
tails about how much data is stored in a node and 
describes only the “shape” of the k-way tree. The 
binary case k = 2 is the most familiar. More gen- 
erally we can define a k-way forest as being an 
ordered sequence of non-empty k-way trees. It is 
convenient to make a distinction between nodes 
which are roots of non-empty subtrees (internal 
nodes where data could be stored) and external 
nodes which define empty substrees. The size of 
the forest is defined to be the number of internal 
nodes it contains. 

* Corresponding author. Supported in part by the Natural 
Sciences and Engineering Research Council of Canada. 

For developing and testing algorithms which 
manipulate forests it is useful to have methods 
for generating them in a uniform manner (so that 
each forest is generated with the same probabil- 
ity). Many methods have been given in the case of 
binary trees (2-way trees with one component) 
[l-3,9-11,13]. Some of these methods extend to 
k-way trees but there has been little previous 
work on uniformly generating trees of a fixed or 
bounded height. Other related work can be found 
in [5,6,12]. 

In this paper we consider k-way forests of 
fixed size ~1, height h, and number of components 
c. We give a generator for producing such forests 
uniformly at random thereby answering an open 
problem posed in [lo]. Each random forest is 
generated in a linear number of operations in its 
size. The algorithm computes a table of values in 
a pre-processing phase. This table occupies 
0(hn2) locations and takes O(/Z~~) time to pro- 
duce. The main result is summarised in the fol- 
lowing theorem. 

Theorem. The algorithm GENERATE (n, h, c) 
(given below) is a uniform generator for k-way 

forest of height h with c components (for fixed k). 

The pre-processing phase has time requirement 
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O(n”h) and space requirement 0(n2h); each k-way 
forest is then generated in time O(n). 

Our method depends on a recurrence formula 
for the number of k-way forests of size n, height 
h, and number of components c. First we state 
the recurrence formula and then we describe our 
method. 

2. Recurrences 

In their study of the average height of a binary 
tree Brown and Shubert [4] (see also [51) gave the 
following argument leading to a recurrence for 
the number of binary trees of a fixed height. Let 
f<n, h) denote the number of binary trees on n 
nodes with height at most h. The quantities f(n, 
h) have been investigated in [4,5] but no closed 
formula for them is known. Nevertheless they can 
be computed numerically by evaluating recur- 
rence relations. It is clear that f(n, 0) = 0 if n > 0 
and f<O, n) = 1 if n > 0. Moreover, a non-empty 
binary tree of height at most h has left and right 

subtrees on j and n - 1 -j nodes, for some j, 
which are of height at most h - 1. Hence 

n-1 

f(n,h)= xf(j,h-l)*f(n-l-j,h-1). 
j = 0 

Using this recurrence f(n, h) can be computed 
in O(n”> steps and then the number of binary 
trees on n nodes of height exactly h can be 
computed as f(n, h) -f<n, h - 1). Once these 
quantities had been computed it would be possi- 
ble, following the same type of argument as we 
give in the next section, to generate random 
binary trees of height h uniformly in time O(n) 
per tree. This approach can be generalised to 
k-way trees but the analogous recurrence be- 
comes a summation over all sequences (j,, 
j2,. . . , j,) which sum to n - 1 and the overall 
time to compute the number of k-way trees rises 
to O(nk+l). To obtain a manageable computation 
for general values of k we require a new ap- 
proach. We regard a k-way tree as being formed 
in levels. Since the structure formed by all nodes 
below a certain level is, in general, a forest rather 

than a tree it is necessary to consider k-way 
forests. Although this requires somewhat more 
storage (because we have to keep track of how 
many components such forests have) the time 
requirement is then 0(n3h) independent of k. 

Let t,(n, h, c) denote the number of k-way 
forests with n internal nodes, height h, and c 
components. 

Lemma 1. (1) t,(n, h, c) = 0 if c > n or h > n. 
(2) t,(n, 0, c> = 0 unless n = c = 0 when t,(O, 0, 

o>= 1. 
(3) t,(n, h, c) = C~L,Ck,‘)tk(n - c, h - 1, s) for 

c,h G n and h > 0. 

Proof. Parts (1) and (2) follow immediately from 
the definitions. For part (3) note that any k-way 
forest with n internal nodes, height h, and c 
components has c root nodes which have kc child 
nodes in all. Of these kc nodes some number s 
(0 G s G kc) will be internal nodes. The remain- 
der of the forest is then determined by the forest 
with these s nodes as roots. The latter forest has 
n - c internal nodes, height h - 1, and s compo- 
nent so, once the s root nodes are chosen (and 
for a fixed s this can be done in (“z) ways), there 
are t,(n -c, h - 1, s) such forests. The result 
now follows. 0 

3. Random generation 

We now discuss our method for producing 
k-way forests on n nodes uniformly at random. A 
k-way forest with n internal nodes, height h, and 
c components (c G n) is determined by 

(i) a choice (among the kc children of the root 
nodes of the forest components) of which s nodes 
are internal, and 

(ii) a choice of k-way forest with n - c internal 
nodes, height h - 1, s components (rooted at the 
s nodes selected in (i)). 

We wish to select a forest so that every one of 
the t,(n, h, c) possibilities occurs with equal 
probability. The number of these forests which 
have precisely s internal nodes as children of the 
root is (“sc) t,(n -c, h - 1, s). Thus, to ensure 



M.D. Atkinson, J.-R. Sack /Information Processing Letters 50 (1994) 323-327 325 

that each of the forests occurs with equal proba- 
bility we must choose the value s with probability 

(y)t&z -c, h - 1, S) 

t,(n, h, c) . 

This can be done in the usual way: generate a 
random number in some range which is split into 
subranges of size proportional to these probabili- 
ties; select s according to the subrange in which 
the random number falls. 

The next step is to select a subset of size s 
from among the kc children of the root nodes to 
be the internal children of the root nodes. A 
method for generating random combinations uni- 
formly is given in [S, p. 1371. 

Finally we have to select, uniformly at random, 
a k-way forest with n - c internal nodes, height 
h - 1, and s components and root it at the set of 
s nodes chosen in the previous step (taken in left 
to right order). This is accomplished by recursive 
application of this method. 

It is evident from the discussion that this pro- 
cedure does generate k-way forests with n nodes, 
height h, and c components with equal probabil- 
ity. The forest so generated can be represented 
conveniently by an encoding given in [lo] (prim- 
arily in the case of binary trees). In this encoding 
each forest is represented as a sequence of n l’s 
and nk - n + c 0’s. Essentially the sequence spec- 
ifies which nodes on each level are internal. At 
the root level (the first level), all nodes are inter- 
nal so the sequence begins with a segment of c 
1’s. At the second level there are kc nodes of 
which s, say, are internal; so the encoding now 
has a segment of length kc with precisely s l’s 
specifying which of the kc nodes are internal. At 
the third level there are ks nodes of which, say, t 
are internal; the coding will therefore have a 
segment of length ks with t l’s place appropri- 
ately. It can be seen that the number u of l’s in 
each segment determines the length ku of the 
next segment. The first segment can be identified 
by its length c = u,) -(k - l)c,, where c’~) is the 
number of O’s and u, is the number of 1’s. Thus 
the entire segmentation can be determined and 
so the encoding of the k-way forest uniquely 
determines the forest. Note however that not 

every binary sequence represents a forest; as 
pointed out in [lo] there is a “prefix” condition 
that has to be satisfied: the number of l’s is no 
less than the number of O’s in any prefix. 

We now give a pseudo-code description of the 
algorithm in iterative terms which outputs the 
encoding of a random k-way forest with n inter- 
nal nodes, height h, and c components: 

GENERATE (n, h, C) 

Input: The number, c, of components of the 
k-way forest to be generated; its height, h; 
the number, II, of internal nodes. 

Output: An encoding of the k-way forest gener- 
ated uniformly at random. 

ifc>norh>n 
then output “No k-way forest exits” 
else 

if n=c=Oand h#O 
then output “no k-way forest exists” 
else 

if h = 0 then encoding := [ ] 
else 
begin 

encoding := [ 1’1; 
m:=n-c 
d:=c 

for j = 1 to h do 
begin 

s := select Cm, h -j, d) 
segment := combination (k*d, s) 
encoding := append (encoding, seg- 
ment) 
m:=m-s 
d := s 

end 
end 

In this code the variables/functions have the 
following meanings: 

encoding: The binary encoding of the k-way for- 
est. 

j: The current level being generated. 
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m: The number of nodes remaining to be gener 
ated. 

d: The number of nodes on the current level. 
select: A function which selects the integer s with 

probability proportional to ckzd) t,(m, h -j, 
S>. 

combination: A function which returns a random 
combination of s integers from l..k*d en- 
coded as a bit vector. 

append: A function which concatenates its two 
arguments. 

4. Complexity analysis 

Assuming that the quantities t,(u, L’, w) (u < n, 
u G h, w G n) are available the algorithm requires 
only O(kn) operations. It constructs the k-way 
forest level by level. The construction time for a 
particular level is dominated by the time required 
to choose the number s of internal nodes on the 
level (the select function) and the time required 
to obtain the s nodes themselves (the combina- 
tion function). The select function is imple- 
mented by constructing a range which is split into 
k*d subranges of length proportional to 
(k:d>t,(m, h -j, s). A random point in this range 
is generated and the value of s is selected accord- 
ing to the subrange containing the random point. 
The cost of these calculations is O(k*d). (Note 
that arithmetic operations on large integers are 
assumed to have unit cost.) However k*d is the 
number of internal and external nodes on the 
next level. Since the total number of internal and 
external nodes is nk + c the cost of all the select 
operations is O(kn). Since the random combina- 
tion generator of [8, p. 1371 runs in time O(kd) a 
similar argument applies also to the total cost of 
the combination operations. 

Before the random generation algorithm is 
used the values t,(u, u, w) must be calculated for 
u < n, u < h, w < n (values w > n may be required 
by the algorithm but we can exploit that t,(u, u, 
w> = 0 for w > 0). The recurrence formulae in 
Lemma 1 allow these n*h quantities to be com- 
puted in O(n”h) steps. There are h levels of 

recursion, each step evaluates a sum of kc + 1 
quantities; each quantity is a product of a bino- 
mial coefficient and some t,(u, u, w). The values 
t,(u, u, w) and the binomial coefficients are 
known (after preprocessing) and can therefore be 
accessed in constant time (the big 0 hides linear 
dependence on k since each t,(u, ~1, w) is a sum 
of 1 + kw = O(kn) previously computed terms). 
Clearly the space requirement is 0(n2h>. 

This discussion proves our theorem. 

5. Open problem 

The algorithm presented in this paper gener- 
ates each k-way forest optimally in linear-time 
after a preprocessing phase, where n is the size 
of the tree and h its height. In particular for 
practical considerations, it would be interesting 
to see if the O(n3h) preprocessing time can be 
reduced. 
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