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This paper makes a contribution to the enu- 
meration of trees. We prove a new result about 
k-way trees, point out some special cases, use it 
to give a new proof of Cayley’s enumeration 
formula for labelled trees, and observe that our 
techniques allow various types of k-way trees to 
be generated uniformly at random. We recall the 
definition: a k-way tree is either empty or it 
consists of a root node and a sequence of k k-way 
subtrees. These structures are often used in soft- 
ware systems to store data, with k = 2 (binary 
trees) being the commonest case. It is usual to 
represent a k-way tree by a diagram in which the 
root node is connected to its non-empty subtrees 
by edges which point in one of k fixed directions. 
Fig. 1 depicts a 3-way tree with 5 directions of the 
first type, 4 of the second type and 3 of the third 

type. 

Theorem. The number of k-way trees on n = 1 + 
Ef= lai nodes with ai edges in the ith direction, for 
1 <i<k, is 

1 k n - n( .I n i=l a* A 
* Corresponding author. Fig. 1. A 3-way tree. 

The theorem depends on an encoding of k-way 
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in a somewhat simpler r be 
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a (0, 11 of length k, called 
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1 otherwise. The is encoded by a 
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To every k-way tree r there is an associated 
ordinary rooted ordered tree r* obtained from 
r by forgetting the directions on the edges (but 
retaining the same order). Of course, the ordi- 
nary tree r* arises from many different k-way 
trees. An ordinary tree can be encoded as the 
pre-order sequence of the down-degrees of its 
nodes; the encoding M(T) may be regarded as a 
generalisation of this degree coding. The columns 
of M(T) give the more subtle information re- 
quired to describe the subtrees of a k-way tree 
node. 

The following lemma records some elementary 
properties of M(T). 

Lemma 1. (1) M(T) has exactly n - 1 entries equal 
to 1. 

(2) The number of l’s in the ith row of M(T) 
(the row sum) is equal to the number of edges of r 
in the ith direction. 

(3) The number of l’s in the jth column of 
M(T) (the column sum) is equal to the down-de- 
gree of the jth node (in the pre-order traversal) of 
r. 

(4) The vector of column sums is the degree 
coding of the ordinary tree r *. 

Not every k x n (0, 1) matrix with n - 1 entries 
equal to 1 is the matrix of some k-way tree. In 
fact, as the next lemma shows, only one such 
matrix in every n corresponds to a k-way tree. 

Lemma 2. Let A be any k x n (0, 1) matrix with 
n - 1 entries equal to 1. Let Ai be the matrix 
obtained by rotating the columns of A cyclically to 
the right through ipositions. Then A,, A,, . . . , A,, ~, 
are all distinct and precisely one of them is the 
matrix of a k-way tree. 

Proof. The column sums of A define a vector 
d = (d,, d,, . . . , d,) of non-negative integers with 
sum n - 1. By a theorem of Raney 181 the n 
rotations of this vector are all distinct and there is 
a unique rotation which is the pre-order degree 
sequence for an ordinary tree. Once this rotation 
is identified (and applied to A) the columns of 
(the new) A define the directions at each node of 
a unique k-way tree r such that A = M(T). 0 

Note. The proof given in [S] identified which 
rotation produced the pre-order degree se- 
quence. Put di = di - 1 and let d’ = did;. . . d;. 
Raney showed that the necessary rotation of d is 
the one that brings to the front that segment of d’ 
which has largest sum (and, if there are several 
such, the longest is required). The problem of 
detecting the segment of a vector with largest 
sum has achieved some celebrity both as an ex- 
ample of good algorithm design (see [21 and [71) 
and as an example of deriving algorithms from 
their formal specification (see [l] and [3]). The 
linear time solution in [2] can easily be adapted to 
accommodate the extra requirement of finding 
the longest when there are several candidates. 

Proof of the Theorem. By Lemma 1 the k-trees 
described in the statement of the theorem have 
encodings which are k x n (0, 1) matrices with 
n - 1 entries equal to 1 and with ai entries equal 
to 1 in the ith row, for each i = 1,. . . , k. In 
general there are n,“,,<,:> k x n matrices with ai 
entries in the ith row equal to 1 since the ith row 
may be chosen in (i,) different ways. By Lemma 2 
exactly (l/n>~~~,(~,) of these are encodings of 
the k-way trees. 0 

Note. Exactly the same technique establishes that 
the number of k-way trees on n nodes is 

1 kn 
( 1 n n-l 

since there are <,“r,> k x n (0, 1) matrices with 
n - 1 entries equal to 1 but only one in n of them 
is an encoding of a k-way tree. Another proof of 
this formula appears in [4, p. 5841. 

Corollary. The number of binary trees on n nodes 
with i left branches and n - i - 1 right branches is 

d(l)(iTl)’ 

Somewhat surprisingly, our theorem gives a 
simple proof of Cayley’s theorem (see [4, pp. 
389-3911) on free (= unordered, unrooted) la- 
belled trees. 
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Corollary. The number of free labelled trees on n 
nodes is nnp2. 

Proof. The number of (n - l)-way trees with a, = 
a2= ... =a,_,= 1 is, by the Theorem, nne2. 
These trees have exactly one branch in each of 
n - 1 different directions. There is a simple one- 
to-one correspondence between such trees and 
free labelled trees. Given any such (n - l)-way 
tree we can label its nodes with 1, 2,. . . , n as 
follows: the root is labelled n and any other node 
is labelled by the direction that leads to it. Con- 
versely, from any free labelled tree we can recon- 
struct an (n - l)-way tree; we orient the tree by 
choosing the root node to be the node labelled 
with n, and then give directions to each edge 
according to the label on its lower end point. This 
one-to-one correspondence proves the corollary. 

0 

Finally we observe that our encoding of trees 
allows arbitrary k-way trees to be generated uni- 
formly at random in time O(nk) with arithmetic 
involving only integers of O(n) in value. We 
merely generate a random k x n (0, 1) matrix 
with II - 1 entries equal to 1 and shift it using 
Bentley’s algorithm until it is the matrix of a 
k-way tree. The random matrix can be con- 

strutted from a random combination generator 
(see [5, p. 1371). If a random k-way tree with 
specified numbers of directions of each type is 
required we just have to generate the initial ran- 
dom matrix row by row so that the ith row has ai 
entries equal to one; again a combination genera- 
tor can be used. 
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